1. 緒言

バーチャルリアリティ技術は芸術、建築設計、スポーツトレーニングなど幅広い分野で応用されている。筆者がここに示すようなバーチャルキャッチボールシステムの開発に取り組んでいる。このシステムは、投球システム、補球システム（Head Mounted Display : HMD）の三つのサブシステムより成る。このシステムでは、現実世界にいるプレーヤーが投手と捕手双方の役割を体験できる。すなわち、プレーヤーが投げたボールは仮想世界の捕手が捕球し、このボールを仮想世界の捕手がプレーヤーに投げ返すときプレーヤーは捕球する感覚を味わうことができる。プレイ中のシステムの挙動は次のようである。プレーヤーが投手としてボールを投げる場合、投球システムは、ワイヤーに取り付けてある力センサーによってワイヤーのたるみを監視している。たるみを検知すると、モーターでワイヤーを巻き取り一定の張力をワイヤーに与える。これにより、投球動作中的ボールの位置を測定している。投球後、モーターでワイヤーを巻き取りボールを回収し、次への投球に備える。投げられたボールの運動軌跡を表現するためには、手を離れた瞬間のボールの位置、速度および方向が必要になる。そのため、本システムではボールに接触センサーを取り付け、ボールが手を離れた瞬間のこれら数値を測定している。投げられたボールの運動軌跡と仮想世界の捕手の立體映像をHMDを用いてプレーヤーに呈示される。このとき、手を離れた瞬間のボールの位置、速度および方向を基に、ボールの運動は投物運動（空気抵抗は考慮しない）として呈示される。仮想世界の捕手かつ投手としてプレーヤーにボールを投げるとともに、投手、ボールの軌道およびグラブの立體映像はHMDを通じて捕手であるプレーヤーに呈示される。このとき、ボールを受け取った力覚情報は、捕球システムの力覚呈示装置によってプレーヤーに呈示される。このバーチャルキャッチボールシステムのの現

Kagawa University, Dept. of Intelligent Mechanical Systems, Saiwai-cho 1-1, Takamatsu, Kagawa, 760-8526 Japan

**Key Words:** Sensor, Measurement and Control, Human Interface, Virtual Reality, Base Ball

---

Fig.1 The virtual catch-ball system
実感を増すためには、投げ出されたボールが違和感のない軌道を描いたこと、プレーヤーが描画するとき、HMD 上のボールの位置と現実世界のグラブの位置が一致する必要がある。従って、ボールやグラブの空間上の位置を正確に測定することが重要となる。空間の位置情報を入手する装置として、視覚センサーや触覚センサーによる三次元形状認識装置が、各種シミュレーションを目的とした三次元位置センサーの研究開発が行われている。いままでに研究開発された空間位置センサーには、1) CCD カメラから映像を取り込み、画像処理を施すことによって位置を検出する方法、2) 磁場内で磁場を駆動したセンサを用いる方法、3) ミニュート・アームと呼ばれる腕に続く結合部から位置を検出する方法がある。1)の方法は、対象物が高速で移動する場合などには不向きであり、またこの製品は非常に高価である。2)の方法には、測定範囲の周囲にその他の磁界がある場合や磁力が強く、特定の位置にあるという短所がある。3)の方法は、ジョイント・アームの長さによって測定範囲が制限され、自由なキャッチボール動作には測定範囲が狭すぎる。また、空間インターフェース装置として、4) 本の単体を使った三次元位置計測装置がある。本の本数が多いとプレーヤーの体に触れない、プレーヤーの動作が制限されるという問題がある。また、4) 本の単体の長さから空間の位置を算出するため、本を設置する枠組みが必要となり、測定範囲がその枠組みによって制限される。このような理由から、既存の空間位置センサーは、このパーソナルキャッチボールシステムには適当ではないと考えた。そこで、本論文では、これらの問題を解決する新しい空間位置センサーを提案する。

本論文では、まず提案する空間位置センサー（以後、位置センサーと呼ぶ）の構造と測定原理について述べる。二次、この位置センサーの基本的性能、静特性および動特性についての検証を行う。そしてそれらの結果について考察し、パーソナルキャッチボールシステムにおける本センサーの実用上の有効性を示す。
に与えられるワイヤとポテンショメータを用いる。図3において長さOAおよびOBの正確な距離を保証するために、ワイヤーOPの自由な動きを拘束することができないようにして、OAの位置を知る必要がある。そこで、計測上ほとんど重さの影響が出ないほど軽くかつたわみのない棒、この棒の長さ方向に貫通穴を開け、ワイヤーOPをこの穴に通す。そして、この棒の動きが三角形ABCを含む平面内に拘束されれば目的（OAの位置を測定）が達成される。この棒の三角形ABCを含む平面内での拘束のためのより具体的な方法は以下のようにある。原点Oを含む、x-y平面とy-z平面のそれぞれの一部をアルミ板でつくり、辺ACおよび辺ABに相当する部分を、アルミ板を貫通する溝で置き換える。そして、上記の棒をこれに二つの溝を通して、かつ長さを十分長く取り、ワイヤーOPの自由な移動（センサーとして力を支え）によって棒が滑らないようにした。

このように、ワイヤーの動きに従ってABC平面上で移動する棒をスライディングバーと呼ぶ。図3に示されている構造より、角度αおよびβの計測の代わりに、ポテンショメータを用いて簡単に計測できるOAとOBの長さを検出することによってボールの空間位置が測定できる。このようなアイデアに基づいて作成した位置センサーの詳細構造と位置算出法については、次に続く2.2節、2.3節で述べる。

### 2.2 空間位置センサーの構造
図3の位置センサーの概念に基づいて、作成した位置センサーの外形と仕組みをそれぞれ図4、5に示す。x-zとy-z平面は100×100mm、x-y平面は400×300mmのアルミ板であり、各平面は互いに直交している。スライディングバー（長さ230、幅9、厚さ5mm）のOの位置に、真鍮製のリング（Φ30mm、ワイヤーを通し穴Φ1.2mm）を取り付けられており、A、BおよびCの方向に対してワイヤー（Φ0.54mm）を固定している。図3～5に示すように、OAとOB方向のワイヤーは計測に用いられるが、OC方向のワイヤーはスライディングバーのバランスを保つために用いる。位置センサーを動作させるとき、各ワイヤーの長さ方向の変位量はプーリの回転数に変換され、プーリと同軸としたポテンショメータ（B9718 1KΩ）によって測定される。図3～5に示すように、r、OA、OBはそれぞれワイヤー1、3および2に対応している。それぞれの変位量はプーリ、ポテンショメータ位置計、3および2によく測定され、A/D変換器を経てコンピュータ（PC-9801UX）に入力される。

![Fig. 4 Overall view of the spatial position sensor](image)

**Fig. 4 Overall view of the spatial position sensor**

![Fig. 5 Schematic of the spatial position sensor](image)

**Fig. 5 Schematic of the spatial position sensor**

### 2.3 空間位置Pの計算方法
既述のように図3におけるボールの位置P（r、αβ）は、距離r、角度αおよびβによって決定される。そのために必要である、直接測定される長さOAとOBから角度αおよびβを求め方法を示す。図3において、三角形ABCは固定された正三角形であり、∠BOCは90度である。すなわち、AB、BC、AC、OA、OBおよびOCの長さは既知である。OAとOBの長さはポテンショメータによって検出される。以上の各量より簡単な三角関数の計算で、まずOD、CD、ODPおよびODQ点DはOAからx-y平面におろした垂線を含む原点Oを通る平面と辺BCとの交点の長さを求められる。そして、角度αとβはそれぞれ次式(2)と(3)から求めることができる。
パッチャルキャッチボールシステムのためのワイヤー式空間位置センサーの作法と性能評価

\[
\alpha = \cos^{-1}\left(\frac{OC^1 + OD^1 - CD^1}{2 \cdot OC \cdot OD}\right) \\
\beta = \cos^{-1}\left(\frac{OO^1 + OD^1 - O^1 D^1}{2 \cdot OO \cdot OD}\right)
\]

また、ボールに取り付けたワイヤーもポテンショメータにより位置が測定され、点 \( O \) からボールまでの長さ \( r \) が求められる。

以上のことから、三つのポテンショメータを用いてワイヤーの位置を測定することにより、\( r, \alpha \) および \( \beta \) が求められ、ボールの空間位置 \( P(x, y, z) \) は式(1)より算出できる。

2.4 位置センサーの特点

(1) 測定範囲について 図 3 からわかるように、\( r \) は理論的には無限大まで測定できるが、角度 \( \alpha \) と \( \beta \) に関しては、今回の実作品では三角形 \( ABC \) と \( \angle BOC \) をそれぞれ正三角形と 90 度で設定したが、式(2)と(3)から明らかのように、それぞれ正三角形、90 度である必要はなく、さらに \( \angle BOC \) を大きくすること（頂点 \( ABC \) を座標軸から外れた位置におくこと）によって位置センサーの測定範囲を広くすることが可能である。

(2) 構造について 2.2 節で説明したように、提案した位置センサーの構造は簡単である。プレーヤーの近くに一本のワイヤーの付けたワイヤー（Wire 1）しかなく、ワイヤーがプレーヤーの動作に影響を与えにくい、そのため、プレーヤーは実際のキャッチボールと同じ動作ができる。測定機器がポテンショメータのため、電気ノイズに強く、安価であるといった利点もある。

(3) 出力特性について 設計された位置センサーはパッチャルキャッチボールシステムの標率部に対しして考えてきたが、解答部においても性能を変更することなく利用できる。それは、ボールの代わりにグラフにワイヤーを取り付けることで、グラフの空間位置検出が可能となる。また、測定範囲が広いので電気ノイズレベルでいろいろな空間位置の計測分野にも応用できると思われる。次に各種の実験を用いて、提案する位置センサーの特性について調べる。

3. 位置センサーの静特性の評価

3.1 位置センサーの基本性能 本位置センサーは、図 1 に示したように、台球システムと台球システムにおいて異なった姿勢で用いられる。取り付ける姿勢によって位置センサーの性能が左右されると、パッチャルキャッチボールシステムにとって不都合である。そこで、本位置センサーの水平状態での性能を測定し、その後、パッチャルキャッチボールシステムに実装して性能を測定した。この結果により、水平状態での性能測定について述べる。図 6 に示すように水平な台の上に位置センサーを固定し、有効測定範囲と測定誤差を、図 7 として位置センサーの基本性能として述べた。

![Spatial position sensor](image)

Fig. 6 Examinations to know the feasible measurement area and basic performance of the sensor

(1) 有効測定範囲 図 6 に示す状態で図 3 の角度 \( \alpha \) と \( \beta \) に関する有効測定範囲を測定した。その結果を以下に示す。

\[
21.3 \leq \alpha \leq 64.2 \text{ [deg.]} \\
23.5 \leq \beta \leq 58.2 \text{ [deg.]} 
\]

式(4)と(5)に示す有効測定範囲がパッチャルキャッチボールシステムにおいて十分であるかどうかの検討は次節で行う。

(2) 測定誤差 次に、図 6 に示す状態における測定誤差を調べた。ボールに取り付けたワイヤーの長さを 250 から 1500mm に変化させ、各軸（図 6 中の \( x, y, z \) 軸）に対する座標値を 16 点測定した。このとき \( \alpha, \beta \) はともに 45 度とした。測定点の誤差の平均は各軸それぞれ 0.5%, 2.8%, -3.2% であった。\( x \) および \( y \) 軸方向に関しては、良好な精度といえる。しかし、\( z \) 軸方向の誤差は他の比べて大きく、しかも理論値より小さめに測定されていた。これは、スライディングバーの重さ（この場合はリングを含む 45g）によって、ワイヤーが押し下がられるためと考えられる。従って、位置センサーの測定精度向上のためには、スライディングバーの重さの軽減が必要となる。

3.2 キャッチボールシステムへの実装 本パッチャルキャッチボールシステムでは、図 7 に示す方式の棒に投球部と捕球部が組み込まれる。柱組みの長さは一般のキャッチボールのフレークができるように設定され、このことから、人がボールを投げ、捕球することができる。特に、特に投球部において、人の動きを妨げ
3.3 静特性実験方法

3.3節で述べたように、スライディングバーの重量軽減は必要である。スライディングバーは、図3に示すようにアクリル板を貫通した溝に沿って動くため、バー重量の線分ADに沿った力が、ワイヤーを押し下げる方向に働く。図7に示す位置センサーの姿勢は、水平状態から70度（γ=20度）下に傾けたものである。この取り付け角度により、線分ADに沿った力は大きくなる。そのため、図7のように位置センサーを実装すると、バーの重量の影響はより顕著になると考えられる。そこで、バーを改良した（⑧）。バーの長さは従来と同じであるが、アクリルの角柱からアルミの円柱（φ6mm）に変更した。リガリングの形状は従来通りとし、材質を真鍮から樹脂に変更した。これらの改良によってスライディングバーの重量は、もともと45gであったものが20gとなり、25gの重量減となった。この改良を施したスライディングバーを用いて静特性実験を行った。

図7に示すようにシステムの枠組み内に8点の測定点を螺旋状に設定した。測定点1から8まで順に位置センサーのワイヤー(Wire 1)の端Pを固定し、測定を行った。このとき測定点にワイヤーを固定するため、センサーのワイヤー先端にあるボールを取り外して実験を行った。各測定点で3回の測定を行い、その平均値を求めた。

3.4 実験結果 図8に各平面ごとの測定結果を示す。図の口印はそれぞれ位置センサーの測定点と設定値である。各測定点の誤差の平均は、XYZ各軸それぞれ1.4％、-3.0％、-2.8％であった。

Fig. 7 The spatial position sensor set within the framework of the virtual catch ball system and the prescribed locations of P for examination

Fig. 8 Measurement results of the static experiment
した測定点について測定した。その結果を表1上段に示す。スライディングバーを改良した後の測定結果を表1下段に示す。スライディングバーは改良前と改良後で25gの重量差がある。表1に示すように、すべての軸において改良後の誤差の絶対値が減少している。特にY軸とZ軸での減少は顕著であった。以上のことより、スライディングバーの軽量化は、位置センサーの精度向上に有効であったことがわかる。そして、すべての方向において3％以内(絶対値)の誤差というところから、バーチャルキャッチボールシステムに用いるには十分な精度と考えられる。さらに精度を高めるためには、スライディングバーの断面形状を検討する必要がある。すなわちバーの断面が円形であるため、バーがワイヤーの弾力によって回転することがある。このとき、バーに取り付けであるリングの向きは、図3に示す平面ABCに対してある角度を持つ。このため、実際の値よりも小さく値が算出されることになる。この対策として、弾力による回転を抑え、円形と同程度にスムーズな動きを得るには楕円バーの断面形状が適切と考えられる。

| Table 1 Average errors of the spatial position sensor (in %) in the static experiments |
|-----------------|-----------------|-----------------|-----------------|
| Bar             | Axis            | X               | Y               | Z               |
| Original sliding bar (45 g) | 1.5             | -4.7            | -3.7            |
| Improved sliding bar (20 g)    | 1.4             | -3.0            | -2.8            |

(2) システムへの実装と測定誤差 位置センサーをバーチャルキャッチボールシステムに実装する前（基本特性）と実装後の静特性を比較するため、両状況での測定誤差を表2に再び示す。表2の上段と下段はそれぞれスライディングバーが改良される前の水平な台の上(図6)と実装された環境(図7)との条件での誤差値である。表2に示されているように、システムに実装する前の結果と比較すると、システムに実装された後の位置センサーの誤差絶対値は増加している。この誤差増加の原因としては、ワイヤーに弾力をかけることによって位置センサー自身がワイヤーの方向に傾けられたことと、バーチャルキャッチボールシステムの枠組みを変形したことが考えられる。このようなシステムへの実装による誤差を減らすため、位置センサーの取り付け位置及びシステムの枠組みをさらに強固にする必要があると思われる。

<table>
<thead>
<tr>
<th>Setting conditions</th>
<th>Axis (X)</th>
<th>y (Y)</th>
<th>z (Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set on the table</td>
<td>0.5</td>
<td>2.8</td>
<td>-3.2</td>
</tr>
<tr>
<td>Set in the catch ball system</td>
<td>1.5</td>
<td>-4.7</td>
<td>-3.7</td>
</tr>
</tbody>
</table>

4. センサーの動特性の評価

4.1 動特性実験方法 動特性実験は改良されたスライディングバーを用いて、図9に示すようなシステムに実装された環境で行った。

位置センサーの動的変位量の入力装置は、図9のシステムの枠組みの中心に設置されているサーボモーター・ボールねじのユニットである。まず、この入力装置について説明する。ボールねじ(W-1608A-2)の一端がサーボモータ(R-406-011E)に連結されていて、モータの回転によってボールねじのナット部の位置が変化する。そのナット部に位置センサーのワイヤー端を固定し、モータに回転指令を与えることによって、センサーに動的な変位を入力することができる。モータの回転数はPCより制御することにした。この制御方法は以下の通りである。PCからに出た制御信号はD/Aボアドを介してロボットドライバー(TITECH ROBOT DRIVER)に送られる。このドライバーでは電圧制御が行われ、この電圧制御によりサーボモータの回転数を制御し、ボールねじの往復運動が時間的に一定の速度になるように工夫した。これによりボールねじの動きの振幅と周波数の制御が可能になった。そして、これらをセンサーへの入力とし、動特性を測定した。

Fig. 9 General view of the dynamic experiment
次に、実験手順を説明する。図9に示すように、ボールねじをシステムの柱組みのX-Y平面に平行に、そして図7に示すZ-F上に高さ1400mmで設置し、XおよびY軸方向の測定を行った。その後、ボールねじをX-Y平面に垂直となるように取り付け、Z軸方向の測定を行った。

4.2 実験結果 ボールねじの動きを正弦波状に制御したため、位置センサーのワイヤーを固定しているナット部の位置と時間との関係は、図10に示すようになる。そこで、この正弦波状の位置入力に対してセンサの出力を比較することでセンサの時間的応答遅れを求めた。このとき、サンプリング周期を2msとし、ある時刻におけるボールねじの位置と同時刻に位置センサーによって測定された位置をPCに記録した。

図11は、振幅300mm、周期0.4Hzの動きを入力したときの各時刻における入力値とセンサー出力値を示している。入力の振幅は一定である。そこで振幅が0の位置、図11(a)におけるボールねじが300mmの位置、入力基準値とした。この基準値に対する各軸の理論的出力値を計算で求め、そして、入力基準値が測定された時刻を図11(a)から求め、各軸の理論的出力値と同じ値が出力された時刻を図11(b)、(c)、(d)から求め、これらの時刻の差からセンサーの応答遅れを求めた。このときの遅れは、X、YおよびZ軸それぞれ0.11、0.11、0.10 Secであった。

Fig. 10 Relation between position of the nut fixing the wire and time

Fig. 11 Measurement results of the dynamic experiment (0.4Hz, amplitude 300mm)

4.3 考察 位置センサーの動特性とパーサルキャッチャボールシステムへの適用について述べる。入力に対する出力の遅れは、軸による差はほとんどなく、0.4Hz、1.2Hzの入力に対しそれぞれ0.14、0.11 Secであった。いま、キャッチャーボール時のボールの速度を仮に100Km/hとし、ピッチャー・キャッチャー間の距離を実際と同様18.44mとすると、ピッチャーがボールを投げつけるキャッチャーが捕球するまで0.66Secかかる。このことから、入力に対する遅れは、パーサルキャッチャボールシステムの現実感に対し影響を与えないと考えられる。

以上の考察より、ボールの断面形状など改良点のあるものの、一般人のキャッチャー動作を考えると、本位置センサーは、パーサルキャッチャボールシステムの要求を満たしていると考えられる。
5. 結言

本論文では、バーチャルキャッチボールシステムのための空間位置センサーを提案した。各種特性実験より、測定範囲が広く、ノイズに強く、位置精度が良好であることが確認できた。しかし、一般人のキャッチボール動作に必要とする精度は備えているものの、格な仕様（例えば、プロ野球選手のレベル）には不十分であるため、より一層精度の向上が課題である。

文献

(1) 吳・北澤・木村、バーチャルキャッチボールシステム、機械学会中国四国支部第36期総会・講演会(1998),207-208
(2) 木村・吳・北澤、バーチャルキャッチボールシステムのための力覚表示装置の研究開発、機械学会中国四国支部第36期総会・講演会, (1998),209-210
(3) Sadao Kawamura, Mizuto Ida, Takahiro Wada and


(4) 日本ロボット学会：ロボット工学ハンドブック, (1990), 431-467, コロナ社

(5) 日経エレクトロニクス (株) : Virtual Reality 製品ガイド (1996), 第4版

(6) 佐藤・平田・河原田、空間インタフェース装置 SPIDARの提案、電子情報通信学会論文誌 D−II, J74-D-II No.7, (1991), 887-894

(7) 北澤・呉・木村、バーチャルキャッチボールシステムのための空間位置センサーの開発、機械学会中国四国支部第36期総会・講演会, (1998),205-206


Fig. 12 Measurement results of the dynamic experiment (1.2Hz, amplitude 90mm)