平和水-空気二相噴流の乱れによる円管の振動*

河村孝治*, 安尾明**

Turbulence-Induced Tube Vibration by Parallel Air-Water Two-Phase Jet Flow

Koji KAWAMURA and Akira YASUO

In many shell and tube heat exchangers such as steam generators, baffled plates are located at appropriate intervals to support the heat transfer tubes. In the heat exchangers, the secondary coolant streams through the channels such as the flow hole nozzles of the baffle plates in the form of jets, and flows in parallel with the tube bundle. This turbulence induces vibrations which could cause fretting wear and fatigue of the tubes. In this paper, basic characteristics of tube vibration were experimentally investigated in air-water two phase flow to evaluate the jet effect on the relationships between hydrodynamic mass, damping ratio, and excitation force on a vibrating tube and void fractions.

Key Words: Flow Induced Vibration, Multi-Phase Flow, Jet, Turbulence, Hydrodynamic Mass, Damping Ratio, Excitation Force

1. 緒 言

蒸気発生器などの伝熱管の健全性にとって、疲労や摩耗の発生要因となる流れの乱れによる振動を評価することは重要な一つの課題である。伝熱管は、直交流場と平行流管の両方にさらされる。そのため、伝熱管
の振動を精度よく評価するには、両方の流れ場について評価手法を確立することが重要である。平交流管による伝熱管の振動を評価するにあたって、流体が伝熱管支持板に開けられた流路を通過して噴流状態となって伝熱管に沿って流れれる平行噴流場における振動特性も十分検討しておく必要がある。しかし、この噴流効果が振動に与える影響を検討した報告例は見当らない。このため著者らは、まず単相流について、噴流効果の振動への影響を明らかにした。

2. 記 号

\[A_j \]: ノズル部の環状流路の面積
\[a \]: 式(11)における比例定数
\[b \]: 式(13)における比例定数
\[c_{na} \]: 単相流における管の付加質量係数
\[c_{nb} \]: 二相流における管の付加質量係数
\[d \]: 円管の外径
\[d_j \]: ノズル直径

*: 業務依頼 1997年5月7日。
*: 訳員, (財)電力中央研究所(☎201-S511 狛江市岩戸北2-11-1)。
平行水-空気二相流の乱れによる円管の振動

f: 振動数
f_s: 空気中の管の固有振動数
f_n: 二相流中の管の固有振動数
Δf: パワースペクトル分布曲線上で共振を示す最大の $1/\sqrt{2}$ の値を取る振動数 f_s, f_n の差
$|f_s - f_n|$
L: 円管長さ
m_n: n 次モードにおける付加質量を合った単位長さ当たりの管の質量
m_c: 管の単位長さ当たりの質量
m_r: 二相流中における管に作用する付加質量
m_{sl}: 水単相流における付加質量
t: 時間
Q: 水と空気の合計流量
U_L: ノズル部を通過する二相流の平均流速
Q/A_L
x: 管固定端からの管軸方向の距離
α: ポイド率
β: 硝酸流量比
γ: 式(9)で示される値
λ: 式(13)における指数定数
$\delta_n(x)$: n 次モードの規準関数
ξ: 管振動の減衰比
η: 式(4)における指数定数
ρ_a: 空気の密度
ρ_w: 水の密度
ρ_n: 二相流の平均密度、式(2)
$\sigma_n(x)$: 管軸方向の位置 x における n 次モードの振動変位の二乗平均値の平方根
$\Phi_r(f_n)$: 管に作用する応弾力の一般化力

\[= \int_0^L F(x, t) \delta_n(x) dx \]

3. 実験装置と実験方法

図1は実験装置の概要を示したものである。図の水はボンプ(1)によって水槽から汲み上げられ、サージタンク(2)、流量計(3)を通って混合器(11)に入る。一方、空気はスクリューコンプレッサ(4)によって圧縮され、クリーニングセパレータ(5)、フィルタ(6)により清浄化されて減圧弁(7)で一定の圧力に減圧され、流量計(10)を通って混合器(11)に入れる。その後、水と空気の混合した二相流は約1200mmの助走区間に通ってテストセクション(14)に流入する。

国2はテストセクションを示したものである。内径32mmのアクリル製管路(18)の中心部に外径 d が10mmのステンレス製円管(16)を上流側で翼形支持部品(20)にねじ込み固定し、下流側で三点のピン支持(21)とした。支持間の円管長さ L は1000mmである。円管の単位長さ当たりの質量 m_c は0.227kg/m、円管の曲げ剛性は56.0N·m²である。翼形支持部品端より50mm下流側に厚さ10mmのノズル(17)を挿入し、流路面積を急激に変化させて下流域に噴流状態を発生させた。
図3はノズル形状を示したものである。流体は円管と直径大小付箇の円管と重ねられた周壁開口部を通る。円管の振動は翼形支持部を通過し、20 mm下流側の円管表面に取付けた4枚の取付形ひずみゲージ(19)によって二方向で測定した。なお、データの二方向の値の平均値で整理された。テストセクションを出た流体は翼形支持部(15)で空気で塩化に放出され、水は水槽に戻される。二相流の各相流量はノズル部出口における圧力(22)を用いて換算した値で代表している。この圧力はほぼ大気圧に近い値であった。実験では、水と空気の合計流量Q、水と空気の流量割合、ノズル直径を変化させた。なお、dは水単相流の実験(10)で使用したノズル直径を用いた。

4. 実験結果

4.1 付加質量

管に作用する付加質量mは二相流動状態によって変化する。その変化は管の固有振動数fの変化として現れ、Carucciはその関係を次式で表している。

\[m_a = m_e (1 - \alpha^2) \]

ここで、管の曲げ剛性は流動状態によって変化しないと仮定している。fはひずみ振動波長のパワーセクトル解析によって求めた。fは空気中の管の固有振動数である。一次モードでf=38.1 Hz、二次モードでf=121.2 Hz、三次モードでf=252.4 Hzであった。なお、これらの固有振動数の値は、一定範囲で一定であることが確認された。また、光学測定器による支持点間隔での振動変位とひずみの関係から、ほぼ一定の一端固端支持となっていることを確認した。

図4は紙のないd=32 mmの場合で、各Qについて二相流における付加質量mを水単相流における付加質量mで割った付加质量比m/mとボイド率αの関係を一次モードについて示したものである。m/mは空気と水の合計流量Qの影響をほとんど受けていない。ボイド率は石井の式(2)によって算出した。図4中の実線は二相流の平均密度ρaは

\[\rho_a = \rho_w (1 - \alpha) + \rho_l (1 - \alpha) \rho_d \]

を用い、非圧縮の単相流とみなして得たもので、

\[\frac{m_a}{m_w} = 1 - \alpha \]

と表されるものである。ここで、ρwは空気の密度、ρlは水の密度である。二相流の付加質量比は平均密度を用いた単相流におけるものより小さく、傾向的には、Carucciおよび(19)の水-空気二相流の実験結果と類似している。二相流の付加質量比が平均密度を用いた単相流におけるものより小さくなる理由は、原らおよびCarucciが述べているように流路断面における局所ボイド率分布の不均一性や気液界面の変形性などの影響によると考えられる。

図5はm/mと(1-α)の関係を示したものである。付加質量比はα=0でm/m=1、α=1で水の質量を無視し、m/aをとることを考えると図から下記のような指数関数

\[m/a = C_a (\pi \rho_d \alpha^2) \]

でほぼ表されることがわかる。ただし、ηは定数とされる。局所流における円管の付加質量は次式で表される。

\[m/a = c_a (\pi \rho_d \alpha^2) \]

ここで、c_aは付加質量係数である。

\[\frac{m_a}{m_w} = C_a (\pi \rho_d \alpha^2) \]

と表すことができる。実験は二相流の平均密度の式(2)を用いて、(5)と同様な形で単相流的な整理をと行うと

\[\frac{m_a}{m_w} = C_a (\pi \rho_d \alpha^2) \]

\[\gamma = \eta - 1 \]

と表せる。c_aは二相流における付加質量係数で、(1-α)^2は二相流特有の効果が付加質量係数に与える影響を示したものであると考えられ、式(7)のような

![Fig. 4 Effect of void fraction on hydrodynamic mass](first mode, d=32 mm)

![Fig. 5 Relationship between hydrodynamic mass and void fraction](first mode, d=32 mm)
平行水-空気二相噴流の乱れによる円筒の振動

整理に従えば、ボイド率の増加とともに二相流の付加質量は平均密度の低下だけでなく付加質量係数の低下も加わって減少することになる。なお、図4には図5で求めた関係曲線が破線で示されている。

図6はγと振動数fの関係を示したものである。振動数の増加とともにγはわずかに増大する傾向がある。式(8)はボイド率の増加とともに振動数の増加に対する付加質量係数の減少は一層強くなるを示している。

図7(a)は一次モードについてm_h/m_Mと容積流量比βの関係に与えるノズル径d_nの影響を示したものである。このような噴流場では、管軸方向でボイド率が変化していくと考えられるため、空気と水の合計容積流量に対する空気の容積流量の比を表す容積流量比βで付加質量比を整理した。図7(a)の一次モードの場合、βの小さい領域ではノズル径の減少とともに付加質量比は増大している。$d_n=18$ mmにおいては$\beta=0.45$以下の領域で$m_h/m_M=(1-\beta)$とほぼ表される。これは空気と水が一様に混合し、平均密度$(1-\beta)p_M$の単相流と見なして付加質量を求めることができるのを示している。

図8はノズル部の下流域の二相流の流動状況を撮影した写真である。$d_n=32$ mm（繊りがない場合）に比較して$d_n=18$ mmの場合はノズルを通過することによって気泡が微細化され均一に混合化されているように見えた。付加質量を評価するには、ノズルによって流れを繊り、噴流を生じさせることは水と空気が一様に混合し、ともに同じ速度で流れる密度$(1-\beta)p_M$の単相流と見なされよくさされる。このような単相流化を発生させる噴流効果はノズル径の減少とともに增大することがわかった。

図7(b)は二次モードについて示したものである。βの小さい領域では図7(a)の一次モードの場合に比べて噴流効果の影響は減少している。一方、$\beta=0.45$以上の領域では$d_n=18$ mmの場合m_h/m_Mが他の場合のものより小さくなる傾向が現れる。この傾向は二次モードでも見えた。このような噴流効果が付加質量に与える影響は振動数、容積流量比によっても異なる。
平行水-空気二相振動の乱れによる円管の振動

図9は$d_1=18\,mm$の場合の一～三次モードについてm_{h}/m_{s}と$1-\beta$の関係を示したものである。図7(a)において述べたように一次モードではβが約0.45以下で強い噴霧効果によって付加質量比は$m_{h}/m_{s}=1-\beta$に近い傾向となり、単相流的な特性をもつが、βが0.45より大きくなるとこの特性から離れていく。そして、βが約0.7より大きな領域ではm_{h}/m_{s}は(1$-\beta$)にほぼ比例するようになる。二次、三次モードでは$m_{h}/m_{s}=1-\beta$の線から小さなβで離れているが、$\beta=0.45$からすでにm_{h}/m_{s}は(1$-\beta$)にほぼ比例するようになる。これらの比例常数は高次モードになるほど減少している。振動特性は$\beta=0.45$を分岐点として変化している。流動の観察によると$\beta=0.45$より小さな領域では前述したように微細化した気泡が水とよく混合し、連続相である液相（水中）を小気泡が分散して流れる二相流となっている。一方、$\beta=0.45$より大きな領域では環状流的な流動様式としているように見えた。

$\beta=0.45$以下において振動数の増加とともに噴霧効果が付加質量比に与える影響が小さくなる原因是以下の理由によると考えられる。気泡が小さくなると管の振動に対して気泡と水がともに運動しやすくなるとともに、気泡の変形も起こりにくくなり、気泡と水の間の相対運動が無視できるため、単相流として取扱える傾向が強くなる。しかし、管の振動数が大きくなると、気泡と水の間の相対運動がさらに現れてくるようになる。この境界は振動数と気泡の大きさにも関係すると推定される。一方、$\beta=0.45$以上では、環状流や噴霧流のように液体が気体に取り巻かれた、分断されるような気体が連続相となる傾向が強くなり、管の付加質量として作用する水の慣性効果を低減させるため、m_{h}/m_{s}は小さな値となると考えられる。この低減効果は振動数の増加とともに増大する。

4.2 減衰比

管に作用する二相流の乱れによる励振力はランダム的であり、かつ管の固定振動数近傍でその強さは一定であると仮定すると管振動の減衰比ξはハーフパワーレベルによって次式で求めることができる。

$$\xi=\sqrt{\frac{1}{2}}f_{h}$$

ここで、f_{h}は共振振動数、$\sqrt{\frac{1}{2}}$はパワースペクトル分布曲線上で共振を示す最大値の$1/\sqrt{2}$の値を取る振動数の差$f_{h}-f_{0}$である。

図10は縦りのない$d_1=32\,mm$の場合で、各Qの一次モードについて減衰比ξとαの関係を示したものである。$\alpha=0.15$程度でξは最大となる山形の曲線となっている。減衰比はQの影響をほとんど受けない。これらの傾向はCarlucciらの実験結果と同じである。減衰比とポイド率の関係を定量的考察するため、水と空気の単相流の減衰比ξは二相流のものに比べて小さいため$\alpha=0,\alpha=1$で$\xi=0$と考え、その関係を次式で整理することを試みる。

$$\xi=\alpha(1-\alpha)$$

(11)

図11は図10についてξ/αと(1$-\alpha$)の関係で示したものである。図11より、ポイド率の小さな領域と大きい領域で特性が異なるが、それぞれ直線1、直線2に整理される。
は式(11)ではほぼ整理できることがわかる。これらの同様な整理解は二、三次モードについても可能であった。図10には図11で求めた関係曲線を実験で示している。本実験条件に依って流動状態を考察する[4]とαが約0.3以下では気泡流、αが0.3～0.8ではほぼスラッグ流であると推定された。曲線1は気泡流の領域、曲線2はスラッグ流の領域にほぼ対応すると考えられる。

図12は図10と同様にして求めた二、三次モードの減衰比とポイド率の関係曲線を示したものである。二、三次モードで振動数が約7倍異なることを考えると振動数が減衰比に与える影響は比較的小さいといえる。Carlucciら[16]は実施した実験範囲20～70Hzにおいて同様な傾向を指摘している。

図13は減衰比と容積流量比βの関係に与えるノズル径の影響を示したものである。減衰比に与える嘯流効果の影響は小さいといえる。この傾向は、二、三次モードについても同様である。図7(α)で述べたようにd1=18 mmにおける一次モードの場合、βが0.45以下では付加質量の観点からは平均密度(1−a)ρlの単相流の傾向が強い。そこで、βが0.45以下ではβ=aとみなすことができてして嘯流効果のないd1=32 mmの場合と比較して示したもののが図14である。実線は図12の一次モードの減衰比と同じものである、破線はd1=18 mmにおける一次モードの減衰比を図11と同様な方法で求めた減衰比とポイド率の関係曲線である。d1=32mmの場合、αが0.45以下では約α=0.25を分岐点として二つの異なる(β−α)関係曲線で表されるが、d1=18mmの場合、(β−α)の単相流と見なすことができるような流動状態でも嘯流効果のない場合の不均一的な二相流と同様にβ=式(11)で整理でき、αの増加とともに増大し、ある点で最大値を取り、それ以降減少すると同様な傾向を示すことができる。

4.3 助振力 二相流の乱れに起因して管に作用する助振力と振動量の関係は、ラマン振動理論によって次のように表される[31]

\[\Phi_0(f_0) = 64\pi M_1^2 \beta \alpha^2 \frac{\sigma_{xx}(x)}{\sigma_{xx}(x)} \]

なお、δ(x)は一端固定他端ピン支持条件における規定関数を用いた。また、α(x)は同様な支持条件を仮定して実験で得られる振動ひずみからx点での振動変位を求めめた。

図15は嘯流効果のないd1=32 mmの場合の各流量における一次モードの助振力\(\Phi_0(f_0) \)とポイド率αの関係を示したものである。実線(α=0)の場合に比べて二相流では流量の影響が少なくなることがわかる。二次、三次モードでも同様なことがいえるが、Q
平行水 空気二相噴流の乱れによる円管の振動

Fig. 17 Effect of frequency on excitation force for each void fraction (d_l=32 mm)

(a) Effect of nozzle diameter on excitation force (first mode, Q=131 L/min)

(b) Effect of nozzle diameter on excitation force (third mode, Q=131 L/min)

関係曲線を基に励振力 \(\Phi_e(f_1)/\Phi_e(f_1) \) と振動数の関係を示したものである。各モードの励振力は一次モードの励振力によって規格化されている。\(\Phi_e(f_1)/\Phi_e(f_1) \) は振動数とともに減少し、その減少率は波動率の増加とともに増大する。

図18は\(Q=131 \text{ L/min} \)の場合について励振力と容積流量比 \(\beta \) の関係を示すものである。図18(a)の一次モードでは、容積流量比の小さい領域においてノズル径の減少とともに励振力は増大し、噴流効果が増大するが、\(\beta \) が大きくなるとその効果は減少する。図18(b)に三次モードの場合を示すように高次モードになるとともに噴流効果は強くなり、\(\beta \) の大きな領域まで現れるようになる。噴流効果が現れる領域では\(\beta \) の増大とともに励振力が減少する傾向が顕著になっている。これは\(\beta \) の増大とともに二相流の平均密度が減少し、ノズル部を通過する二相流の流入流量が減少することによるものと考えられ、二相流の噴流場における円管の振動特性と類似している。

図19は一次モードの場合で\(d_l=18 \text{ mm}, 23 \text{ mm} \)における励振力とノズル部を通過する二相流の流入流量 \(\rho_m A_j U_j \) の関係をそれぞれ示したものである。ここで、\(\rho_m \) は空気と水が速度差なしで一様に混合した

NII-Electronic Library Service
と仮定したときの二相流の密度で \(\rho_m = (1 - \beta) \rho_v \), \(A_n \) はノズル部の環状流路の面積, \(U_l \) はノズルを通過する二相流の平均流速である。図 19 中の実線は水単相流の場合の励振力と流入運動量の関係を示している。図 19(a) 的 \(d_r = 18 \text{ mm} \) の場合, \(Q = 131 \text{ L/min} \) では \(\beta \) が 0.45 以下で, \(Q = 87 \text{ L/min} \) では \(\beta \) が 0.30 以下でそれぞれ流入運動量の減少とともに励振力も減少し, その関係は水単相流の場合とよく一致していることがわかる。また, 同一のノズル径に対しては流量の増大とともに噴流効果が強くなり, より \(\beta \) の大きな領域まで単相流と同じ特性を持つようになる。図 19(b) 的 \(d_r = 23 \text{ mm} \) の場合, \(Q = 131 \text{ L/min} \), \(87 \text{ L/min} \) では \(d_r = 18 \text{ mm} \) の場合に見られたような水単相流的な特性は現れていないが, \(Q = 218 \text{ L/min} \) では \(\beta \) が 0.35 以下で単相噴流と同様な特性を持っている。

図 20 は \(d_r = 18 \text{ mm} \) における二次モードの場合を示したものである。\(Q = 131 \text{ L/min} \) では, 一次モードの場合と同様に \(\beta \) が 0.45 以下で流入運動量の減少とともに励振力も減少し, その関係は水単相流の場合とよく一致している。\(\beta \) が 0.45 で水単相噴流の特性から離れ励振力が急激に増大すると, それ以降は \(\beta \) の増大による流入運動量の減少とともに励振力も増大する。その減少が速いは流入運動量の減少とともに小さくなる。\(Q = 87 \text{ L/min} \) では \(\beta \) の小さい領域において一次モードで見られたような単相噴流的な特性は現れていない。\(\beta \) の大きな領域では, 流量の違いによらず \(Q = 87, 131 \text{ L/min} \) の励振力が流入運動量でほぼ整理できるようになる。

図 21 は \(d_r = 18 \text{ mm} \) における三次モードの場合を示したものである。\(Q = 131 \text{ L/min} \) においても \(\beta \) の小さい領域においても二次モードで見られたような単相噴流との一致ははは現れていない。\(Q = 87 \text{ L/min} \) の場合の励振力と流入運動量の関係は \(\beta \) の小さい領域から \(Q = 181 \text{ L/min} \) の場合のものとよく一致している。

5. 結論

水-空気二相流による円管の振動特性について調べ, 付加質量, 減衰力, 励振力とポイド率の関係評価法を検討するとともにその関係に与える流速, 振動数, 噴流効果の影響を明らかにした。得られた結果を要約すると以下のようになる。

（1）付加質量 \(m_a \) とポイド率 \(\alpha \) の関係は単相流の場合と同様に \(m_a = c_{m_a} \rho_v \rho_a \alpha^2 / 4, \rho_a = (1 - \alpha) \rho_v \) と表すと \(c_{m_a} \) は二相流における付加質量係数で, \(c_{m_a} = c_{m_a} (1 - \alpha)^\gamma \) と表すことができる。ポイド率の増加とともに二相流の付加質量は平均密度の低下だけでなく付加質量係数の低下も加わって減少することになる。\(\gamma \) は振動数の増加とともにわずかに増大するが, 流量の影響はほとんど受けない。噴流効果は気泡を微細化して水と空気を均一に混合し二相流を単相流化させ \(c_{m_a} \) に近づく, これに喷流効果はノズル径の減少とともに増大する。

（2）減衰比 \(\xi \) とポイド率 \(\alpha \) の関係は \(\xi = \alpha (1 - \alpha)^\gamma \) と表すことができ, \(\xi \) は \(\alpha \) の値で極大値をとる山形となる。\(\alpha \) と \(\xi \) の値はポイド率の小さい領域と高い領域で異なり, 二相流の流動特性の影響を受け, しつれ振動数の影響はほとんど受けない。喷流効果が強く, 付加質量の観点からは平均密度 \((1 - \alpha) \rho_v \) の単相流と見なすことができるように流動状態でも噴流効果のない場合の \(\xi \) と \(\alpha \) の整理方法が適用でき, 気体そのものの存在が減衰比に大きく影響するように考えられる。

（3）励振力 \(F_{\alpha} \) とポイド率 \(\alpha \) の関係は \(\alpha = h c^{(1 - \alpha)^\gamma} \) 表すことができる。 \(\alpha \) は振動数の増加とともに減少し, その減少を配 \(\alpha \) の増加とともに増大する。噴流効果が強くなくなるとともに, 励振力 \(F_{\alpha} \) は単相流の場合に似ている。
平行水-空気二相噴流の乱れによる円管の振動

文 献

(2) 河村孝治, 機論, 49-488, C(1983), 2125-2132.

(6) 向後修, 原文雄, 機論, 48-434, C(1982), 1552-1562.