Active Control of Sound within Enclosure Using Piezoelectric Actuators

Takayuki SHIMADA, Sizuo YAMAMOTO, Akira SONE and Arata MASUDA

Enclosures of machines have openings that allow radiation of heat and sound leakage. It has been reported that a sound insulating device is effective for dissipating sound. In this paper, in addition to the conventional method, we suggest a method of oscillating the sound insulating device using a piezoelectric actuator to control it actively. First, eigenvalue analysis of sound field within an enclosure is conducted using BEM. Then, the state equation for sound field is derived. Finally, it is proven by numerical simulation that this proposed active control system can control sound within an enclosure successfully.

Key Words: Enclosure, Active Control, Sound Noise, Boundary Element Method

1. 緒言

機械は生活に便をもたらしたが、その代償として排気ガス、振動、騒音等による悪影響ももたらした。本論文ではこの内、騒音に注目してこれを低減する方法を研究する。騒音対策としては、機械から発生する騒音自体を低減することが最初にはかれるべきであるが、ここではいったん、機械から発生してしまった騒音が空間－エンクロージャ－空間を伝播する過程において、これを効率的に低減する手法を研究する。原理的にはエンクロージャの板厚を十分にあけて音波がエンクロージャから透過しないようにして、エンクロージャの内部で音のエネルギーを熱エネルギーに変換すれば機械から発生する音はエンクロージャで遮断される。

しかし、実際に機械の発熱を排気するためにエンクロージャには必ず開口部が設けられており開口部から音が放出されてしまう。過去の研究(1)(2)(3)によると、その放出は全体の80％以上にのぼることが境界要素

Fig. 1 Model of sound insulating plate
圧電アクチュエータを用いたエンクロージャ内部音場のアクティブ制音

では遮音板を図1のように減衰機構のない平板でモデル化する。

エンクロージャに開口部がある音場の解析は、エンクロージャ内部と外部を連成させて行わなければ正確なモデル化ができないが、ここでは手始めとして、外部空間との連成効果を無視して解析を進めた。

制御における音場の状態方程式を得るために、まず境界要素法を用いて内部音場の固有値解析を行い、内部音場の固有値および固有モードを求めた。次いで求められた固有モードを用いて音場をモード展開し、Lionの境界制御の方法を適用して状態方程式を導出した。制御方法として、最適レギュレータ理論に基づいてLQ制御を行った。

本論文の構成は、まず第3章で音場を支配する運動方程式、すなわち波動方程式を導出した。第4章では音場の固有値解析について説明しており、境界要素法による積分方程式の定式化および離散化を行い、標準の積分方程式に対するマトリックス方程式を導いている。第5章では、音場を状態空間表現して離音低減に対する最適制御力を求めている。最後に第6章で境界要素法による固有値解析、遮音板の変位制御によるアクティブ制音問題のシミュレーションを行い、本手法の有効性を示した。

2. おもな記号の説明

\(K \): 体積弾性率
\(\rho_0 \): 體積の密度

\(\delta(x, y, t) \): 時刻 \(t \)における点 \((x, y)\)での音圧増分

\(c \): 音速

\(t \): 時刻

\(\omega \): 角振動数

\(x, y \): 二次元音場内の座標

\(\alpha, \beta \): 二次元音場内の座標

\(\mathcal{R}(x, y, \alpha, \beta) \): 二次元Laplace基本解

\(\mathcal{Q}(x, y, \alpha, \beta) \): 二次元Laplace基本解に対する流束

\(\delta(n) \): Diracのデルタ関数

\(r \): 点 \((x, y)\)と点 \((\alpha, \beta)\)を結ぶ距離

\(n \): 界面外向き単位外向きベクトル

\(P(x, y) \): 時刻 \(t \)における点 \((x, y)\)の音圧

\(Q(x, y) \): 時刻 \(t \)における点 \((x, y)\)の音束

\(\lambda \): 固有値

\(\mathcal{R}(t) \): 鴨音源信号

\(f(t) \): 音圧アクチュエータに印加する電圧

\(c_0 \): 音圧アクチュエータの力-電圧変換係数

\(\mathcal{P}_s(x, y) \): \(k \)次近似圧力モード関数

\(\xi_s(t) \): \(k \)次近似基底関数

\(x, y \): 鴨音源の位置を表す座標

\(x, y \): センサの位置を表す座標

\(y(t) \): 状態変数ベクトル

\(y(t) \): センサ観測点における出力

\(y \): エンクロージャ開口率

3. 音場の基礎方程式

二次元波動方程式は次のように与えられる。

\[
\frac{1}{c^2} \frac{\partial^2 P(x, y, t)}{\partial t^2} = f_s(x, y, t)
\]

(1)

ただし \(c \) は音速で

\[
c = \sqrt{\frac{K}{\rho_0}}
\]

二次元の媒質が自由振動しているとき、音場を支配する波動方程式は式(1)の右辺を零として考える。媒質が微小振幅の調和振動をする場合、すなわち \(P(x, y, t) \)の時間依存性が角振動数 \(\omega \)をもつ調和関数 \(P(x, y, t) = \mathcal{R}(x, y) e^{i\omega t} \)で表される場合には、波動方程式は次式のように変わる。

\[
\frac{1}{c^2} \mathcal{R}(x, y) + \lambda^2 \mathcal{P}(x, y) = 0
\]

(2)

ただし

\[
\lambda = \frac{\omega}{c}
\]

固有値解析を行う場合は、境界条件として次のような同次境界条件のもとで解析した。

\[
\begin{align*}
\mathcal{P}(x, y) &= 0 & (x, y) & \in \Gamma_p \\
\mathcal{Q}(x, y) &= \frac{\partial \mathcal{P}(x, y)}{\partial n} &= 0 & (x, y) & \in \Gamma_q
\end{align*}
\]

(3)

ただし \(n \) は境界上の外向き単位外向きベクトル、\(\Gamma_p \)は開口部、\(\Gamma_q \)は壁体の各要素を表す。

4. 境界要素法による二次元音場の固有値解析

4・1 境界要素法による定式化　式(2)を境界要素法により定式化するに際し、二次元Laplace基本解を用いる。

式(2)と基本解 \(\mathcal{P}(x, y; \alpha, \beta) \)の内積をとり、領域 \(\Omega \)で積分すると

\[
\int_{\Omega} (\nabla \mathcal{P}(x, y) + \lambda^2 \mathcal{P}(x, y)) \mathcal{P}(x, y; \alpha, \beta) d\Omega = 0
\]

(4)

式(4)はGreenの第2定理を適用し、基底解の関係を考慮すると次の境界積分方程式を得る。

\[
C(\alpha, \beta) \mathcal{P}(\alpha, \beta) + \int_{\Gamma_q} Q^*(x, y; \alpha, \beta) \mathcal{P}(x, y) d\Gamma
\]

\[
- \int_{\Gamma_p} \mathcal{P}^*(x, y; \alpha, \beta) Q(x, y) d\Gamma
\]

—198—
式 (5) を数値計算するために離散化操作を行う。すなわち境界を \(N \) 個の境界要素に、領域内を \(L \) 個の内部セルに分割する。

ここで境界要素として、要素内で \(\mathcal{P}, \mathcal{Q} \) を線形に近似する線形要素を、内部セルとして、要素内で \(\mathcal{P} \) を一定とする一定要素を用いることとし、加力点 \((a, \beta)\) を \(i \) 番めの節点に、観測点 \((x, y)\) を \(j \) 番めの境界節点に、節点値に関してまとめる式 (5) は次式のような連立代数方程式で書き表せる。

\[
C(a, \beta) = \begin{cases}
1 & (a, \beta) \in \mathcal{P} \\
1/2 & (a, \beta) \in \mathcal{Q} \\
0 & (a, \beta) \in \mathcal{Q}
\end{cases}
\tag{6}
\]

次に、境界要素 \(H_0, G_0 \) を次式のように、隣接する要素に関する係数を重ね合わせたもので

\[
H_0 = \mathcal{H}_{12} + \mathcal{H}_{21}, \quad G_0 = \mathcal{G}_{12} + \mathcal{G}_{21}
\]

とする。ただし

\[
\mathcal{H}_{ij} = \int_{\Omega} \mathcal{P} \mathcal{Q}^* d\Omega, \quad \mathcal{G}_{ij} = \int_{\Omega} \mathcal{P} \mathcal{Q}^* d\Omega
\]

であり、\(\mathcal{P} = (x, y) \) は無次元座標 \(x, y \) による内積関数で

\[
\mathcal{P}^* = \int_{\Omega} \mathcal{P} \mathcal{Q}^* d\Omega = \int_{\Omega} \mathcal{P} \mathcal{Q}^* d\Omega
\]

である。また

\[
\mathcal{B}_{ai} = \int_{\Omega} \mathcal{P} \mathcal{Q}^* d\Omega
\]

点 \((a, \beta)\) の境界節点および内部セル節点ごとにとって \(N + L \) 個の方程式が得られる。

4.2 境界積分方程式の離散化

式 (5) を数値計算するために離散化操作を行う。すなわち境界を \(N \) 個の境界要素に、領域内を \(L \) 個の内部セルに分割する。

ここで境界要素として、要素内で \(\mathcal{P}, \mathcal{Q} \) を線形に近似する線形要素を、内部セルとして、要素内で \(\mathcal{P} \) を一定とする一定要素を用いることとし、加力点 \((a, \beta)\) を \(i \) 番めの節点に、観測点 \((x, y)\) を \(j \) 番めの境界節点に、節点値に関してまとめる式 (5) は次式のような連立代数方程式で書き表せる。

\[
\begin{align*}
&C(a, \beta) = \begin{cases}
1 & (a, \beta) \in \mathcal{P} \\
1/2 & (a, \beta) \in \mathcal{Q} \\
0 & (a, \beta) \in \mathcal{Q}
\end{cases} \\
&H_0 = \mathcal{H}_{12} + \mathcal{H}_{21}, \quad G_0 = \mathcal{G}_{12} + \mathcal{G}_{21}
\end{align*}
\tag{7}
\]

次に、境界要素 \(H_0, G_0 \) を次式のように、隣接する要素に関する係数を重ね合わせたもので

\[
H_0 = \mathcal{H}_{12} + \mathcal{H}_{21}, \quad G_0 = \mathcal{G}_{12} + \mathcal{G}_{21}
\]

とする。ただし

\[
\begin{align*}
&\mathcal{H}_{ij} = \int_{\Omega} \mathcal{P} \mathcal{Q}^* d\Omega, \quad \mathcal{G}_{ij} = \int_{\Omega} \mathcal{P} \mathcal{Q}^* d\Omega
\end{align*}
\]

であり、\(\mathcal{P} = (x, y) \) は無次元座標 \(x, y \) による内積関数で

\[
\mathcal{P}^* = \int_{\Omega} \mathcal{P} \mathcal{Q}^* d\Omega = \int_{\Omega} \mathcal{P} \mathcal{Q}^* d\Omega
\]

である。また

\[
\mathcal{B}_{ai} = \int_{\Omega} \mathcal{P} \mathcal{Q}^* d\Omega
\]

点 \((a, \beta)\) の境界節点および内部セル節点ごとにとって \(N + L \) 個の方程式が得られる。

5. 遠音板の変位制御によるアクティブ制御

5.1 対象モデル

本研究で対象とする機械のエンクロージャで閉まれた音場を図 2 に示す。騒音源となる機械を閉まれエンクロージャには開口部があるとし、エンクロージャ内部空間に遠音板が設置されているとする。本研究では、エンクロージャ壁を透過程する騒音については考慮せず、開口部から漏えいする騒音を制御するのが目的であるので、エンクロージャ壁および遠音板を剛体と仮定する。

遠音板をエンクロージャ壁に設けて制御を行う。制御装置は遠音板の間に取付け、アクチュエータとして遠音板を図 2 の上下方向に駆動して内部音場に力を作用させ、音場を制御するものとする。ここでは圧電アクチュエータの力の発生原理には触れず、圧電アクチュエータの印加電圧と発生力の関係を線形であるものとして制御力を設定する。本研究の騒音源および遠音板駆動による制御力は、概要的に圧力波の発生および吸込みを考えられる。すなわち騒音源は発生し吸込み吸込みしと仮定し、遠音板駆動による制御力は図 3 に示すように遠音板の上下面に無数のわき出しと吸込みが連なることにより、上下方向の圧力波を生み出していると
した。

そこで、エンクロージャ内部気体は開口部を介して外部気体につながっているので、本来なら外部気体との連成を考えなければならないが、本研究ではエンクロージャの開口部での音圧が零とならば、内部で発生した騒音は外部へ漏れないとの仮定をおくことにより内部音場の共振を抑制すれば制音できると考え、内部音場のみの解析を行うこととした。すなわち、エンクロージャ開口部の音圧が零、エンクロージャ壁上の粒子速度が零となる条件をもち、ここでの粒子速度が零なる条件は圧力の法線方向微係数が零なる条件と等価である。

以上の仮定を考慮に入れて制音を行うのであるが、第4章で述べた固有値解析により得られた固有ベクトルを用いて系をモード展開して、この音場を状態空間表示する手法をとる。

5.2 音場の状態空間表現

式(1)を次に与えられる初期条件および境界条件のもとで解く。

初期条件

\[
\begin{align*}
\rho(x, y, 0) &= \rho_0(x, y) \\
\frac{\partial \rho(x, y, 0)}{\partial t} &= \dot{\rho}(x, y)
\end{align*}
\]

境界条件

\[
\begin{align*}
\rho(x, y, t) &= 0 \\
\frac{\partial \rho(x, y, t)}{\partial n} &= 0 \\
\Delta \rho(x, y, t) &= [0, 0] \quad (x, y) \in \Gamma_e \\
\varphi(x, y, t) &= \frac{\partial \rho(x, y, t)}{\partial t} = 0 \\
\varphi(x, y, t) &= \frac{\partial \rho(x, y, t)}{\partial t} = 0 \\
\varphi(x, y, t) &= 0 \\
\end{align*}
\]

(9)

境界条件(10)の第3式が単位体積あたりの制御力を表している。適音板を図2の上下方向に駆動する力を示している。ただし、\(s_2(t)\)は圧電アクチュエータに印加する電圧、\(c_a\)は圧電アクチュエータの力-电压変換係数で正の定数である。

さて、式(10)を満たす \(\varphi(x, y, t)\) すなわち式(1)の偏微分方程式を解くのは一般に容易ではない。したがってLionの境界制御の方法41により定式化し、式(1)の解を求めることにする。\(\varphi(x, y, t)\)を次の条件を満たす関数族の中の任意の関数とする。

\[
\begin{align*}
\varphi(x, y, t) &= 0 \\
\frac{\partial \varphi(x, y, t)}{\partial n} &= 0 \\
\Delta \varphi(x, y, t) &= [0, 0] \\
\varphi(x, y, t) &= \frac{\partial \varphi(x, y, t)}{\partial t} = 0 \\
\end{align*}
\]

(11)

ただし \(T\) は \(t=\infty\) における時刻である。すなわち \(\varphi(x, y, t)\) は式(1)に対する境界条件が同次境界条件になるような族から選んでいる。

式(1)を解く代わりに \(\varphi(x, y, t)\) との内積をとり、領域 \(\Omega\) および時刻 \(t\) に関して積分した次式を解いてそれを式(1)の解とみなす。この式にGreenの第2定理と部分積分を適用すれば次式が得られる。

\[
\int_{\Omega} \int_{\mathbb{R}} \rho(x, y, t) \left(\nabla v(x, y, t) \right) d\Omega dt
\]

\[
= \frac{1}{c^2} \int_{\Omega} \rho_0(x, y) \varphi(x, y, 0) d\Omega
\]

\[
- \frac{1}{c^2} \int_{\Omega} \rho_0(x, y) \frac{\partial \varphi(x, y, 0)}{\partial t} d\Omega
\]

\[
+ c_a \int_{\Omega} f_0(t) \int_{\mathbb{R}} \varphi(x, y, 0) d\Omega
\]

\[
+ \varphi(x, y, 0) d\Omega dt
\]

\[
+ \int_{\Omega} \int_{\mathbb{R}} f_0(x, y, t) \varphi(x, y, t) d\Omega dt \cdots \cdots \cdots \cdots \cdots (12)
\]

次に第4章で述べた固有値解析により得られた \(k\) 次の固有モード関数を \(\varphi_k(x, y)\) と置いて、これを用いて式(12)を満足する \(\varphi(x, y, t)\) をモード展開すると

\[
\varphi(x, y, t) = \sum_{k=1}^{\infty} \varphi_k(x, y) \xi_k(t) \cdots \cdots \cdots \cdots \cdots (13)
\]

また任意関数 \(\varphi(x, y, t)\) はモード関数 \(\varphi_k(x, y)\) と任意の時間関数 \(\xi_k(t)\) の変数分離形

\[
\varphi(x, y, t) = \mathcal{P}(x, y) \mathcal{F}(t) \cdots \cdots \cdots \cdots \cdots (14)
\]

で表されるとし、次のような条件を満たす関数族から選ぶ。

\[
\mathcal{P}(x, y) = 0 \\
\frac{\partial \mathcal{P}(x, y)}{\partial n} = 0 \\
\Delta \mathcal{P}(x, y) = [0, 0] \\
\mathcal{F}(T) = \frac{\partial \mathcal{F}(T)}{\partial t} = 0
\]

このときモードの直交性を考慮すれば、式(12)は次のようになる。

\[
\int_{\Omega} \int_{\mathbb{R}} \frac{1}{c^2} \left[\mathcal{F}(t) + \omega^2 \xi(t) \right] d\Omega dt
\]

Fig. 4 Sound insulating plate and control force
圧電アクチュエータを用いたエンクロージャ内部音場のアクティブ制音

\[J = \int_0^1 [y(t) + rf\hat{f}(t)] dt \] \hspace{1cm} (22)
ただし \(y(t) \) は出力点 \((x_0, y_0)\)での出力であり、\(r \)は重み係数である。式(21)を用いると式(22)は次式のようなになる。

\[J = \int_0^1 [x^T(t)Qx(t) + rf\hat{f}(t)] dt \] \hspace{1cm} (23)
ただし \(Q = C^TC \) である。このとき式(23)を最小にする最適制御力 \(f(t) \) は次式で与えられることがわから

\[f_0(t) = -Kx(t) \] \hspace{1cm} (24)
ただし

\[K = r^{-1}B^TP \]

<table>
<thead>
<tr>
<th>Table 1 Natural frequency of sound field within enclosure with sound insulating plate installed at opening</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Fig. 5 Sound field with sound insulating plate installed at opening

![Sound field with sound insulating plate](image)

(a) 1st mode

(b) 2nd mode

(c) 3rd mode

(d) 4th mode

(e) 5th mode

5.3 騒音低減に対する最適制御
エンクロージャ開口部から漏れいする騒音を低減するために、最適
レギュレータ理論に基づいてLQ制御器を設計する。
ただし、LQ制御器およびオプサーバを設計するにあたり、騒音源信号 \(f_0(t) = 0 \) として考えた。
制御性能をあげ、かつ制御力の大きさを抑えるような
最適評価規範として、次のような二次評価規範を考える。
式(24)の状態変数 $\mathbf{x}(t)$ が直接測定できない場合、次式で表されるオプサーバーを構成して、オプサーバーの出力である状態変数 $\hat{\mathbf{x}}(t)$ の推定値 $\hat{\mathbf{x}}(t)$ を用いて最適制御力を与える(3).

$$\dot{\hat{\mathbf{x}}}(t) = A\hat{\mathbf{x}}(t) + Bf_s(t) + K_{ob} (\mathbf{y}(t) - C\hat{\mathbf{x}}(t))$$

ここで、K_{ob} はオプサーバーゲインである。

そしてこのとき推定値 $\hat{\mathbf{x}}(t)$ を用いて最適制御力 $f_2(t)$ は

$$f_2(t) = - K\hat{\mathbf{x}}(t)$$

6. 数値シミュレーション

6-1 遮音板を開口部直下に設置した場合

図5に示すように、開口部を$\gamma=45.5\%$に固定して、開口部直下約0.082 mに幅約0.11 m、厚さ約0.027 mの遮音板を設置した場合のエンクロージャ内部気体の固有周波数を表1に示す。モデルは辺長0.3 mの正方形領域で、エンクロージャ壁上の境界要素数は88要素、遮音板上の境界要素数は20要素、内部セル数は63セルで解析を行った。音速$c=343$ m/sである。

また表1に示す固有周波数に対する固有モードを図6に示す。

図5のモデル、すなわち開口部直下に遮音板を設置したモデルに対するアクティブ騒音制御を行った。上流の一次から五次の固有周波数とモード関数を用いて、制御対象の状態空間表現を求め、エンクロージャ内部音場の共振を抑制することにより制音を達成するために、五次のモードまでを制御対象として最適レギュレータ理論に基づいてLQ制御を行った。騒音源は図5の左向きから約0.041 m、高さ約0.041 mの位置の点音源とし、センサによる観測点は右向きから約0.041 mの開口部の壁に設えた。図7にゲイン線図を示す。

図7から一次、三次、五次の寄生モードについては制御されているが、二次モードと四次のモードについては制御されていないことがわかる。これは制御力を発生する遮音板の位置がどう二次モードと四次のモードの節上およびその近傍に当たるため、遮音板の駆動力が大きすぎると考えられる。

Table 2 Natural frequency of sound field within enclosure

<table>
<thead>
<tr>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>f_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4</td>
<td>580.2</td>
<td>630.2</td>
<td>777.6</td>
<td>1047.7</td>
</tr>
</tbody>
</table>

Fig.7 Gain characteristic of sound field

Fig.8 Impulse response of sound field

Fig.9 Response of sound field subjected to white noise

Fig.10 Model of sound field within enclosure with sound insulating plate installed at another point

Fig.11 Gain characteristic of sound field
イン線図を図11に示す。図11から二次モードと四次モードを含め、すべてのモードについて制御されていることがわかる。また、騒音源信号としてインパルス入力作用させたときのセンサ観測点における圧力応答を図12に示す。図12をみると、時間の経過とともに応答が減衰しており、制御されていることがわかる。

次に、騒音源信号として白色雑音を作用させたときのセンサ観測点における圧力応答を図13に示す。図13についても、振幅が小さく抑えられ制御されていることがある。

7. 結言

本研究では、機械のエンクロージャの開口部から漏えいする騒音を、エンクロージャ内部に設置した遮音板によって制動させることを試みた。これにより、最もレギュレータ理論に基づいてLQ制御を施し、システムにより本手法の有効性を確認した。その結果以下のようなことがわかった。

(1) 遮音板を圧電アクチュエータで動的に制動することにより、エンクロージャ内の音圧レベルを理論的には最大で50 dB低減することができる。

(2) 遮音板を適切な位置に設置することにより制音効果を上げることができる。

今後の課題としては、以下のようなことがあげられる。

(1) 本研究では遮音装置を単純な剛平板でモデル化したが、吸音材を充てんした遮音板のような騒音を減衰させる装置をもつ遮音装置にすれば、さらに制音効果が上がると予想される。

(2) エンクロージャ内部音場と外部音場を、連成させて解析することが望まされる。

文献

(1) 田中章三ほか3名、機論、60-576、C(1994)、2797-2884。

(2) 田中章三ほか3名、機論、60-578、C(1994)、3364-3371。

(3) 田中章三ほか3名、機論、60-578、C(1994)、3364-3371。

(5) Ogata, K., Modern Control Engineering, (1990), 772, Prentice Hall, New Jersey。

(6) 一宮亮一、機械系の音響工学、(1992)、109-112、コロナ社。