Identification of the Characteristic Matrices of Vibration Model by Experiment
(1st Report, An Identification Method Using the Components of Characteristic Matrices as the Design Variables)

Shemin ZHANG, Nobuyoshi MORITA and Takao TORII

This paper proposes a new experimental identification method for the mass matrix and the stiffness matrix of vibration systems. In this method, the elements of the matrices are used as design variables, and the weighting sum of the absolute values of two differences is used as an objective function. One is the difference of the measured responses and the calculated responses by the designed matrices, another is the difference in measured natural frequencies and the calculated natural frequencies of the designed matrices. So long as the elements of the matrices are determined by the constraint conditions firstly used by authors, the identified matrices by the new method are of positive definite. Finally, the validity of the method is verified by two examples of identification of the matrices of vibration systems.

Key Words: Dynamics of Machinery, Identification, Optimum Design, Modal Analysis, Characteristic Matrices, Vibration Response

1. 緒 言

振動実験によって得られた振動応答や伝達関数から対象物の振動モデルを決定することは、系の実験的同定と呼ばれる。この実験的同定にあたる実験モード解析と、特性行列（質量行列、剛性行列、減衰行列の総称）を同定する二つの方法がある[1]。モードモード解析ではモード特性を求めるので、振動の現象を把握するのに便利である。しかし、モード特性は振動方程式の特性行列ではないので、システムの最適設計や部分構造合成法などの解析技術に利用するには不利であるといわれている[2]。

Leuridanらは実測データから実用的に十分な精度の特性行列を得ることは困難であり、正定値の特性行列を求めることも困難な場合があると述べている[3]。また、この特性行列を用いた特性行列の実験同定を行う方法に関する一連の研究を行っている[4][5][6][7][8]。一般に、動振点を種々の測定点に変えて得られる測定データをすべて用いて計算を行うと、正定値行列は必ず求まる[9]。しかし、実機の構造物を対象とする場合では、すべての測定点を動振することは困難である場合が多い。大熊ら、測定点の中での任意の一点だけを動振して得られる伝達関数の測定データを使用して特性行列を同定できると述べている[9]。さらに、単点変動の実験データから物理的に正当な特性行列を同定できるようにするために、対象物の振動モデル化から導き出される特性行列成分間の制約条件式を組込むことを提案している[5]。また、物理的モデル化制約条件の一般的なモデル化方法を提案するとともにその有効性を示している[10]。さらに、特性行列は正定値であるなら非負定値行列でなければならずとする制約条件下で特性行列成分を設計変数として、特性行列から得られるFRF（変位応答伝達関数）と実験結果のFRFとの差を最適化問題の目的関数とする同定方法を提案している[7]。この方法では、特性行列の正定値化と非負定値化を実現するために、同定値数数定理の不等式が数値に一致するまで精度解析を繰り返し実行する。しかし、もし不等式が数値数が一致しない場合には、物理モデルの作り方に問題があると判断される[11]。

本報では、システムの固有振動数および一点のみの動和関数動振力を加える場合の応答変位を入力データ
2. 同定法の理論

機械振動の物理座標における運動方程式は次式で表される。

\[[M][\dddot{X}] + [C][\dot{X}] + [K][X] = (F) \] ……(1)

ここで、\([M],[C],[K],[F]\) はそれぞれ質量行列、粘性減衰行列、剛性行列、駆動力行列である。粘性減衰が非常に小さい場合には、式(1)は次のようになる。

\[[M][\dddot{X}] + [K][X] = (F) \] ……(2)

実験の同定法は、式(2)の \([X],[F]\) に振動実験のデータを用い、特性行列 \([M],[K]\) の成分を定めることである。

2-1 従来の同定法
構造物を駆動する加振力 \(F_i(t)\) \((i=1,2,3,...,n)\) として、角振動数 \(\omega\) の調和関数 \(\sin(\omega t)\) を用いれば、測定点における応答 \(X_i(t)\) も同じ角振動数のもとで調和関数となるので、これらは次式のように表される。

\[F_i(t) = F_0 \sin(\omega t) + F_0 \cos(\omega t) \] ……(3)

\[X_i(t) = X_0 \sin(\omega t) + X_0 \cos(\omega t) \] ……(3)

式(3)は式(2)を満たすので、式(2)は次のようになる。

\[-\omega^2 [M][X] + [K][X] = (F) \] ……(4)

ここで、\([M],[K]\) の成分を未知数とする。この未知数を 3 個並べてできるベクトルを \([S] = [x_1, x_2, x_3, ..., x_n]^T\) とすると、式(4)は次式のようにになる。

\[[A][S] = (F) \] ……(5)

ここで、\([A]\) と \((F)\) は既知であり、\(X_0, X_1, [F_0]\) から決定される行列およびベクトルである。これより最小二乗法を用い、\([S]\) および \([M],[K]\) が求められる。しかし、この方法によって同定された特性行列の正定値化と対称化は難しいといわれている。

2-2 新たな同定法
構造物上の一点で調和関数を出力する加振器を取りつけて、振動応答を圧電式加速度センサにより測定する。これらの応答は加振器の振動数 \(\omega (j=1,2,3,...,k)\) に変化する。これらの応答変位 \(X_j(1,2,3,...,k)\) は入力データとして用いる。また、構造物を供試体として打撃試験を行い、FFT アナライザで振動系の固有振動数 \(P_i(1,2,3,...,n)\) を測定する。この固有振動数 \(P_i\) は特性行列の成分にも関係するので、特性行列を同定するための入力データとして用いる。

式(2)は、任意の不減衰振動系の運動方程式であるので、構造物の自由度と質量行列 \([M]\) と剛性行列 \([K]\) の成分を定めると、各自由度に対する応答変位は式(2)から定まるはずである。いえ換えれば、特性行列の同定とは、その無限大の集合から一定を紛とする。もし特性行列のある成分による振動応答の計算値が構造物の振動応答の測定値と一致するとき、この \([M]\) と \([K]\) の成分は構造物の振動を表す特性行列の成分である。

以上より、新たな同定法を提案する。この方法は最適設計法を導入して、式(4)の中で \([M],[K]\) の成分を設計変数とする。また \([F]\) が既知であるので、まず、振動モデルの固有振動数と駆動力の振動数 \(\omega (j=1,2,3,...,k)\) による振動応答 \(X_j(1,2,3,...,k)\) は固有振動数 \(P_i\) と振動応答 \(X_i\) を実験でのデータ \(P_i, X_i\) を比べて、その差の絶対値を最適化問題の目的関数とする。

2-2-1 目的関数
以下より、振動系の特性行列を同定するための目的関数は

\[\text{Minimize } F(X) = W_0 \sum |x_t - y_t| + W_1 \sum_{j=1}^{k} \sum_{t=1}^{n} (x_{ij} - X_{ij}) \] ……(6)

ここで、\(k\) は測定した調和関数を出力する加振器の振動数の個数であり、\(W_0\) と \(W_1\) は重み係数である。

この目的関数により、測定点の数は 3 章の例題で示すように、提案する実験的同定法の方が従来の方法よりも少ない。

2-2-2 設計変数
本報における特性行列のすべての成分は行列の対称性を満たしなければならない。したがって、特性行列の上三角と下三角成分は互いに等しい値となり、以下の式で示すように \(n(n+1)/2\) 個なる \(n \times n\) の量行列を特性行列を同定するための
振動モデルの特性行列の実験的同定(第1報) 1327

最適化の設計変数は、

$$\{ \hat{X} \} = \{ x_1, x_2, x_3, \ldots, x_{n+1} \}^T \quad \cdots \cdots (7)$$

2.2.3 制約条件 設計変数自身の制約条件は構
造物の振動状況によって妥当な範囲が決まる。し
かし、質量行列と剛性行列の成分を設計変数にし
ているのでこれらは行列の正定値を選ばなければならない。これ
は特性行列を同定する際、非常に重要かつ
難しい問題である。本報では、対称行列の正定値は
次に示す定理を利用して、各成分を制限する。

定理：n次対称行列 $A=(a_{ij})$ に対し、A の対角
線成分である小行列式を

$$A^{(k)} = \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix}$$

とおけば、

$$A > 0 \Leftrightarrow |A^{(k)}| > 0 \quad (1 \leq k \leq n) \quad \cdots \cdots (8)$$

この定理により特性行列の成分を取るとき、

$$|A^{(k)}| > 0 \quad (k=1, 2, \ldots, n)$$

となる制約条件が導かれる。特性行列は必ず正定
値となる。この条件を加えると、設計変数の制約条件
の数は 2n 個増える。

また行列式 $|A|$ の値を計算する式は

$$|A| = \sum_{k=1}^{n} (-1)^{1+k} a_{1k} |B_k| \cdots \cdots (9)$$

ここで $(n-1)$ 次の行列式 $|B_k|$ の成分は、行列式

$$B_k = \begin{pmatrix} a_{21} & \cdots & a_{2k-1} & a_{2,k+1} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,k-1} & a_{n,k+1} & \cdots & a_{n,n} \end{pmatrix}$$

との関係にあり、次式によって求められる。

3. 適用例

3.1 二自由度系 本報で提案する同定法の有効
性と妥当性を検討するために、まず図1に示すような
二自由度系の特性行列を実験的に同定してみる。

供試モデルの振動応答位変の測定値はシミュレーション
で求められる。ここで、$m = 1.0$ kg, $k = 1.0$ N/m とす

![Vibration model having 2-degrees of freedom](image)

図1に示すような二自由度振動系の特性方程式は

$$\begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} + \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} f_1 \cos \omega t \\ f_2 \cos \omega t \end{pmatrix} \quad \cdots \cdots (11)$$

3.1.1 設計変数と制約条件 運動方程式 (11) か
ら、設計変数と制約条件は以下の式 (12), (13) と
なる。

$$\{ \hat{X} \} = \{ x_1, x_2, x_3, x_4, x_5, x_6 \}^T$$

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{15} & m_{16} \\ m_{21} & m_{22} & m_{23} & m_{24} & m_{25} & m_{26} \\ m_{31} & m_{32} & m_{33} & m_{34} & m_{35} & m_{36} \\ m_{41} & m_{42} & m_{43} & m_{44} & m_{45} & m_{46} \\ m_{51} & m_{52} & m_{53} & m_{54} & m_{55} & m_{56} \\ m_{61} & m_{62} & m_{63} & m_{64} & m_{65} & m_{66} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \cdots \cdots (12)$$

$$-5 \leq x_i \leq 5, \quad i = 1, 2, \ldots, 6$$

$$0.0 < |M(i)| \Leftrightarrow 0 \leq x_i$$

$$0.0 < |M^{(i)}| \Leftrightarrow 0 \leq x_{i-1} - x_{i+1}$$

$$0.0 < |K^{(i)}| \Leftrightarrow 0 \leq x_i$$

3.1.2 同定結果 質点1だけに調和関数励振力

$f_i \cos \omega t$ を加える ($f_1 = 1.0$, $f_2 = 0.0$) 場合の

$\omega = 0.5, 1.5, 2.5$ に対する応答変位 X_1, X_2 の値と、固有振動
数 P_1, P_2 の値を表1 に示し、これらの実験値を式 (6)
に代入する。ここで、$W_1 = 0.01, W_2 = 0.00$ とする。こ
れらを入力データとして、最適設計法である Com-
plex 法を用いて同定した二自由度振動系の特性行
列は次式のような。

$$\begin{pmatrix} M \end{pmatrix} = \begin{pmatrix} 0.9997 & 0.1491 \times 10^{-3} \\ 0.1491 \times 10^{-3} & 1.9986 \end{pmatrix}$$

$$\begin{pmatrix} K \end{pmatrix} = \begin{pmatrix} 1.9997 & -0.9992 \\ -0.9992 & 2.9976 \end{pmatrix}$$

図1に示すような二自由度振動系の特性行列の正し
い値は、

$$\begin{pmatrix} M \end{pmatrix} = \begin{pmatrix} 0.0 & 0.0 \\ -0.0 & 2.0 \end{pmatrix}$$

$$\begin{pmatrix} K \end{pmatrix} = \begin{pmatrix} 2.0 & -1.0 \\ -1.0 & 3.0 \end{pmatrix}$$

以上により、本報の理論の基本的な妥当性とプログラム
の正しさを確認できた。

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Responses and natural frequencies by simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>x_1</td>
</tr>
<tr>
<td>$\omega = 0.5$</td>
<td>0.741</td>
</tr>
</tbody>
</table>

![Vibration model having 6-degrees of freedom](image)
3.2 六自由度系 本報で提案する同定法の妥当性を三自由度振動系で検証した。次に、より複雑な六自由度モデルでその有効性を示してみる。

図2に示すような六自由度系モデルを対象にし、
k(i=1,2,...,6)=1.0×10^2 N/m, m(i=1,2,...,6)=1.0 kg として振動応答変数と固有振動数を求めるシミュレーションを行い、このシミュレーションの値を実験値として使う。またこの六自由度の運動方程式は

\[
\begin{bmatrix}
m & 0 & 0 & 0 & 0 & \bar{X}_1 \\
0 & m & 0 & 0 & 0 & \bar{X}_2 \\
0 & 0 & m & 0 & 0 & \bar{X}_3 \\
0 & 0 & 0 & m & 0 & \bar{X}_4 \\
0 & 0 & 0 & 0 & m & \bar{X}_5 \\
0 & 0 & 0 & 0 & 0 & \bar{X}_6 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
\end{bmatrix}
\begin{bmatrix}
2k & -k & 0 & 0 & 0 & 0 \\
-k & 2k & -k & 0 & 0 & 0 \\
0 & -k & 2k & -k & 0 & 0 \\
0 & 0 & -k & 2k & -k & 0 \\
0 & 0 & 0 & -k & 2k & -k \\
0 & 0 & 0 & 0 & -k & 2k \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4 \\
f_5 \\
f_6 \\
\end{bmatrix}
\]

\[
\frac{f_1}{f_2} = \frac{f_3}{f_4} = \frac{f_5}{f_6}
\]

(16)

3.2.1 設計変数と制約条件 目的関数を表す式（6）においてn=6, k=3 であり、Wp=0.01, We=100

\[
[M] =
\begin{bmatrix}
1.049 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.067 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 1.044 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.118 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.267 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.143 \\
\end{bmatrix}
\]

\[
[K] =
\begin{bmatrix}
2061. & -1015. & 0.0 & 0.0 & 0.0 & 0.0 \\
-1015. & 2074. & -1114. & 0.0 & 0.0 & 0.0 \\
0.0 & -1114. & 2208. & -1088. & 0.0 & 0.0 \\
0.0 & 0.0 & -1088. & 2203. & -1160. & 0.0 \\
0.0 & 0.0 & 0.0 & -1160. & 2474. & -1194. \\
0.0 & 0.0 & 0.0 & 0.0 & -1194. & 2297. \\
\end{bmatrix}
\]

同定された質量行列の式（20）と剛性行列の式（21）の性質を調べると、どちらも正定値行列として求まっている。

また同定された特性行列を用い、計算により得られた振動系の固有振動数 Peと3組の応答変数xTiを計算値としてCV(Calculated Value)で表す。また、3.2.6節に示すように、m, k, を与えて計算したシミュレーション値を実験値MV(Measured Value)として表す。これらの計算値と実験値の比較を図に示す。

図3に示すように、3個の励振力の振動数ω=6.0, 25.0, 42.0に対する振動応答の計算値は実験値とほぼ一致す
Fig. 3 Responses and natural frequencies of CV and MV having 6-degrees of freedom

Fig. 4 Vibration responses vs frequencies of exciting force
振動モデルの特性行列の実験的同定(第1報)

定法は、特性行列を精度よく同定できることがわかる。

3.2.3 同定振動数範囲外の応答の影響 本報で提案する同定法では、測定点中の任意の一点のみをある振動数範囲内で励振して得られるデータから同定した。ここでは、入力データとして用いなかった同定振動数範囲外の応答変位に得られた特性行列がどの程度影響するかを調べる。上述の例では、特性行列の同定の際には振動数範囲 $\omega=45.0\text{rad/s} - 75.0\text{rad/s}$ までの応答変位が入力データとして使用されていない。しかしそ、図4から、入力データとして使用されなかったこの振動数でも応答変位は実験値ともよく一致している。このことからも、本報で提案する同定法を用いて求めた特性行列は、対象物の特性をよく表していることがわかる。

4. 結 言

(1) 対象構造物の応答の実験結果からその特性行列(質量行列、剛性行列)を決定して、系の同定を行う新たな方法を提案した。例として二自由度と六自由度の振動モデルについて、応答変位と固有振動数によるシミュレーションを行い、その結果を入力データとして用いる同定法によって特性行列を同定した。この同定した行列を用いた応答変位と固有振動数の計算結果はシミュレーションの結果とよく一致した。したがって、これらの行列は精度よく対象物の特性を表現していることがわかった。

(2) 本論文で提案した同定法は、以下のような利点がある。まず、対象物の振動モデルの特性行列を同定できるようにするために、振動系の単点で調和励振を行うため、励振点を変えて測定をする必要はない。また測定点で得られる応答変位と固有振動数をそのまま用いて、正定値を有する特性行列を同定することができる。さらに、同定に必要な実験データとしては、システムの固有振動数の測定値と3個の励振振動数における応答変位測定値だけである。したがって、提案した同定法の測定データは、従来の同定法よりも少なくてよい。

文 献

(1) 大熊政明・長松昭男、機論、51-464, C (1985), 719-727.
(2) 大熊政明・長松昭男、機論、52-478, C (1986), 1742-1749.
(5) 大熊政明・中村正信・長松昭男、機論、57-541, C (1991), 2797-2803.
(6) 大熊政明・安川浩・平田文隆、機論、61-584, C (1995), 1411-1416.
(8) 大熊政明・長松昭男、機論、52-484, C (1986), 3145-3153.
(9) 大熊政明・長松昭男、機論、53-493, C (1987), 1913-1915.
(10) 大熊政明・長松昭男、機論、54-597, C (1988), 2557-2564.
(11) 中村正信・澤登健・長松昭男、機論、64-589, C (1995), 3539-3533.
(14) 安田仁彦, モード解析と動的設計, (1993), 192-197, コロナ社