分散系 ER 流体を用いた択抗形ベローズダンパとそのアクティブダンパとしての除振制御への応用*

中野政身*1, 伊藤浩也*2
近野誠*3, 伊藤一寿*4

Antagonized Bellows Damper filled with Electrorheological Suspension and Its Application to Vibration Isolation Control As An Active Damper

Masami NAKANO, Kouya ITO,
Makoto KONNO and Kazutoshi ITO

Antagonized bellows damper filled with an electrorheological (ER) suspension containing sulfonated polymer particles in silicone oil, has been developed, which consists of two metal bellows and an ER valve with several cylindrical electrodes. The damping characteristics and the vibration isolation control have been investigated experimentally and numerically. It was confirmed by experiments that the ER damper under constant applied voltage behaved like a coulomb friction damper, and the active damper could be constructed, by electrically varying the friction like forces proportional to the damper speed, to be a viscous damper with electrically controllable damping proportional to the feedback gain. Two control strategies were applied to a single-degree-of-freedom vibration isolation system consisting of a mass, a spring, and the ER damper. A proposed new conceptual nonlinear feedback control strategy using the ER active damper was found to be most effective to reduce the vibration transmissibility of the system, and to lead the vibration isolation results almost similar to that of a full active vibration control case using an actuator. These experimental results of vibration isolation performances have been simulated very well by a numerical analysis based on a proposed analytical model of the ER damper.

Key Words: Damper, Vibration Isolation Control, Electrorheological Fluid, Damping Performance, Active Damper, Nonlinear Feedback Control, Numerical Simulation

1. 緒 論

ER 流体(Electro-Rheological Fluid)は外部電場の作用のもとで粘性や弾性などのレオロジー特性が変化する現象、いわゆる ER 効果を示す機能性流体であ
り(10)，特にその粘性を数ミリ秒のオーダで電気的に可逆的にかつ連続的に変化させることができる特筆すべき能力をもっている。そのため、ER 流体を各種制御機器に応用することによって、従来になかなかった機能の敏速で簡便な制御用機器および制御システムを構築できる可能性が生じる(11)。これまで ER 流体の粘性変化を利用した各種の ER ダンパが開発され、可変減衰ダンパとして用い振動制御への応用が試みられてきている(12)-(14)。特に市場規模の大きい自動車業界において活発で、流体封入式エンジンマウント(15)やショックアブソーバー(16)-(19)などの自動車の振動制御系部品への応用が試みられ、印加電圧によって減衰係数を可変するという考えに基づいた各種のセミアクティブ制御

NII-Electronic Library Service
の ER ダンパを試作し、電圧の印加法の違いによるダンピング特性の変化や、アクティブダンパとして適用した一自由度振動系の除振効率特性などについて実験的に検討した結果を提示する。

2. 実験装置および実験方法

2.1 拡抗形ペローズ ER ダンパ
試作した拡抗形の ER ダンパは、図1に示すように両端にメタルペローズと受圧板からなる伸縮する二つの液室をもち、その間に円筒形状の電極群（電極間 L = 25 mm、電極間隔 h = 0.5 mm、総流通断面積 A_n = 410 mm²）からなる ER パルプを配置して両液室を接続する完全密閉形の構造となっている。このようなペローズを用いた類似の ER ダンパがすでに提案され、配管の支持部への適用を前提に印加電場強度による減衰特性の変化が検討されている（12）。この ER ダンパでは、エンジンマウント（8）のように、発生減衰力が一方の液室内の圧力変化だけによって生じる構造となっているため、大きな減衰力を発生する場合には大きな負圧に起因して作動油中に体積変化が発生し障害をきたす可能性がある。そのため、本試作 ER ダンパでは、両液室の受圧板に加える力が拡抗して減衰力となるように両受圧板を液室外部で 2 本のしゃっ動ロッドによって接続している。このような構造をすることによりピストン・シリンダからなるオイルダンパのように両液室間の圧力に対応した減衰力が発生するようになるとともに、ER 液体が直接しゃっ動部に触れないため作動流体としての ER 液体中の微粒子の摩耗や破壊を避けることができる。実験では、ダンパの形状変化に対するダンピング特性や除振制御特性の変化を検討するために、有効断面積 A_n が 2270 mm²（A_n/A_n = 5.6）と 1130 mm²（A_n/A_n = 2.8）の 2 種類のペローズを用いた。

図1のように ER パルプが装着してあるケーシング部を支持台に固定することにより、両端の受圧板としゃっ動ロッドが一体となって可動し両ペローズ液室の伸縮が生じる。それに伴って両液室内の ER 液体は ER パルプの電極間を往来するが、その流動抵抗を電極間への印加電圧によって変化させることができるので両液室間の差圧 ΔP = P_1 - P_2 を変えることができる。ひいては ER ダンパの減衰力 f = A_n ΔP が ER パルプへの印加電圧によって可変となる。

2.2 振動体・ばね ER ダンパの一自由度振動系
図 1 は、除振台の振動制御を目的に試作した ER 液体を用いた可変ダンパとばね、振動体からなる一自由度振動系の除振用モデル装置である。上述の拡抗形 ER ダンパの 2 本のしゃっ動ロッド部にばねを装着し、上部の受圧板上に質量を搭載することによって振動体・ばね ER ダンパからなる基本的な一自由度振動系を構成している。この系のばね定数はペローズの弾性を考慮して、A_n/A_n = 5.6 のペローズでは k = 15.68 N/m であり、A_n/A_n = 2.8 では k = 23.43 N/m である。しゃっ動ロッドや受圧板などの可動部を含めた振動体の全質量は M = 7.5 kg 一定である。

2.3 実験方法
実験では、各種の電圧印加法の違いによる ER ダンパのダンピング性能や一自由度振動系の除振性能について検討している。ダンピング性能は、ER パルプケーシング支持台を床に固定した動電形加振機（VS-1000-140、IMV）を用いて受圧板に制御変位を与え、その際の ER ダンパ両液室内の圧力 P_1 と P_2 を半導体圧力センサ（PMS-10M、TOYODA）で測定して減衰力 f = A_n (P_1 - P_2) を求め評価している。また、除振性能の実験は、図 1 に示すように上記一自由度振動系の支持台を床動電形加振機に設置し支持台（基盤に相当）を加振して行う。その際の振動体 M の変位は変位変位非接触変位計によって測定し、その速度変位計の出力を微分回路を通すことによって求めている。この速度信号はサンプリング周期 1 ms で AD 変換器によってコンピュータに取込まれ、所定の処理後の DA 変換器から出力され高圧電圧増幅器（609 D-6、TREK）を介して ER ダンパに印加される。また、支持台および振動体 M の加速度を加速度ビックアップによって測定し、それらの信号より振動の伝達関数
分散系 ER 流体を用いた抵抗形ペレスダンパ
とそのアクティブダンパとしての除振制御への応用

3. 使用した ER 流体の特性

ER ガンバの制御油として、スルホン化重合体
(NSP) の微粒子 (平均粒子径 5 μm、含水率 2 wt%) を
10 cSt のシリコンオイルに分散させた粒子分散系 ER
流体 (TX-ER 2067、日本触媒製) を使用した。分散粒
子体積分率は 20 vol% である。界面活性剤処理によ
り、良好な分散安定性と再分散性を確保した ER 流体
である。

この ER 流体の ER 効果によって誘起される降伏せん断応力 \(\tau_{yw} \) kPa の電極間平均流速 \(U \) m/s と電場強度 \(E \) kV/mm (= \(V/h \), \(V \) : 印加電圧) に対する変化特性を図2に示す。これは、定速で駆動されるピストン
とシリンダからなる液体内駆動部と間口 \(h=0.8 \) mm,
幅 \(B=10 \) mm、長さ \(L_{a}=10 \) mm の矩形断面の電極間流
路をもつ基本的な ER バルブとならなる定流通径 ER
特性測定装置 \(1^0 \) を用いて実験的に求めたもので
ある。降伏せん断応力 \(\tau_{yw} \) は流速 \(U \) が増大するにつ
れて指数関数的に低下し十分流速が高くなるとある一定値に収束する傾向を示して近似関数 \(1^0 \) で表し、式(1)のように
する。

\[
\tau_{yw}(E, U) = \alpha(E^2 - (\beta/E)^2)(1 - e^{-U/\beta})
\]

\[
\alpha = 0.077 \text{ kPa} \cdot \text{mm}^2/\text{kV}^2,
\]

\[
\gamma = 0.0182 \text{ kPa} \cdot \text{mm}^2/\text{kV}^2,
\]

\[
\beta(E) = 8.74/E^2 \text{ s/m}
\]

(1)

図2にはこの近似曲線を併記しているが、電場強度
\(E \) の高い領域でレベルに若干の違いが認められるが、
総じて計測した ER 特性をよく表しているといえる。

4. 試作 ER ガンバのダンピング特性

図3と4には、\(A_0/A_1=5.6 \) のペレスを用いた ER
ダンパについて二面の電圧印加法によるダンピング
性能の違いを示す。各図(a)は、受圧板を振幅 1 mm
周波数 \(f=5 \text{ Hz} \) で正弦波に加振したときの減
衰力 \(f_d \) を測定した両面印加内圧 \(P \), \(P_1 \) から求めて、
受圧板変位 \(x \) に対して描いたヒステリシスループで
ある。また、各図(b), (c) には、そのループ面積
から等価減衰係数 \(C_{eq} \) を求めて算出した本一自由度
振動系の減衰比 \(\zeta = C_{eq}/2(Mk) \) の振動周波数 \(f \) と
振動振幅 \(x_a \) に対する変化を示す。

4-1 定電圧印加 (図3)
定電圧印加の下では、減
衰力 \(f_d \) のヒステリシスループは概略矩形をしている

--- 68 ---
分散系 ER 流体を用いた摂動形ペーローズダンパとそのアクティブダンパとしての除振制御への応用

Fig. 4 Damping characteristics of the ER damper under nonlinear feedback control of square root of voltage proportional to damper speed \((A_d/A_e=5.6)\)

Fig. 5 Variations of damping ratio ζ with feedback gain \(f_c\) for the same control strategy as that of Fig. 4 \((f=5 \text{ Hz}, x_a=1.0 \text{ mm})\)

が、電場強度 \(E\) が大きくなるにつれてダンパの運動方向反転後の加速過程直後に減衰力の突出したピークが認められそのピークに至る過程において弾性的な特性が現れるのが特徴である。この突出したピークはダンパの静止状態からの加速過程においてだけ現れ減衰速度が変動する過程では現れず崩壊減衰はダンパ変位に対応して偏着性を示す。このことから、この減衰力の突出したピークは、電極間において ER 流体が一端静止することによって形成された分散粒子のクラスタ構造が崩壊する際に大きな圧力差を必要とすることに起因して発生するものと考えられる。また、ヒステリシスループはクーロン摩擦ダンパのものと類似した特性を示す。減衰比 \(ζ\) は電場強度 \(E\) を大きさくすると増大するため、印加電圧によって ER ダンパの減衰特性が可変なことがわかる。しかし、減衰比 \(ζ\) は振動周波数 \(f\) および振動振幅 \(x_a\) の増大に伴い急激に低下する特性をもっていることから、定電圧印加時の ER ダンパの減衰特性は振動周波数および振幅に対して強い非線形性を示すことが確認できる。

4.2 ダンパ速度に比例した電圧の絶対値の平方根を印加（図 4）印加電圧を \(V=\sqrt{f_c x_a}\) とすることによって、ダンパ速度に比例した減衰力を発生させるアクティブダンパとしての使用法が有効性を証明する。この場合の ER ダンパの減衰特性を図 4 に示す。減衰力は受压板変位 \(x\) に対して定常的に変化し、ヒステリシスループはほぼ円に近い形状を描き、フィードバックゲイン \(f_c\) が大きくなるにつれてその面積も増大する。減衰比 \(ζ\) は振動周波数や振動幅の減少に伴い若干増大する特性を示すが、定電圧印加時の場合に比較して振動周波数または振幅には強い依存性を示さずフィードバックゲイン \(f_c\) によって減衰比 \(ζ\) が可変なことがわかる。図 5 に示すように、\(A_d/A_e=2.8\) と 2.8 のいずれのペーローズを用いた場合にも減衰比 \(ζ\) はフィードバックゲイン \(f_c\) にほぼ比例して増大する。また、\(A_d/A_e=2.8\) の場合において \(ζ\) が \(A_d/A_e=5.6\) のものに比べて約 1/3 に減少するため、受圧面積が半減したことと振動系のばね定数が増大したことによるものである。以上から、このような印加電圧方法を採用することにより \(f_c\) によってはば数形に減衰比 \(ζ\) が可変な粘性ダンパに類似したダンパが構築できることがわかる。

5. 摂動形ペーローズ ER ダンパによる除振制御

5.1 試作 ER ダンパを用いた一自由度振動系の解
図1の振動体・ばね・ERダップからなる一自由度振動系は図6のようにモデル化でき、その運動方程式は式(2)のように与えられる。

\[M \frac{d^2x_m}{dt^2} + f_d + k(x_m - x_{in}) = 0 \] \hspace{1cm} (2)

ERダップの発生する減衰力は、ERバルブ内の流体慣性と式(1)のER流体の \(z_{in} \) の近似式から算出される定常的全圧力降下 \(dP \) [文献(10)の式(5)]を考慮して求められるERバルブ間の圧力差 \(P_1 - P_2 \)から \(f_d = A_d(P_1 - P_2) \)として得られる[11]。この減衰力 \(f_d \)が非線形形となるため[11]、式(2)を数値的に解いてその応答を求めめる。

除振性能は基礎が正弦波状 \(x_{in} = x_{in0} \sin(2\pi ft) \)に変動する際の振動体への振動伝達率 \(= x_m \)の振幅 \(x_{in} \)の振動数 \(f \)や振動振幅 \(x_{in} \)に対する変化によって評価する。

5-2 定電圧印加 (図7) 図7には、ERダップに定電圧 \(V \)を印加した場合のものを示す。数値シミュレーションによる既報[11]と同様に電圧値 \(E(=V/a) \)の増大に伴い、振動振幅が付加帯域では著しい除振効果が認められるが、一方、振幅 \(f=10 \text{Hz} \)より大きい周波数域では、逆に伝達率が上昇し、クーロン摩擦ダップを用いた場合のものと類似した特性を示す。シミュレーションと実験では大略同じような結果を示しており、結局 \(E=0.5 \text{kV/mm} \)付近で最も良好な除振特性を示している。また、図7(b)からわかるように、振幅 \(x_{in} \)の大きさによってその除振性能は大きく異なり、除振特性は振動振幅依存性を示す。

5-3 振動体の絶対速度の絶対値の平方根のフィードバック (図8) ステップ応答の概念に基づいて、振動体の絶対速度 \(x_0 \)を検出しそれに比例した電圧の絶対値の平方根をERダップへの印加電圧 \(V = \sqrt{f_d \cdot x_0} \)とするアクティブダップ[11]として適用した結果を図8に示す。フィードバックゲイン \(f_c \)を増大することにより \(f_e = 1.0 \text{kV/mm} \)程度までは定動数域の伝達率を変化させることなく振動振幅数域の伝達率を1以下に低下させることができる顕著な除振性能が得られるが、\(f_c \)が大きすぎると逆に全体的に伝達率が上昇するようになる。実験結果の方が伝達率の低下の割合が若干少ないが全体的にシミュレーションと実験の結果は傾向がよく一致している。さらに、図8(b)のように定電圧印加時に現れた顕著な振幅依存性が認められなくなり、速度フィードバック信号の絶対値の平方根を印加する非線形フィードバックによる制御系の線形化の有効性が確認できる。

5-4 ベローズ断面比 \(A_e/A_e \)による除振性能の変化 (図9) 図9には、平板形ERダップのベローズ
Fig. 8 Changes of transmissibility with excitation frequency and amplitude of foundation, in application of nonlinear feedback control of square root of voltage proportional to absolute velocity of the mass ($A_0/A_0=5.6$)

Fig. 9 Changes of transmissibility with excitation frequency of foundation for the same control strategy as that of Fig. 8 ($A_0/A_0=2.8$)

有効断面積 A_0 を 2270 mm2 ($A_0/A_0=5.6$)（図8）から 1130 mm2 ($A_0/A_0=2.8$) と变化し、ベローズ有効断面積 A_0 と ER バルブの通路絞断面積 A_0 の比 A_0/A_0 を半分に減少することにより振動性能の変化をシミュレーション結果と比較して示す。ベローズ有効断面積 A_0 を減少することにより受圧面積が減少することを、A_0/A_0 の減少により ER バルブ電極間流速が低下することなどの理由から、無電場時のダンパの減衰係数が低下し、さらに一自由度振動系のばね定数が大きくなるため、すでに図5で示したように振動系の無電場時の減衰比とは約1/5程度に低下する。そのため、図9(a)のように、図8の場合に比べて無電場時には伝達率は共振振動数域ではより大きく、特に周波数では逆に低下するようになる。図8の場合と同様な制御を行いフィードバックゲイン f_0 を増大すると、図9の $A_0/A_0=5.6$ の場合に比べて、共振振動数域での伝達率をより低下させることができ、かつ、f_0 を増大しても高周波数域で伝達率が上昇することなくより良好な除振性能が得られる。数値シミュレーションでも同様な現象が得られている。

ER ダンパを除振台に適用する場合には、微小振動領域での除振性能も要求される。図9(b)には、基礎の共振振幅 $x_{in}=0.1$ mm の場合の振動数 f に対する除振特性を示す。図9(a)と比較すると、同様の制御を行っているにもかかわらず、$x_{in}=0.1$ mm の場合とは異なり、f_0 の増大に伴い伝達率は共振振動数付近では1以下には低下せず、$f=15$ HZ および高周波数域では逆に増加している。このような除振特性は図3(a)の定電圧印加時の除振特性に類似しており、振幅が0.1 mm程度の微小振動下では摩擦ダンパのよ
6. 結言

試作した抗粘性流体 ER ダンパのダンピング特性とその自由度振動系の除振制御の応用について数値シミュレーションと実験値を基に検討し、以下に要約する成果が得られた。

（1）定電圧印加時の試作 ER ダンパのダンピング特性はクロス摩擦ダンパのものに類似しており、振動周波数の増大に伴い除振係数が著しく低下するので振動数係数の除振性能は、印加電圧の増大に伴い除振係数は、印加電圧の増大に伴い除振係数が急激に低下するが、逆に高い振動数域では除振性能は劣化し伝達率が 1 程度まで上昇する。

（2）ER 効果によって可変な減衰力は入力電圧の二乗に比例して変化することから、ダンパ速度に比例した電圧の絶対値の平方根を ER ダンパへの印加電圧とすることにより、フィードバックゲインを变化せずに除振係数が変えられる可変減衰ダンパを構築することができるが確認できた。

（3）スカイフック制御に基づいて、ER ダンパの ER 効果に起因する減衰力を振動体の絶対速度に比例して可変するアクティブダンパとして用いることによって、全振動数域にわたって伝達率が 1 以下に低下する顕著な除振性能が得られ、各種のアクチュエータを用いたアクティブ制御法の応用に伴い同等の除振効果が期待できることを検証できた。

（4）ペレース有効断面積を減少して節面積比を小さくして、無電場時の一自由度振動系の減衰比を低下させることにより、ER 効果による除振性能の向上が可能にされた。

（5）以上の実験的得られた一自由度振動系の除振制御に関する成果は、数値シミュレーションにおいてもほぼ同様に模擬され、提案した ER ダンパの発生減衰力の解析モデルの妥当性が確認できた。

本研究の一部は、平成 7, 8 年度文部省科学研究費（基盤研究 B、基盤研究 B、No.07553395）の補助によって行われた。記して感謝の意を表す。

文献