二層円環におけるはめあい面圧と固有振動数*
（電動機固定子の固有振動数解析のための実験）

野田 伸一*1, 木見 和信*2
石橋 文雄*3, 井手 勝記*1

Contact Pressure and Natural Frequencies on Dual ring
(Experimental Study for Natural Frequencies of Stator Core in Induction Motor)

Shinichi NODA, Kazunobu ITOMI,
Fuminori ISHIBASHI and Katuki IDE

Totally enclosed induction motors in which the stator core is pressed in the frame are in general
used in industrial machines and manufactured with similar construction around the world. Some of
these motors produce a strong electromagnetic noise, which is caused by resonance between the
natural frequencies of the stator core and the harmonics of electromagnetic forces. As the first stage
of research to estimate the natural frequencies of the stator core pressed into the motor frame, the
dual rings were chosen as the object of studies. They are similar to the motor in construction and
are easy to use to solve the problems. The purpose of this study is to investigate the effects of the
tight fit to the natural frequencies. The dual ring with several kinds of interference were made by
shrinkage fit and natural frequency and mode were measured up to 20 kHz. It was confirmed that
lower contact pressure provided large reduction ratio of natural frequency. Then, reduction at
higher mode were theoretically analyzed.

Key Words: Dual Ring, Shrinkage Fit, Contact Pressure, Induction Motor, Natural Frequency,
Kinetic Equation

1. まえがき

電動機は、広く産業用として使用されている。その
ため、生活環境の向上や環境保全の面から騒音低減が
強く望まれている。その中に耳障りな電磁騒音の問題
がある。電磁騒音はしわ状表面をどのに設定を行う場合に、
磁束密度の増加や剛性の低下がともに発生してしまう、た
かし、インパータ駆動による可変周波数運転での共振現
象で発生する。電動機の電磁騒音は、固定子剛心と回
転子との間のギャップの高調波磁束による加振力に起
因している。そのため、固定子剛心の固有振動数と共
振現象が生じないように、電磁力の周波数と一致させ
ない設計を行う必要がある。

固定子剛心の固有振動数を求める方法は、古くから
エネルギー法が用いられてきた。これは、円環に鉄心
の歯や巻線を付加質量と仮定して解析する方法で
あるが、実測と一致しない場合が多い。これに対して
著者らは、巻線端をもつ固定子剛心の固有振動数につ
いて、巻線端が単なる付加質量として影響するだけで
なく、剛性が寄与し鉄心と巻線端の連成振動が生じて
二つの固有振動数が発生することを明らかにした。こ
れにより固定子剛心の二つの固有振動数を予測する
ことが可能となった。

実際の電動機の構造上からは、フレーム内に収納さ
れた固定子剛心の固有振動数を知ることが重要であ
る、しかし、その研究は少ない、その中で例えば、
Grigas らはエネルギー法を用いた解析を提案してい
るが、固定子剛心とフレームは一体構造物として
扱い、さらに具体的な計算手法を示していない。そこ
で、著者らは中小形電動機に関して、フレームに圧入
された状態の固有振動数を実験モデル解析によって
把握し、一方で有限要素法を用いて振動モードと固有
振動数を解析した。研究課題は、固定子剛心とフレ
ームとの関の絶縁をどのように同定するかであった、
研究の結果、両者の間に“結合ばね要素”を介して
た振動モデルを同定することによって解決することが
できた。すなわち、結合ばねばね定数を適切に設定
することによって、比較的よく一致した固有振動数が
得られることを示唆した。

この場合、設計段階で高次までの固有振動数を求め
よう予測するには、固定子剛心とフレームのはめあい
面圧に対するばね定数の値を明らかにし、どのように用いるかを示すのが本論文の目的である。面圧の異なった二層円環の実験モデルで単純化し、実験と理論解析によって、面圧面圧と固有振動数との関係を見出すことができたので報告する。

2. 実験方法

2.1 実験モデル 実験モデルは、図1および2に示す電動機の固定子鉄心に相当する内環と、フレームに相当する外環とから成る。二層円環は、焼きばめによる所定の絞めしさを与えられた厚肉二層円環を構成している。材料は、JIS G 4051 の中の S 45 C で、焼きならし処理をしたものを用いている。内環は先の論文で示した4極 - 2.2 kW 標準誘導電動機の固定子鉄心の現状部分と同一寸法であり、外環の外径は D 1 = 160 mm とした。また、外環の肉厚さ h 1 の寸法は、この電動機フレームの現状部分の厚さとフィン高さから考慮して設計した。これらの寸法を図3に示した。

はめあい寸法は、円環の外径を JIS B 3401 の h 5 を基準とした上で、外環の寸法公差を決定した。実際におけるはめあいは、この寸法公差で製作した内環と外環を精密調整し、絞めさし量 2δ が 0 - 0.1 mm の間にあるように組合せを選定している。

2.2 はめあい面圧 内環と外環が図3に示すように絞めさし 2δ で焼ばめられた場合、内環と外環の材料の絞弾性係数およびポア松比をそれぞれ E 1 、E 2 、ν 1 、ν 2 とすると、接触面の面圧 P m は式(1)で示される。本実験モデルの場合の接触面圧 P m は表1に示すように選定される。また、これらの絞めさし量によって生じる各円環の接面方向の応力は、S 45 C 焼きならし材の降伏点がおよそ 250 MPa であることから、表1にみられるように、最大の絞めししで、弾性範囲内にある。

\[P_m = \frac{2\delta/2b}{\left(1 - \frac{1}{E_1} + \frac{1}{E_2}\right) + \frac{2}{E_1}\left(\frac{\nu_2}{E_2}\right)} + \frac{1}{E_2}\left(\frac{\nu_1}{E_1}\right) + \frac{1}{E_2}\left(\frac{\nu_1}{E_1}\right) \]

2.3 実験モーダル解析の方法 二層円環および単一円環の固有振動数を測定するため、実験モーダル解析を行った。実験における振動測定のブロックダイヤグラムを図4に示す。固有振動数と振動モードの調査に際して、実験モデルは、100 mm 厚さのウレタンゴム上に弾性支持し、外部からの振動伝達と実験挙動に影響がないように配慮している。加振は市販のイン
二層円環におけるはめあい面圧と固有振動数

パルスハンマーによる打撃加振法で行い、振動加速度応答を得ている。振動応答の分析処理には、2チャネルの高速フーリエアナライザ（FFT）を用いた。振動周波数範囲は、電磁騒音計装置と取る20kHz以下を分析している。振動モードの測定精度は、外周の最大外径周方向に48点と軸方向に3箇所の144点である。振動モードは、これらの測定箇所に対して、打撃応答を得て、伝達関数のゲインと位相の関係から実験モデル解析プログラムによって求めている。

3. 実験結果

各はめあいの二層円環および単一円環の固有振動数の測定結果を図5に示す。振動モード数nごとに、はめあい面圧と固有振動数の関係を示したもののうち、図5中の印Aは単一円環を示す。代表的な二層円環（Pm=1.47MPa）の振動モードを図6に示す。ここで、測定点は外周の外径であり、実験は変形後、破線は変形前を示す。また、単一円環を基準として、はめあい面圧による固有振動数の低下率を示したものを図7に示す。振動モードは、面内と面外モードが現れるが、問題としている電磁加振力は半径方向に働くため面内振動モードについてだけとりあげる。この実験結果から、次のことが得られた。

（1）面内曲げ振動モード（n=2, 3, 4, 5）の固有振動数は、図5および7に示すようにはめあい面圧Pmによって異なり、モード次数nが大きいほど固有振動数の低下率が大きい。

（2）半径方向振動モード（n=0, 1）の固有振動数は、はめあい面圧に依存し、半径方向に近づく。

（3）固有振動数は、はめあい面圧が大きくなるに従い、単一円環に近づく。

（4）面圧Pm=3.0MPa以下の低下率が大きい。特に、n=5の面内曲げ振動モードのはめあい面圧

Fig.6 Vibration mode

Fig.5 Natural frequencies at experiment

Fig.7 Reduction ratios of natural frequencies
二層円環におけるのはあい面圧と固定振動数

\[P_m = 0.17 \text{MPa} \] では、単一円環と比較して、23%固定振動数が低下している。

（5）外周を打撃したときの内周側の振動応答
と内周を打撃したときの外周側の振動応答の固定振動数および伝達関数の大きさが一致している。このこととは、二層円環において結合面にギャップが存在しないことを意味し、線形結合状態にあると考えられる。

4. 解析および考察

上述のような実験結果から、二層円環は単一円環と比べると固定振動数が低下することがわかった。ここで、二層円環の物理的現象と二層円環の固定振動数について理論解析を行い、固定振動数の低下について考察する。

4.1 二層円環の結合部の物理的現象

代表的な振動モード \(n = 2 \) の変形の要素分割を図8(a)に示す。

外周と内周のB点を除いて、結合境界に摩擦滑りによる周方向に相対変位が生じることが考えられる。二層円環の外周と内周に発生する径方向ひずみ分布は、図8(b)に示すように外周側および内周側のそれぞれに応力分布の種立を境に引張ひずみと圧縮ひずみとなることから、結合境界面でせん断変形が生じると考えられる。しかし、単一円環は、図8(c)に示すように、環の中面を境に引張ひずみと圧縮ひずみとなるため、せん断変形がないことから、周方向の相対変位が発生しない。二層円環は、結合面に周方向に生じる摩擦滑り現象であり、はめあい面圧が大きくなることにより摩擦力が増加し、二層円環に近づくものと考える。

4.2 半径方向の固定振動数 \((n = 0,1)\) が、はめあい面圧によって変化しない理由

半径方向の固定振動数は、円環振動における理論 \(g(n) \) の式(2)から求められる。この式からわかるように、半径方向の変形は、曲げエネルギーに依存しないため、曲げ剛性に寄与する円環の厚さ \(h \)、\(h \) に関係なく、半径 \(R \) のみで決まるものである。二層円環の半径方向の固定振動数は、円環の半径 \(R \) を用いて固定振動数を計算すればよいことになる。半径方向の振動は、曲げ変形がないため、結合部での周方向の相対変位がない。図5および7に示す実験結果から半径方向の固定振動数 \(n = 0,1 \) は、単一円環と二層円環で変化していないことから確認できる。

\[
\omega_n = \sqrt{\frac{E}{\rho R^2}} \times \sqrt{1+n^2} \]

ここで、

\(E \)：継弾性係数

\(R \)：円環の中心半径

\(\rho \)：単位体積あたりの質量

\(n \)：振動モード次数

4.3 二層円環の面内曲げ固定振動数が、はめあい面圧によって変化する理由

付録1に示すように、Lagrangeの運動方程式から導いた二層円環の面内曲げの固定振動数を式(3)に示す。

\[
\omega_n = \sqrt{\frac{E}{\rho (A_1 R_1 + A_2 R_2)}} \times \sqrt{n^2(1-n^2)} \frac{n^2+1}{n^2+1} \]

二層円環の固定振動数は、式(3)からわかるように、変形が曲げエネルギーに依存するため、断面二次モーメント \((I_1 + I_2)\) に関係する。実験結果から二層円環の面内曲げの固定振動数は、単一円環に比較して低下していることから、曲げ剛性 \(E(I_1 + I_2) \) が、はめあい面圧によって変化したものであると考える。

二層円環の固定振動数は、次数 \(n \) が大きいほど低下する理由を考察する。単一円環は、曲げ剛性だけで、せん断が無視できるが、二層円環は、はめあい面圧が

(a) Meshes of dual ring
(b) Dual ring
(c) Single ring

Fig. 8 Phenomena of dual ring
二層円環におけるはめあい面圧と固有振動数

小さくなることによって剛性の異方性（半径方向と周方向）が生じ、せん断変形が加わる。付録図11に示すものは、有限要素法解析による二層円環の固有振動モード図である。この結果から外環と内環の境界において高次のモードほど要素間の滑りが大きいことが認められる。これは円周方向に生じる摩擦による滑り現象が発生していることが考えられる。したがって、振動モード次数の大きい固有振動モードは、振動モードの節が増える、曲げ変形からせん断変形（摩擦滑り現象）の割合が増える結果、曲げ剛性が小さくなり、振動モード次数が大きいほど固有振動数は低下すると考えられる。

4.4 二層円環の固有振動数の計算結果実験モデルの二層円環の面内曲げ固有振動数の計算を付録2で示す。はめあい面圧がPm=0とPm=∞および単一円環の諸定数を表3および4に示す。単一円環と二層円環の固有振動数を計算し、比較して示したものである。表2に示す。この結果から、はめあい面圧がPm=0とPm=∞では、固有振動数が異なることがわかる。単一円環と比較すると、それぞれの固有振動数の低下率は、Pm=∞では1.8%、Pm=0では38%低下する計算結果が得られた。このPm=∞の低下率1.8%は、実測した固有振動数の低下率を示す図7の6MPa以上の低下率0.5%～2%の範囲とはほぼ一致している。このことから、実験では、Pm=6.72 MPaまですでに測定していないが、この値以上のはめあい面圧を大きくしても低下率は一定であることが考えられる。

二層円環の固有振動数は、式（3）に示すように、剛性EI(I+I)の平方根に比例することから、Pm=0の38%低下率は、はめあい面圧1 MPa以下において急激に変化している傾向と一致している。

5.まとめ
はめあい面圧の異なった二層円環の実験モデルを用いて、はめあい面圧と固有振動数の関係を実測し、二層円環の固有振動数について理論解析も行い、次の結論を得た。

Table 2 Contact pressure and natural frequencies (Hz)

<table>
<thead>
<tr>
<th>Mode</th>
<th>n = 2</th>
<th>n = 3</th>
<th>n = 4</th>
<th>n = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid ring</td>
<td>2705</td>
<td>7651</td>
<td>14670</td>
<td>23725</td>
</tr>
<tr>
<td>Dual ring Pm=∞</td>
<td>2656 (-1.8%)</td>
<td>7532 (-1.8%)</td>
<td>14407 (-1.8%)</td>
<td>23298 (-1.8%)</td>
</tr>
<tr>
<td>Dual ring Pm=0</td>
<td>1678 (-38.0%)</td>
<td>4747 (-38.0%)</td>
<td>9193 (-38.0%)</td>
<td>14721 (-38.0%)</td>
</tr>
</tbody>
</table>

Fig. 9 Bending vibration of dual ring on plane

NII-Electronic Library Service
Table 3 Constants of dual ring

<table>
<thead>
<tr>
<th>(Pm = 0)</th>
<th>(Pm = \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>84.0 (mm)</td>
</tr>
<tr>
<td>(R_2)</td>
<td>71.75 (mm)</td>
</tr>
<tr>
<td>(A_1)</td>
<td>480.0 (mm²)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>990.0 (mm²)</td>
</tr>
<tr>
<td>(l_1)</td>
<td>2560.0 (mm³)</td>
</tr>
<tr>
<td>(l_2)</td>
<td>22460.63 (mm³)</td>
</tr>
<tr>
<td>(l_{\text{min}})</td>
<td>2.502 \times 10^6 (mm³)</td>
</tr>
<tr>
<td>(l_{\text{max}})</td>
<td>-</td>
</tr>
</tbody>
</table>

\[E = 2.06 \times 10^4 (N/m²) \]
\[\rho = 7.7 \times 10^3 (kg/m³) \]

Table 4 Constants of solid ring

\[R = \frac{1}{4} (176 + 127) = 75.75 (mm) \]
\[I = 73530.6 (mm⁴) \]
\[A = 14700 (mm²) \]
\[E = 2.06 \times 10^4 (N/m²) \]
\[\rho = 7.7 \times 10^3 (kg/m³) \]

外環が一体となって振動しており、二層円環の中立面で完全に消しているとしていると仮定する。図9に示すように任意の点の \(u, v \) が、変位したとき、外環と内環の中心線 \(R_1, R_2 \) での伸び（ひずみ）\(\varepsilon_1, \varepsilon_2 \) は、

\[\varepsilon_1 = -\frac{u_1}{R_1} + \frac{1}{R_2} \frac{\partial v}{\partial \theta} \]

\[\varepsilon_2 = -\frac{u_2}{R_2} + \frac{1}{R_2} \frac{\partial v}{\partial \theta} \]

曲率の変化は、

\[\frac{1}{R_1 + \Delta R_1} - \frac{1}{R_1} = -\frac{\partial^2 u_1}{\partial \theta^2} + \frac{u_2}{R_2} \]

\[\frac{1}{R_2 + \Delta R_2} - \frac{1}{R_2} = -\frac{\partial^2 u_2}{\partial \theta^2} + \frac{u_2}{R_2} \]

ここで、

\(\theta \)：中心線上の点の位置の角度

\(u \)：半径方向の変位

\(v \)：周方向の変位

仮想曲げ変位 \(u, v \) は、

\[u = u_1 = u_2 = a_n \cos n \theta \cos p \]

ここで \(a_n : n \) 次のモードの振幅 \((n = 2, 3, 4, 5 \cdots) \) とおき、伸びを起こさせない場合（\(\varepsilon = 0 \)）を考えると、

\[u = \frac{\partial v}{\partial \theta} \]

\[v \] 方向の仮想変位は、

\[v = v_1 = v_2 = \frac{a_n}{n} \sin n \theta \cos p \]

環の任意断面における曲げモーメント \(M \) は、

\[M_1 = E I_1 \left(\frac{\partial^2 u_1}{\partial \theta^2} + u_1 \right) \]

\[M_2 = E I_2 \left(\frac{\partial^2 u_2}{\partial \theta^2} + u_2 \right) \]

曲げの弾性ひずみエネルギー \(V \) は、

\[V_1 = E I_1 \int_0^{2\pi} \left(\frac{\partial^2 u_1}{\partial \theta^2} + u_1 \right) R_1 d\theta \]

\[V_2 = E I_2 \int_0^{2\pi} \left(\frac{\partial^2 u_2}{\partial \theta^2} + u_2 \right) R_2 d\theta \]

Fig. 11 Vibration mode by FEM analysis

運動エネルギー \(T \) は、

\[T_1 = \frac{1}{2} a_n^2 \int_0^{2\pi} \left(\frac{\partial u_1}{\partial t} \right)^2 + \left(\frac{\partial v_1}{\partial t} \right)^2 R_1 d\theta \]

\[T_2 = \frac{1}{2} a_n^2 \int_0^{2\pi} \left(\frac{\partial u_2}{\partial t} \right)^2 + \left(\frac{\partial v_2}{\partial t} \right)^2 R_2 d\theta \]

ここで、

\[\frac{du}{dt} = i a_n \cos n \theta \cos p \]

\[\frac{dv}{dt} = \frac{a_n}{n} \sin n \theta \cos p \]

\(V_1 \) および \(T_2 \) を Lagrange の運動方程式に入力し、展開すると、二層円環の固有振動数が求められる。\(n \) を円周に対する波長の数とすれば、二層円環の高次の円内曲げに対する固有振動数は、以下に得られる。

- 28 -
二層円環におけるはめあい面圧と固有振動数

\[\omega^2 = \frac{E \left(\frac{1}{R_1^3} + \frac{1}{R_2^3} \right)}{\rho (A_1 R_1 + A_2 R_2)} \frac{n^2(1-n^2)^2}{n^2+1} \] 　　　　　　　(4)

（2）二層円環断面二次モーメント 外環と内環が、はめあいによって生じる面圧 \(P_m \) によって保持される。図 10 に、その円環の面に垂直な主軸に関する断面を示す。

（a） \(P_m=0 \) のとき（接触面滑り自由）の断面二次モーメント 図 10 において \(P_m=0 \) なると接触面において滑りが自由であるため、断面二次モーメントのそれぞれの円環の重心 \(G_1, G_2 \) を通ることから、断面二次モーメント \(I \) は、以下のようになる。

\[I = \frac{1}{12} \left[B_1 (h_1)^3 + B_2 (h_2)^3 \right] \]

本実験モデルの場合

\[I_{\text{min}} = 2.502 \times 10^4 \text{ mm}^4 \]

（b） \(P_m=\infty \) のときの断面二次モーメント 二層円環の \(P_m=\infty \) の場合は、単一円環と同じく、断面二次モーメントの中立面である重心 \(G_{\text{max}} \) の点に 1 枚所だけ生ずる。\(x, y \) 座標における \(G_{\text{max}} \) 位置の \(y_{\text{max}} \) 値は

\[y_{\text{max}} = \frac{\sum A_i y_i}{\sum A_i} \]

\[= \frac{(h_1 B_1 h_1)(h_1 + h_2)}{B_1 h_1 + B_2 h_2} \]

ここで、

\(A_i \)：各断面積,

\(y_i \)：各重心位置の外環面からの距離

本実験モデルの場合

\[y_{\text{max}} = 12.25 \text{ mm} \]

\(y \) 軸に関する断面二次モーメント \(I_{\text{max}} \) は平行軸の定理を用いて

\[I_{\text{max}} = \frac{B_1 (h_1)^3}{12} + \left(y_{\text{max}} - h_1 / 2 \right)^2 B_1 (h_1) \]

\[+ \frac{B_2 (h_2)^3}{12} + \left(\left(h_1 + h_2 / 2 \right) - y_{\text{max}} \right)^2 B_2 (h_2) \]

本実験モデルの場合,

\[I_{\text{max}} = 7.351 \times 10^4 \text{ mm}^4 \]

（3）単一円環の面内曲げ固有振動数 面内曲げ固有振動数は、円環振動における理論の式（5）で求められる。本実験モデルの単一円環の諸定数を表 4 のようになっている。

\[\omega = \sqrt{\frac{EI}{ApR^4}} \frac{n^2 (1-n^2)^2}{n^2+1} \] 　　　　　　　(5)

文献

（2）佐藤伸一・鈴木功・ほか 3 名, 機論, 小形誘導電動機の固定子鉄心の固有振動数, 60-578, C (1994), 3245-3251.

（5）日本機械学会編, 機械工学便覧, A4, 材料力学, 4-73.

（7）松平織著, 基礎振動学, (1950), 255, 共立出版.