周波数領域 Wavelet 変換/逆変換と再構成 Data 量の低減*

前田 大*1, 藤田 式 曜*2
北川 孟*3, 堀畑 聡*4

Fast Wavelet Transform/Inverse Transform and Data Reduction for Signal Reconstruction

Masaru MAEDA, Noriaki FUJITA,
Hajime KITAGAWA and Satoshi HORIHATA

Wavelet transform, WT, is a representative method of time-frequency analysis of a non-stationary signal. The original time series is obtained from the two-dimensional distribution by applying an inverse wavelet transform, IWT. However, fast Fourier transform, FFT, algorithm can not be applied to fast WT/IWT calculations because the base function of a WT is non-sinusoidal, while the algorithm can be used for fast computation of a short-time Fourier transform, STFT. For fast computation of a WT/IWT, a particular algorithm has been used in a time-domain calculation. In this study, a new fast WT/IWT algorithm, which is applied in the frequency domain, is proposed. Since the amount of data needed to represent a time-frequency two-dimensional distribution is very large, a data-reduction technique is required to enable fast computation of an IWT. An algorithm which can be used for redundancy elimination of WT data is introduced into the fast IWT analysis. Calculation times of this new fast WT/IWT algorithm are compared with those of traditional ones, for the analysis of both simulated signals and measured voices. From the comparisons, it is clear that the new method markedly speeds up the computation.

Key Words: Non-Stationary Signal, Time-Frequency Distribution, Wavelet Transform, Inverse Wavelet Transform, Data Reduction

1. 論 言

周波数が時間とともに変化する信号 (非定常信号) は、時間・周波数二次元解析 (T-F 解析) を行わねばならないが、その方法としては、Wigner 分布、短時間 Fourier 変換や Wavelet 変換等がある。これらの内、Wavelet 変換は信号の不連続性や自己相似性の解析に通しており、音響信号処理等の分野での重要な解析法である。しかしながら Wavelet 変換は他の方法とは基底関数の性質が異なるため、高速解析を行うには特殊なアルゴリズムを開発する必要がある。すなわち短時間 Fourier 変換では信号 $f(t)$ と窓関数の積と、Wigner 分布では非定常信号にまで拡張した自己相関関数とみなされる関数 $f(t)g^*(t-r)$ の積を複素指数関数との乗算を行うのに対し、両者とも高速 Fourier 変換 (FFT) を用いて容易に高速化が可能である。一方、Wavelet 変換の計算では、Analyzing Wavelet と呼ばれる時間的、周波数的に局在した関数の相似変形と平行移動により得られる関数を基底関数としており、FFT を利用することはできない。

Wavelet 変換についてもいくつかの高速化アルゴリズムが提案されている。例えば FIR フィルタバンクによる方法、a trous アルゴリズム等でもよく知られているが、これらはいずれも時間領域での高速化演算である。また、周波数領域を含めた高速化アルゴリズムについての考察も行われているが、これらは一般的な理論の展開にとどまり具体的な解析法についてはいっさい触れられていない。本研究では波数領域での性質を利用して周波数領域高速 Wavelet (FD-FWT) 変換を提案し、従来の時間領域高速化アルゴリズムと解析結果、解析時間および計算量を比較して評価を行った。

本高速化アルゴリズムを用い、そのまま時間領域への逆変換することも可能であるが、T-F 二次元領域で表現されたデータ量は原信号に比べると膨大なので効率的な再構成データ量の低減を目的とし、本研究では特に再構成データの冗長度に注目し、これを可能な限り除去して解析した。さらに音声信号の逆変換では、この操作に加えて、再構成データから聴覚的に不要な不聴成分を除去することにより効果的なデータ量の低減を行った。
2. 本方法の原理

2.1 Wavelet 変換/逆変換(WT/IFT) WT は式(1)で定義される。

\[WT(a, b) = \int_{-\infty}^{\infty} g_{a,b}(t) f(t) dt \] \hspace{2cm} (1)

ここで \(g(t) \) は時間および周波数の領域において局在する性質をもつ基底関数であり、Analyzing Wavelet(AW)と呼ばれる。\(g_{a,b}(t) \) は式(2)で定義され、スケールパラメータ \(a \) により拡大/縮小し、シフトパラメータ \(b \) により平行移動して得られる開数群である。

\[g_{a,b}(t) = \frac{1}{\sqrt{a}} g\left(\frac{t-b}{a} \right) \] \hspace{2cm} (2)

式(3)（アドミッシュップ条件）を満足すればIWT が式(4)で定義される。

\[\int_{-\infty}^{\infty} g(t) dt = 0 \] \hspace{2cm} (3)

\[IWT(a, b) = \frac{1}{C_{a}} \int_{-\infty}^{\infty} WT(a, b) g_{a,b}(t) dt \] \hspace{2cm} (4)

ここで \(C_{a} \) は、AW によって定まる正规化のための条件である。

2.2 離散 WT/IFT (DWT/IDWT) ディジタル信号処理を行う場合、時間 \(t \) およびパラメータ \(a, b \) を離散化した次式が用いられる。すなわち離散時間 \(nT_{0} \)、離散化パラメータ \(a, b \) をそれぞれ \(a_{0}, b_{0} \) とし \(T_{0} = \)1 としている。また \(a_{0} \) は任意の定数、\(k, l, n \) は整数である。

これより式(1), (4)の離散化を DWT (k, l), IDWT (n) とする式(6), (7) が得られる。

\[DWT(k, l) = \sum_{n} g_{a,b}(n) f(n) \] \hspace{2cm} (6)

\[IDWT(n) = D_{0} \sum_{k} \sum_{l} DWT(k, l) g_{a,b}(n) \] \hspace{2cm} (7)

ここで \(D_{0} \) は正规化のための定数であり,

\[D_{0} = \text{Tollog}a_{0} C_{0} \] \hspace{2cm} (8)

で表される。

2.3 従来の高速化アルゴリズム DWT の時間領域における高速化アルゴリズムとして代表的なFIR フィルタバンド法と a trous アルゴリズムの原理を簡単に述べる。

2.3.1 FIR フィルタバンド法 フィルタのインパルス応答を \(h(t) \) とすると FIR フィルタの出力 \(y(t) \) は式(9)によって定義される。

\[y(n) = \sum_{i} h(i) f(n-i) \] \hspace{2cm} (9)

いまフィルタの出力を AW を近似して \(h(i) \) の \(g^*(-i) \) とするとき式(9)は

\[y(n) = \sum_{i} g^*(-i) f(n-i) \] \hspace{2cm} (10)

となる。これはスケール \(a_{0} = 1 \) の DWT(0, 1) に等しい。このときのフィルタの次元を \(M \) としてすべてのスケールの出力を表すと

\[DWT(k, l) = \sum_{i} g_{k-l}(i) f(l-i) \] \hspace{2cm} (11)

ここで \(g_{k-l}(i) \) は、\(k \) に対しての AW である。さらに \(M \) としてスケール \(a_{k} = \)1 での AW の時間的広がり幅も含むような値を設定すれば式(6)の各の値込みが省略できて計算量が低減される。

この方法は \(k \) 段の FIR フィルタによって構成される場合、FIR フィルタバンドの主要なWT と呼ばれる。

2.3.2 a trous アルゴリズム FIR フィルタバンドによる方法では、スケール \(a_{0} \) が大きくなる（すなわち周波数が低くなる）に従ってAW 時間的局在性が悪くなり、次元の大きなフィルタが必要となる。これにより解決するために、基本スケール \(a_{0} \) を 2 として、大きなスケールの AW を小さなスケールの AW で近似する高速化アルゴリズムが提案されている。これは a trous アルゴリズムと呼ばれている。

\[k \text{ オクターブ } a_{k} = 2^{k} \text{ のAW を1オクターブのAW で表現するために、} a_{0} = 2^{p} \] \hspace{2cm} (12)

ここで \(p \) は 1 オクターブ内のAW 群を表現するパラメータであり、式(11)を用い1オクターブのAW で式(10)を表すと

\[DWT(m, l) = \frac{1}{\sqrt{2^p}} \sum_{i=0}^{2^{p}-1} g_{k-l}(i) f(l-2^{k}i) \] \hspace{2cm} (13)

これを用いると、1オクターブのAW 群により全オクターブのDWT 出力が得られる。FIR フィルタバンドの主要なオクターブ数の周辺で計算量が増大するが、a trous アルゴリズムを用いるとオクターブ数に比べて計算量は一定となる。しかしながら入力信号を間隔で伏し込みを行うので周波数の折り返し相ずれを除去するためにオクターブごとにローパスフィルタを操作する必要がある。

2.4 周波数領域高速WT/IFT (FD-FWT/

\[F \)AW の Fourier 変換をそれぞれ \(F_{\text{AW}}(k, l) \) および DWT(k, l) とすると、式(6)の両辺の Fourier 変換
は

\[DWT(k, f) = G^*_k F(f) \]

となる。ここで \(G^*_k \) は、周波数領域における \(k \) オクターブの AW である、すなわち時間領域の波形を \(f \) に変換する。周波数領域での波形変換 \(G^*_k \) は式(15)、周波数領域での波形変換 \(\xi_2 \) は式(16)のようになる。ただし式(16)での波形変換には Fourier 変換/逆変換の波形回数 \(2 \log_2 L \) を含めている。

\[\xi_1 = N_0 \cdot L^3 \]

\[\xi_2 = N_0 (L + 2 \log_2 L) \]

\[= N_0 L (1 + \log_2 L) \]

\(\log_2 \) である \(\xi_2 < \xi_1 \) となり、DWT(\(k, f \)) の計算量が低減されることがある。さらに式(ii)を適用して式(14)を式(17)のように変形すると a trous アルゴリズムと同様に 1 オクターブの AW 群によりすべてのオクターブの DWT 出力を得ることができる。

\[DWT(m, f) = \frac{1}{\sqrt{2}} G_m(2^m f) \]

ここでこれを周波数領域高速 WT (FD-FWT) と呼ぶこととする。

FIR フィルタバンクではスケールが大きくなると計算量が増加し、a trous アルゴリズムではスケールによらず計算量が一定であるが、周波数領域高速化法ではスケールが大きくなると従って AW の局在性が良くなるため結果的に計算量は減少する。この方法では従来の時間領域高速化法のように AW の分布の幅をあらかじめ評価する必要なく、容易に AW の変更を行うことができ、また時間領域での形状が未知な AW の適用も可能である。

3. 各高速化アルゴリズムの比較

3.1 本研究で用いた AW 本研究では、次式で表される Gabor (Gaussian)関数を AW として用いた。

\[g(t) = e^{-\left(\frac{a_0 t}{\gamma}\right)^2} + j \omega_0 t \]

ここで \(a_0 \) は中心周波数、\(\gamma \) は周波数領域での分布の幅 (局在性の程度) を決めるパラメータである。

この関数が厳密には式(3)のアドミッシブル条件を満たさないが、\(\gamma \) の値として例えば

\[\gamma = \left(\frac{2}{\ln 2} \right)^{\frac{1}{2}} \approx 5.336 \]

とすると実用上アドミッシブル条件を満足することが明らかにされている。

本研究での演算では、中心周波数 \(a_0 \) を、サンプリング周波数 \(a_0 \) と等しくした。

3.2 各アルゴリズムによる時間-周波数解析結果

DWT、a trous アルゴリズム高速 WT および FD-FWT の三つの方法による時間-周波数解析結果を比較した。今回は a trous アルゴリズムと原理的に同じで計算量が多いことがすでに知られているので、FIR フィルタバンクは用いないかった。

解析条件を、表1に示す。

入力信号として、インパルスおよびチャープ信号を用いた。チャープ信号は、0秒から0.512秒の範囲では周波数が0.512Hz/秒で0.512秒から1.024秒の範囲では周波数が1.024Hz/秒の信号と0秒から

<table>
<thead>
<tr>
<th>Table 1 Analysis condition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Time</td>
<td>1m-sec</td>
</tr>
<tr>
<td>Data Size</td>
<td>1024</td>
</tr>
<tr>
<td>Frequency Range (in Octave)</td>
<td>8</td>
</tr>
<tr>
<td>Scale Division</td>
<td>64</td>
</tr>
<tr>
<td>Shift Division</td>
<td>1024</td>
</tr>
</tbody>
</table>

Fig.1 Original signal (impulse)

(a) Time domain waveform

(b) Frequency domain waveform

Fig.2 Original signal (chirp)

(a) Time domain waveform

(b) Frequency domain waveform

— 294 —
1.024秒の範囲で掃引速度が1.012Hz/sの信号の合成信号である。

図1と図2に入力信号の時間波形と周波数スペクトルを示す。

図3はインパルス信号の時間-周波数解析結果であり、横軸に時間、縦軸にスケール（周波数のオクターブ表示）、高さに振幅をとり鳥かん図で表している。

3.3 原信号への再構成結果

同様の解析条件によってIDWT、a trousアルゴリズム高速IWTおよびFD-FIWTにより原信号への再構成演算を行った。これらのを図4、5に示す。

この場合も図の三つの方角から得られた結果はほとんど一致している。図4のインパルス信号の再構成において、FD-FIWTにより得られた結果は他の二つから得られたものより周波数スペクトルの立ち上がり部分がより入力信号に近い。これは周波数領域におけるFFT演算の導入が好結果をもたらしたものと考えられる。

3.4 解析時間、計算量の比較

FD-FWT/FIWTによる解析結果は、DWT/IDWTおよび従来の高速化アルゴリズムの代表的な方法であるa trousアルゴリズム高速WT/IWTのそれらと極めてよく一致することが明らかになった。そこで演算の高速性を比較するために解析時間、計算量を解析した。解析時間はワークステーションのCPU使用時間で、計算量は全解処理における各素数乗算回数から、評価した。解析時間、計算量ともに、DWTでの値を100とした比率を表した。

図6にWT/IWT演算の解析時間比を、図7にそれの計算量の比を示す。

いずれの図からも、FD-FWT/FIWTが高速性の点で最も優れていることがわかる。しかし提案された方法での解析時間と計算量の低減率を比較すると、計算量に比べて解析時間のそれは若干悪い。a trousアルゴリズムの解析結果においても同様の傾向が見られるが、これには解析時間に占める計算以外の部分（データ出力に要する時間等）の割合が大きいものと考えられる。

Fig.3 Time-frequency 2 dimensional distribution (impulse)

Fig.4 Reconstructed signal (impulse)
したがってこれらの部分の低減により一見そうの高速化が可能と考えられ、以下に検討を加えた。

4. 再構成データ量の低減

4.1 時間-周波数領域での冗長成分除去

4.1.1 スケールパラメータの最適分割 非直交基底を AW とした場合、オーバーコンプリートな基底関数を用いることにより原信号の再構成が行われる(4)。本研究では AW は Gabor 関数であり、これは非直交 AW である。今回の著者らの解析では原信号の再構成結果の忠実度を重視し、1 オクタープの

スケールパラメータ分割数を十分大きい値 (8) としている。解析範囲が 8 オクタープなので全スケールパラメータ分割数 N_A は 64 となる。

そこで忠実度が失われる最小の分割数を評価するために、一様な周波数特性をもつ信号 (インパルス信号) の再構成周波数特性を解析した。N_A を 16 から 64 まで変えたときの解析結果を図 8 に示す。図 8 から、$N_A=32$ 未満では一様な周波数特性が得られないことがわかる (なお図 8 では振幅の大きさは正規化していない)。そこで忠実度が失われない最小の分割数を 32 とし、これをスケールパラメータの最適分割数としました。

4.1.2 シフトパラメータの分割 入力情報を完全に含んだまま信号は時間-周波数領域に拡張するためには、最小スケールでのシフトパラメータのサンプリング数を入力信号のそれに等しくする必要がある。一方、再構成データ量は入力信号とスケール分割数との積であるので、例えば $N_A=32$ の場合入力信号の 32 倍という膨大な値となる。

そこで、Multi Rate Sampling (MRS) 法を適用して再構成データ量の低減を試みた。MRS では、スケールが 2 倍になるとサンプリングレートを 2 倍にする方法である。AW ではスケールが 2 倍になるとその中心周波数および周波数の分布幅は 1/2 になる。すなわちスケールが 2 倍になると解析する最高周波数は 1/2 となるのでサンプリングレートを 2 倍にするこ
4-1-3 再構成データ低減の効果 FD-FWT/ FWT の方法に MRS を適用し、図1の入力信号の時-
間-周波数分析およびその再構成演算を行い、従来
の方法で得られた結果（図3および図4）と比較した。
図
9 は、L=1024 として各スケールごとのデータ点
での信号の振幅の分布を示したものである。スケールが
大きくなるに従って周波数分解能が低下するので、振
幅の分布が広がりそのピーク値が低くなる。この傾向
は図3（a）と一致している。図10は再構成結果であ
り、図4（c）と同一の結果が得られている。解析時間、
計算量および再構成データ量について、MRS 適用の
効果を解析した結果を図11に示す（再構成データ量
は、MRS を適用しなかった場合を 100 とした比で表
している。）この結果、MRS を適用しない周波数領域
高速化法より再構成データ量は1/4 程度に低減し、解
析時間と計算量はさらに改良されることができた。
4-2 音声信号における不可聴成分除去の効果
4-2-1 最小可聴限特性とその WT への適用 聴
覚では、周波数に依存するある音圧レベル以下の音は
聞き取ることができない。これは最小可聴限特性とい
われ、ISO/R 226 などの国際規格では、正常な聴覚での
基準値として20 μPa を 0 dB と定めている。最小可
聴限特性の周波数軸を、離散 WT のスケールサンプ
リング値の一一致するようにオクタープで表すと図12
のようになる。
本研究では、最小可聴限特性を考慮して再構成デー
タから不可聴成分も除去していこうの高速化を試み

Fig. 9 Time-frequency analysis applying MRS method
(impulse)

Fig. 10 Reconstructed signal (impulse)

Fig. 11 Comparisons of calculation time, calculation
quantity and reconstructed data between MRS
and conventional methods

Fig. 12 Threshold of audibility denoted by octave scale

Fig. 13 An example of block-size matrix of sift b and
scale a, classified by threshold of audibility

Fig. 14 Comparisons of calculation time, calculation
quantity and reconstructed data between MRS
and unaudible component rejection
すなわち MRS を適用した FD-FWT の各スケールの出力をブロック化し（例えば 16 点ごとを 1 ブロックとする）、ブロック（16 点）ごとに最大値を検出する。各スケールに対応する周波数の最大可聴域値とこの最大値を比較し、最小可聴域値以上であれば 1、以下であれば 0 でこのブロックを表す。これから図 13 のようなマップが得られ、値が 1 の部分のみを再構成対象データとする。IWT の場合は、値が 0 の部分のデータをすべて 0 で補間して再構成を行う。

4.2.2 音声信号の再構成 解析時間、計算量および再構成データ量について、本方法の効果と MRS のみを適用した場合と比較した結果を図 14 に示す。不可聴成分の除去により再構成データ量が大幅に減少し、計算量は増加したものので、解析時間はおよそ短縮することがわかる。

不可聴成分除去によるデータ削減効果を調べるために、男性発音者 A, B の 2 名による「赤/aka/」、「黄色/kiro/」の 2 種類の音声を解析した。図 15, 16 に

"赤/aka/" の解析結果を示す。各音声の再構成データ量を図 17 に示す。

再構成信号と入力音声信号には若干の違いがみられるが、再構成信号を聴覚で判断する限り差異は感じられなかった（講演会での発表では、再構成音声信号も音として紹介した）。また音声により再構成データ量に差がみられるが、これは音の大きさや長さの違いと考えられる。

5. 結言

本研究から以下の結論が得られた。

(a) Original voice

(b) Reconstructed voice by MRS

(c) Reconstructed voice by unaudible component rejection

Fig. 15 Voice "aka" of male (A)

Fig. 16 Voice "aka" of male (B)

Fig. 17 Reconstructed data of each voice
（1）FD-FWT/FIWT法は従来の時間領域高速化WT/IWT法より解析時間と計算量の短縮の面で優れていることがわかった。

（2）FD-FWT/FIWTの計算において、時間-周波数領域での冗長度を除去することにより、再構成データ量を1/4に減少させることができる、解析時間も短縮された。

（3）音声信号を対象にした場合、その不可聴成分を除去することにより再構成データ量をさらに大幅に低減させることができ、解析時間も短縮されることが、本研究では定量的に評価した。本研究では、0 dBの基準値として20 μPaをそのまま用いたが、実験基準値の設定や音声信号解析に適したAWの選択等の検討を進めるならば、再構成データ量のいっぱいの低減が可能となる。一方、不可聴成分除去後の再構成信号の適切な評価方法の確立の問題は残されており、統計的手法適用等の導入の必要性もある。

文 献

