Effect of Impact Load on Bending Fatigue Strength of Case-Hardened Gears at Low Temperature

Koji TSUBOKURA, Satoshi ODA and Takao KOIDE

We present a study on the effect of impact load on the bending fatigue strength of case-hardened gears with various case depths at low temperature (-60°C). For this experiment we used a gear impact testing apparatus and a gear-bending fatigue testing machine of hydraulic loading type with a cooling chamber, which were developed by the authors. The gear–impact and gear–bending fatigue tests were carried out at room temperature and low temperature. Gear–bending fatigue tests were also carried out for a gear tooth to which an impact load was applied. An impact load at low temperature has no effect on the bending fatigue strength when the impact load is smaller than the impact breaking limit load, while that at room temperature has an effect on the bending fatigue strength.

Key Words: Gear, Impact Strength, Fatigue, Bending Fatigue Strength, Low Temperature, Case-Hardening, Case Depth, Impact Energy, Impact Load

1. 緒 言

宇宙・低地探査、寒冷地開発などの推進に伴って機械が低温環境下で使用される機会が増加してきており、したがって、機械要素としての歯車もこのような低温環境下で使用されることが多くなると考えられる。前報(1)では、硬化層の異なる3種類の浸焼入れ歯車に対して、室温および低温(−60°C)で衝撃および曲げ疲労試験を行い、低温におけるこれらの歯車の衝撃および曲げ疲労強度について明らかにした。

一般に歯車装置の始動時あるいは運転中にときどき大きな衝撃荷重が作用する場合も十分考えられるので、これらの衝撃荷重が歯車の曲げ疲労強度にどのような影響を及ぼすかを知ることは重要な問題である(2)。

本報では、硬化層厚さの異なる3種類の浸焼入れ歯車に対して室温および低温環境(−60°C)で衝撃荷重を疲労試験の最初または途中およびこの両方で作用させた場合に対して疲労試験を行い、室温および低温環境下における浸焼入れ歯車の曲げ疲労強度に及ぼす衝撃荷重の影響について検討を加えた。

2. 実験方法および実験装置

2-1. 試験歯車 本実験に使用した歯車はSCM415鋼で、歯車素材をホットプレス加工後浸焼入れを行ったものである。歯車の主要諸元を表1に、熱処理条件を表2に示す。図1は、各歯車の硬さ分布を、横軸に表面からの距離をとって示す。硬化層厚さはG.A.G.B.G.Cの順に大きくなることがわかる。

2-2. 衝撃試験 衝撃試験は、重りを所定の高さまで持ち上げ、自然落下させ、負荷伝達棒を介して歯車の歯に衝撃荷重を作用させる低温用歯車衝撃試験装置(3)を用いて行った。低温下における衝撃試験は、冷却後、メタルアルコールを入れ、これにドライアイスを加えることによって歯車を冷却して行った。衝撃試験より求めた歯面衝撃荷重P_{0}[kN]と衝撃エネルギーE[J]の関係は式(1)で示される(4)。

\[E = 6.0 \times 10^3 P_{0}^{2} \] (1)

衝撃破壊限度荷重(歯車の歯が破壊しない最大の衝撃荷重)は、衝撃エネルギーを1Jごとに変えて衝撃試験を行って求めた。なお、衝撃破壊限度荷重を作用させた歯車の歯元にはき裂は認められなかった。
2-3 曲げ疲労試験

歯車に対する曲げ疲労試験はディーゼル機関用燃料噴射ポンプを利用した油圧式低温用歯車曲げ疲労試験機（図 2）を用いて行った。低温下での疲労試験は、図 2 に示すように冷却そうにメタクリルアクリルを満たし、これに冷凍機からの冷却管を入れて歯車を冷却することによって行った。疲労試験は、衝撃荷重を作用させない場合と、図 3 に示すように、衝撃荷重を疲労試験前に 1 回作用させる場合（Test I）、疲労試験中に 1 回作用させる場合（Test II）および疲労試験前と途中にそれぞれ 1 回ずつ作用させる場合（Test III）に対して行った。

3. 実験結果および考察

3-1 衝撃および曲げ疲労強度に及ぼす温度と硬化層厚さの影響

図 4 は、室温（R.T.）および低温下（L.T. : -60°C）において衝撃試験を行ったときの衝撃破壊限度荷重と硬化層厚さとの関係を示す。衝撃破壊エネルギーは式（1）を用いて求めることができる。図 4 より、衝撃破壊限度荷重は、室温および低温下

<table>
<thead>
<tr>
<th>Gear sign</th>
<th>Carburizing method</th>
<th>Carburizing time t₀</th>
<th>Heat treatment condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.A</td>
<td>Gas</td>
<td>1.5 h</td>
<td>920°C t₀ 850°C Q 200°C Q1.5 h</td>
</tr>
<tr>
<td>G.B</td>
<td>Carburized</td>
<td>4.0 h</td>
<td>850°C t₀ 1.5 h</td>
</tr>
<tr>
<td>G.C</td>
<td></td>
<td>10.0 h</td>
<td>200°C Q1.5 h</td>
</tr>
</tbody>
</table>

Fig. 1 Hardness distributions of test gears

Fig. 2 Gear bending fatigue testing machine with a cooling chamber

Fig. 3 Load pattern

Fig. 4 Relation between impact breaking limit load and case depth at room (R.T.) and low (L.T.) temperatures
いずれの場合においても硬化層厚さの増加に付して直線的に減少し、衝撃荷重に対しては低度硬化層厚さが存在しないことがわかる。これは硬度層厚さの増加に付して、歯車の歯の脆性が増加するためを考えられる。また、低温下における衝撃破壊限度荷重は、いずれの歯車においても室温下の場合より20%程度小さくなる。これは低温下では、脆性が室温下に比べて増加することによるものと考えられる。図5は、各試験歯車の曲げ疲労限度荷重と硬化層厚さとの関係を示す。図5より、室温、低温下における曲げ疲労限度荷重はいずれも硬化層厚さ1mm付近で極大値をもつことから、曲げ疲労強度に対しては室温および低温下ともに最適硬化層厚さが存在し、その厚さも等しいものと考えられる。また、低温下の曲げ疲労限度荷重は、いずれの歯車においても室温下の場合より15～25%程度も増大することがわかる。一般に、金属は低温になるに従い硬化し、降伏点および引張強度が増大するため、疲労き裂の発生速度に低温下においては室温下より高い応力が必要とし、このため低温下における疲労強度は室温下の場合より大きくなるものと考えられる。

3.2 疲労試験後の衝撃荷重が曲げ疲労強度に及ぼす影響　図6は、衝撃荷重を室温あるいは低温下において1回作用させた後に室温下で行った曲げ疲労試験結果（Test I：図3）を示す。縦軸に発熱荷重と合田・寺内式に従って求まる引張側歯元応力πを、横軸に繰返し数Nをとってある。なお、図中のP*Bはいずれもそれぞれの歯車の室温下における衝撃破壊限度荷重を示す。図7は、衝撃荷重を室温下あるいは低温下において作用させた後の室温下での曲げ疲労限度σemと作用させた衝撃荷重P*mの関係を、}

![Fig. 5 Relation between bending fatigue limit load and case depth at R. T. and L. T.](image)

![Fig. 6 Bending fatigue test results at R. T. for gear to which was applied impact load at n=0 at R. T. or L. T. (Test I)](image)
低温下における浸炭焼入れ歯車の曲げ疲労強度に及ぼす衝撃荷重の影響

とんど変わらないことがわかる。なお、各歯車のS-N曲線の傾斜は衝撃荷重の作用によってほとんど変わらない。また、室温下で衝撃を作用させた場合、疲労限度は変わらずても時間強度が低下する傾向も認められが、疲労試験時の荷重ステップを考えると、衝撃荷重の作用による疲労限度と時間強度の変化には大きい差はないものと考えられる。さらに図7より、室温および低温下のいずれの場合も衝撃荷重を作用させた場合に曲げ疲労強度に影響を及ぼさない（σ_s/n=1となる）最大の衝撃荷重は硬度厚さが小さいときはあまり変わらないが、硬化層厚さの増加に従って減少する傾向を示すことがわかる。

図8は、歯車G.Bに対して衝撃荷重を室温下において1回作用させた後に低温下で行った曲げ疲労試験結果を示す（Test I）。すなわち室温下の衝撃荷重にによって被害を与えているから低温下で疲労試験を行った場合である。図8より、低温下で疲労試験を行った場合も室温下の場合は図6(b)と同様に衝撃荷重が0.84P_m*より大きい場合に疲労限度が減少することがわかる。また、室温下で同じ衝撃荷重を1回作用させた後の室温下で低温下での曲げ疲労限度（図6(b)と図8）を比較すると、低温下のほうが大きいが、その差は衝撃荷重が増加するにつれて減少することが認められる。このことから、衝撃荷重による被害の程度が小さい場合には、低温による材料強度増大の効果が大きく現れるが、被害の程度が大きくなるにつれて低温による強度増大の効果が相対的に小さくなるものと考えられる。

3.3 疲労試験途中の衝撃荷重が曲げ疲労強度に及ぼす影響

図9は、G.Bに対して曲げ疲労試験の途中（繰返し数n=10^4あるいは5×10^4）で、衝撃荷重0.84P_m*を室温あるいは低温下で1回作用させた場合（Test II：図3）の室温下における曲げ疲労試験結果を示す。図9より、衝撃荷重を室温下においてn=10^4あるいは5×10^4で作用させた場合、n=0で衝撃

Fig. 7 Effect of impact load at n=0 at R.T. or L.T. on bending fatigue strength at R.T. (Test I)

Fig. 8 Bending fatigue test results at L.T. for gear to which was applied impact load at n=0 at R.T. (Test I)

Fig. 9 Bending fatigue test results at R.T. for gear to which was applied impact load at n=10^4 or 5×10^4 at R.T. or L.T. (Test II)

Fig. 10 Bending fatigue test results at R.T. for gear to which was applied impact load at n=0 and 10^6 at R.T. or L.T. (Test III)
荷重を作用させた場合（Test 1）ほぼ同様の結果になることがわかる。また、疲労試験途中で衝撃荷重を
低温下において1回作成させた場合は、衝撃荷重が衝撃破壊限界荷重0.84\(P_m\)を作用させても疲労限
度の低下は認められないが、疲労限度以上の繰返し荷
重を作用させた後では衝撃破壊限界荷重よりも途切
断する。これは部材が疲労被害を受けた後に低温下で
衝撃荷重を受けたことによって低温度性のため破壊し
たものと考えられ、一般に、低温脆性による破壊は
低温が単独で破壊の原因となるよう、他の欠陥等異
常との複合が問題になる場合が多く、例えば疲労被害
を受けた部材が冬の低温期に脆性的に破壊することな
どが知られている。

3-4 疲労試験前と途中で作用させた衝撃荷重が曲げ疲労強度に及ぼす影響

図10は、室温下における疲労試験の前と途中（\(n=0\)および\(n=10^4\))で
同じ衝撃荷重（0.77\(P_m\)と0.84\(P_m\)の2種類）を室温
あるいは低温下で、1回ずつ計2回作用させた場合の
曲げ疲労試験（Test III：図3）を示す。図10より
衝撃荷重を室温下で2回作用させた場合は、\(n=0\)あ
るは\(10^4\)のときに1回だけ衝撃荷重を作用させた
Test 1，IIの場合（図6，9）と比較して時間強度、疲労
限度をともにかなり減少し、この減少の程度は衝撃荷重
の増加につれて増大することがわかる。また、疲労試
験の前と途中で衝撃荷重を低温下で計2回作用させた
場合は、衝撃荷重が低温下における衝撃破壊限界
荷重0.84\(P_m\)以下であっても少なくとも0.77\(P_m\)以上
であれば、1回目（\(n=0\)）では破断しないが、2回目（\(n=
10^4\）の衝撃荷重で破断することがわかる。これは、
1回目の衝撃による被害と、さらに疲労被害を加える
ことによるものと考えられる。

4. 結 言

本研究で明らかになった諸点を要約すると次のよう
になる。

（1）低温下における曲げ疲労強度は室温の場合よ
り大きくなるが、衝撃強度は逆に小さくなる。また低
温、室温下のいずれにおいても、曲げ疲労強度に対し
ては同じ大きさの最適硬化層厚さが存在するが、衝撃
強度に対しては存在せず、硬化層厚さの増加に伴って
減少する傾向を示す。

（2）室温下での疲労試験の前に衝撃荷重を室温下
で1回作用させる場合、曲げ疲労強度は衝撃荷重の
増加につれて減少する傾向を示す。一方、低温下で
衝撃荷重の場合は、衝撃破壊限界荷重以下であれば
曲げ疲労強度はほとんど変わらない。なお、室温下で
衝撃荷重の場合の疲労限度に影響を及ぼさない最大
の衝撃荷重は硬化層厚さの増加に伴って減少する傾向
を示す。

（3）低温下での疲労試験の前に衝撃荷重を室温下
で1回作用させる場合、曲げ疲労強度は室温下での場
合と同様に、衝撃荷重の増加につれて減少する傾向を
示し、その程度は室温下の場合より大きい。

（4）室温下での疲労試験の途中で衝撃荷重を室温下
で1回作用させる場合、衝撃荷重の増加に伴って減少する傾向を
示し、その程度は室温下の場合より大きい。

文献

（1）小田哲・坪倉公治・田出隆夫，機論，55-518，C（1989），
2387-2390。

（2）会田俊夫・藤尾博重・西川幹拓・東勢一，機論，37-303
（1971），2222-2228。

（3）会田俊夫・寺内喜男，機論，37-178（1961），882-888。

（4）兵庫金吾，機械部材の疲労解析，（1979），83，工学図書。