ウェーブレット変換を用いた歯車動的性能変化による歯面損傷診断
（歯面損傷診断に対するウェーブレット変換の有用性）

吉田 彰*1, 大上 祐司*2, 木脇 祐二*3
大西 康資*4, 本郷 俊明*5, 楊 振亮*6

Diagnosis of Tooth Surface Failure by Change in Dynamic Performance of Gear Using Wavelet Transform
(Usefulness of Wavelet Transform to Diagnosis of Tooth Surface Failure)

Akira YOSHIDA*7, Yuji OHUE, Yuuji KIWAKI,
Yasusuke ONISHI, Toshiaki HONGO and Zhen Liang YANG

**Okayama University, Dept. of Mechanical Engineering,
3-1-1, Tsushima-naka, Okayama, 700-8530 Japan

This paper deals with a diagnosis of tooth surface failure by change in dynamic performance of a gear using the wavelet transform. The dynamic performances of the gear, which are tooth root strain and vibration acceleration of gear box, were measured during the fatigue process of the gear using a power circulating type gear testing machine. These dynamic performances were analyzed at a time-frequency domain using the wavelet transform. As the result of the time-frequency analysis of the vibration, it became clear that each failed tooth can be detected by this analysis when one tooth was failed. However, in the case of adjoining plural failed teeth, it was difficult to detect the all failed teeth. The result of the time frequency analysis of the tooth root strain suggested that it is possible to detect the failed location on the tooth surface by this analysis.

Key Words: Gear, Failure Diagnosis, Wavelet Transform, Surface Failure, Fatigue Test, Vibration Acceleration, Tooth Root Strain

1. 緒 言

近年, 歯車が高速・高荷重の条件下で運転されるようになり、それに伴って歯車装置の振動・騒音問題あるいは歯車損傷発生予知への関心が高まっている。動力伝達装置において歯車は重要な機械要素の一つであり、無駄を分負荷によって歯車に損傷が発生し、破壊に至るたと装置全体に大きな障害が生じる恐れがある。そのため、歯車の損傷の検知および予知などの診断を行うことは重要な課題である。従来から、回転機械の異常診断には高速フーリエ変換（FFT: Fast Fourier Transform）による周波数解析が行われている。しかし、FFTは、信号中に含まれる周波数成分を出現順序に関係なく解析する。したがって、歯車などに損傷が発生し、それに伴って診断信号中に非定常信号が発生する回転機械の異常診断に対しFFTを用いると異常成分の検出が困難な場合がある。周波数成分が時間的に変動する非定常信号を解析するための時間・周波数解析には、短時間フーリエ変換(1), Wigner-Ville分布(2)(WVD: Wigner-Ville Distribution), ウェーブレット変換(3)(4), (WT: Wavelet Transform)がある。上野ら(5)は、Haarウェーブレットを用いた離散WTによってスラスト軸受の転がりばれ離損傷の予知を試みている。Staszewskiら(6)は、連続WTの工学的な有用性を検討するため歯先の一部を欠損させた歯車の運転を行い、歯車箱の振動加速度から欠損させた歯を検知できるかどうかを試している。しかし、実際問題として歯先が欠損する事例はほとんどなく、彼らの研究はあまり現実的ではない。Choyら(7)は、歯車疲れ試験中ビッチングや摩耗に起因する歯車試験機のハウジング部の振動の変化を測定するとともに、歯車試験機全体の運動方程式を導き、歯面損傷が起こった際の歯の剛性を考慮して得られる振動波形と実際の振動波形をWVDを用いて時間・周波数解析し、比較検討している。彼らの研究は、どの歯がどの程度損傷しているかを特定しようとしているが、歯面のどの部分に損傷が発生しているかまではできていない。歯面損傷に起因して起こるイ
ウェーブレット変換を用いた歯車の動的性能変化による歯面損傷診断

ニックス的な振動波形は、軸受を介して歯車箱に伝ばすまでに減衰する可能性があるため、歯車箱振動の時間・周波数解析では歯面のどの部分に損傷が発生しているかを推定することは困難であると考えられる。また、短時間フーリエ変換では時間・周波数分解能が一定であるために周波数の周波数数に対する解析には不適であり、WVDではその非線形時間・周波数分布を得るために滑らか化処理が必要であるなどの短所がある。これらに対し、WTでは時間・周波数の分解能は解析周波数に応じて可変で、簡便に時間・周波数分布が得られる。上述の研究では、時刻的な歯車動的性能変化と歯面損傷の関係を調べていない。

そこで、本研究では、疲れ試験中の歯車箱の振動加速度波形をWTにより解析することにより、歯面での損傷発生位置を特定するために歯元ずみを測定し、時間・周波数解析も行う。また、疲れ試験中の歯面の劣化とそれら波形の変化を時刻的に測定・観察する。そして、歯形変化に伴う歯車動的性能変化を考察するとともに、歯車損傷診断と歯面損傷状態の診断においてWTを適用することの有用性について論じる。

2. 歯車疲れ試験

2.1 試験歯車

歯車諸元を表1に示す。疲れ試験にはモジュール5, 压力角20°、歯数比15/16の平歯車対を用いた。損傷対象歯車にインオン炭化粉末焼結大歯車を用い、相手侧の小歯車には銅製炭化焼結歯車を用いた。粉末焼結歯車にはMn-Cr-Mo系ブレアロイ型合金鋼粉を使用し、圧粉密度は6.9 g/cm³である。インオン炭化粉末焼結歯車には歯面を研削した後にインオン窒化を施した。相手側歯車はSCM415鋼からホブにより歯切りし、浸炭硬化した後、歯面を研削した。歯車精度は、大歯車でJIS 3級、小歯車でJIS 1級であった。

2.2 無効試験および動的性能の測定方法

疲れ試験に用いた歯車試験機は、軸間距離82.55 mmを有する動力循環式歯車試験機である(9)。損傷対象である大歯車を被動側として疲れ試験を行った。疲れ試験は、EP0909ギヤ油を歯車かみ込み側から圧力給油(油温313 K、油量750 ml/min)して大歯車回転速度をn = 1800 rpmで行い、負荷の基準としてはかみあいビッチ点でのヘルツの最大接触応力P_{max}を採用した。疲れ試験の所定の大歯車巻返し数ごとに、歯車の動的性能として歯元ずみ、歯車箱振動加速度を測定した。また、大・小歯車の歯形変化を測定し、歯面をレプリカ法により観察した。大歯車の1枚の歯の歯高側の歯元の微弱変位面近傍付近に抵抗線で読み取りゲージ(ゲージ長0.3 mm、ゲージ抵抗120Ω)を貼付して、動びずみ計を介して歯元ずみを測定した。歯車箱振動加速度については、歯車箱側面中央部に取付けた圧電型振動加速度ビックアップ(応答周波数範囲3 Hz-20 kHz)により測定し、チャージャンプを介して増幅した。歯車回転信号とともに各変位データレコーディ取り込み、A/D変換器を介してコンピュータにより波形解析を行った。

3. 無効試験中の動的性能変化による歯面損傷診断

3.1 ウェーブレット変換

疲れ試験中の歯車の動的性能を評価するために、時間・周波数解析の一つであるウェーブレット変換(WT)の(11)、(12)を用いて動歯車動的性能の各形態を時間・周波数解析する。WTは、時間的にも周波数的にも局在したアナライジングウェーブレットψ(t)の相似形と平行移動を利用した時間・周波数2次元解析であり、信号f(t)のWTは次式で定義される。

\[(W_{f} \psi)(b,a) = \left| a \right|^{-\frac{1}{2}} \int_{-\infty}^{\infty} f(t) \psi \left(\frac{t-b}{a} \right) dt \] \hspace{1cm} (1)

ここで、ψ(t)はψ(t)の複素共役であり、aはそれぞれ周波数と時間に関するパラメータである。時間・周波数解析には、アナライジングウェーブレットψ(t)として、Gabor関数を用いた。Gabor関数は次式で表される。

\[\psi(t) = e^{-\frac{1}{2} \left(\frac{t}{\gamma} \right)^{2}} \exp \left\{ - \frac{i \left(\frac{2\pi t}{\gamma} \right)^{2}}{2} + i \omega_{0} t \right\} \] \hspace{1cm} (2)

ここで、ω_{0}は中心周波数、γは周波数領域での局在の幅を決めるパラメータである。γは2πとした。Gabor

<table>
<thead>
<tr>
<th>Table 1 Specification of test gear pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module (mm)</td>
</tr>
<tr>
<td>Pressure angle (deg.)</td>
</tr>
<tr>
<td>Number of teeth</td>
</tr>
<tr>
<td>Addendum modification coefficient</td>
</tr>
<tr>
<td>Tip circle diameter (mm)</td>
</tr>
<tr>
<td>Center distance (mm)</td>
</tr>
<tr>
<td>Contact ratio</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Heat treatment</td>
</tr>
<tr>
<td>Accuracy</td>
</tr>
<tr>
<td>Tooth surface finishing</td>
</tr>
</tbody>
</table>

*JIS B 1702
+ Pinion:after case-hardening, Gear:before ion-nitriding
関数の時間軸に対する波形と周波数特性は前報⑴,⑵に示すとおりで、時間的にも周波数的にも都合が良い関数である。式(1)に示した積分計算は、台形公式を用いた数値積分により行った。すなわち、パラメータ a と b は以下のよう的に離散化した。

$$n = 2^m / M, \quad b = n \Delta t$$

ここで、m と n は段数であり、Δt は信号のサンプリング時間である。信号をウェーブレット変換した結果は、次式で定義されるウェーブレットの強度 $|\langle Wf, f \rangle|$ で表した。

$$|\langle Wf, f \rangle| = \sqrt{Re\{\langle Wf, f \rangle \}^2 + Im\{\langle Wf, f \rangle \}^2}$$

ここで、$Re\{\langle Wf, f \rangle \}$ と $Im\{\langle Wf, f \rangle \}$ は式(1)で計算法される実数部と虚数部である。

3.2 疲れ試験中の歯形変化 図1にヘルツの最大接触応力 $p_{\text{max}} = 700 \text{ MPa}$ の条件で疲れ試験をした際の歯車伝い数 N_2 の増加に伴う歯車の歯形変化を示す。図には、スパイリング損傷した歯（2番）と、疲れ試験未期においても損傷しなかった歯（12番）の代表例を示す。歴の番号については、ひずみゲージを貼付した歯車の歯を基準にして、歴のかみあいが進行する順に番号をつけた。相手側鋼製炭素硬化歯車の歯にはあまり歯形誤差がなく、疲れ試験中において歯形の変化がほとんどなかった。疲れ試験初期の歯車の歯形には圧力角誤差があり、歯車かみあい域における誤差の値は約10㎛である。疲れ試験が進む$N_2 = 1.0 \times 10^6$になると歴が摩耗している。2番の歯は、歔先の近寄り側二対かみあいから一対かみあい移行点付近でやや摩耗が大々くなっているが、歔歎ともに、$N_2 = 0$ のときの歯形に比べ、摩耗により正しいインボリュート歯形に近づいている：$N_2 = 2.5 \times 10^6$になると12番の歯ではあまり歯形は変化していないのに対し、2番の歯では一対かみあいから遠のき側二対かみあい移行点付近の歯形が大きく摩耗している。これは、疲れ試験中の2番の歯の歯面を観察した図2において$N_2 = 2.5 \times 10^6$における歯面には歔歎に微小なビットが現れたためである。$N_2 = 3.0 \times 10^6$になると2番の歯歔形はかみあいビッチ点付近が大きく摩耗し、その深さは約28㎛であった。歔歋観察からもわかるように、$N_2 = 3.0 \times 10^6$ではスパイリングが発生し、それに起因して歔歋が大きくは離したために、歔歋が非常に大きくなった。歔歋形の劣化は大々なくなっている。

3.3 歯車箱振動からの歯車損傷診断 図1、2に示したような歯形変化をした際に歔歋箱の振動加速度がどのように変化したかを、WTとFFTを用いて考察する。図3に$p_{\text{max}} = 700 \text{ MPa}$の条件で疲れ試験を行った歔歋箱の歔歋箱振動加速度波形からその波形のWTによって得られたウェーブレットマップおよびFFTにより周波数解析を行った結果を示す。ウェーブレットマップでは、マップ中の最大の強度を100として正規化してある。歔歋箱16枚を有する歔歋箱の回転速度$n_2 = 1800 \text{ rpm}$であるので、かみあい周波数f_2は480Hzとなる。振動加速度波形をFFTにより周波数解析した結果では、10f_2（4.8kHz）の周波数成分の強度が非常に高くなっている。この原因は、振動加速度ピックアップが振動を検出する方向の歔歋箱の固有振動数が約5.0kHzであったために、かみあい周波数と歔歋箱が共振したためである。ウェーブレットマップ

Fig.1 Tooth profile errors of test gear during fatigue test
Fig.2 Observation of 2nd tooth surface during fatigue test
ウェーブレット変換を用いた歯車動的性能変化による歯面損傷診断

プでも、10 \(f_e \) の周波数成分の強度がほかの周波数成分に比べ高く、さらに、10 \(f_e \) の周波数成分は時間的には強度が一定ではなく強弱を繰返しながら振動していることがわかる。この解析結果はFFTでは得られない結果であり、時間・周波数解析の長所である。

疲れ試験中の歯面損傷と振動加速度の関係を考察するために、10 \(f_e \) の周波数成分の時間的強度変化に関して調べる。図4に大歯車1回転中の振動加速度波形に含まれる10 \(f_e \) の周波数成分のウェーブレット変換を大歯車繰返し数 \(N_2 \) ごとに示す。図中には歯面がかみあい始めの歯の位置を示している。疲れ試験が進んだ \(N_2 = 1.0 \times 10^6 \) に比べて、疲れ試験初期の \(N_2 = 0 \) では大歯車1回転中の10 \(f_e \) の強度は全体的に高い。\(N_2 = 0 \) では歯面損傷があったものの対し、\(N_2 = 1.0 \times 10^6 \) では歯面損傷が発生し、正しいインボリュート歯形に近づいたため、歯車箱振動が減少したことがわかる。また、10 \(f_e \) の周波数成分の強度が極大となるところは大まかにかみあい始めの位置近くである。このことは、歯車・歯箱の剛性の周波数が基本的には歯のかみあい周波数であることを示している。\(N_2 = 2.5 \times 10^6 \) になると2番の歯には歯元に小さなビットが多数発生し、歯面形状が大きく変化し、それに伴って２番の歯がかみあい付近の状態が大きくなっている。なお、7番の歯がかみあい始めの付近の強度も大きくなくなっているが、これは歯面の劣化が原因であるのではなく、歯車振動系全体が何らかの原因で大きく振動していたと思われる。\(N_2 = 3.0 \times 10^6 \) では2、3、4番の歯が繰返し発生し、歯面形状が大きく変化し、3、4番の歯の歯面形状は定形化に2番の歯形状と同様であった。その際の振動加速度波形 \(a \) 、ウェーブレットマップとFFTによる周波数解析結果を図5に示す。振動加速度波形の変動は、3、4番の歯がかみあい始めると、振幅が非常に大きくなっている。FFTによる周波数解析結果では、かみあい周波数 \(f_e \) の整数倍の成分以外の周波数成分の強度が高くなっている。しかし、どの前に損傷が起こっているかは、特定できない。それに対しウェーブレットマップでは、3、4番の歯がかみあい始めると10 \(f_e \) の周波数成分の強度が非常に高くなっている。しかし、2番の歯がかみあい付近では強度は低くなっている。これより、スピーリング損傷はかみあいビッチ点付近に起こること、歯車対のかみ
ウェーブレット変換を用いた歯車動的性能変化による歯面損傷診断

あい率は1.246であること、さらに歯車は歯先からかみあうことに起因している。すなわち、あまり歯形誤差の大きさない1番の歯の一対があいが終了し、歯末の面での歯形誤差がある大きさない2番の歯のかみあいが始まる二対がみあいのときには、かみあいが滑らかに進行するので、振動加速度波形は大きくなかったと考えられる。しかし、スポーツリングが原因で2番の歯の一対がみあい域からかみあい終わりにかけて大きく歯形が満たしているために、3番の歯が正常な運転状態のときよりも早く相手歯車とかみあう。それに伴って3番の歯がかみあう際に相手歯車とのかみあいの衝撃が大きくなるため、振動加速度波形が非常に大きくなったと考えられる。図4の$N_2 = 3.5 \times 10^6$では2、3、4番の歯以外に6番の歯の歯形誤差が大きくており、それに伴って6番の歯がかみあう付近のウェーブレット強度も$N_2 = 3.0 \times 10^6$での強度に比べ大きくなっている。

歯車のどの歯に損傷が発生したかを歯車箱振動を用いて診断した以上、結果から、単独の歯が損傷する場合、ウェーブレットマップから損傷が発生した歯を特定することは可能である。しかし、連続した複数の歯が損傷した場合には、損傷した全ての歯を特定することは困難であることがわかる。なお、図5からわかるように、損傷した歯の位置は、ウェーブレットマップを用いないで振動加速度波形からもわかる。しかし、その波形にどのような周波数成分が含まれているかについては、図に示されている複雑な波形からは判別し難しい。一方、時間・周波数領域で表されるウェーブレットマップでは、損傷した歯の位置と波形に含まれる周波数成分が電波にわかる。この点からも、損傷診断にウェーブレット変換を用いる有用性があるといえる。

3.4 歯元ひずみからの歯面状態診断の可能性
前節での歯車箱振動加速度波形のWTでは、どの歯の損傷しているかは大まかにはわかるが、歯面のどの箇所に損傷が発生しているかを特定することは困難であった。また、歯の変形に起因して起こる非常にわずかなインパルス的な振動波形は、軸、軸受を介して歯車箱に伝ばすまでに減衰する可能性があり、それを検出することは本試験機の構造上困難であると考えられる。そこで、歯車振動系のねじり振動を間接的ではあるが表している歯元ひずみを着目し、その波形のウェーブレット変換を行い、歯元ひずみの解析結果と歯面変形との関係を調べ、そして、歯面損傷箇所の検出の可能性について考察する。

前節までに示した負荷条件における$N_2 = 0$と1.0×10^6での歯元ひずみ波形とその波形のウェーブレットマップを図6および図7に示す。疲労試験中の1番の歯の歯面変形は、図1に示した12番の歯とはほぼ同じであった。歯元ひずみ波形に含まれる歯車のねじり振動を表す主な周波数成分は、ウェーブレットマップから、約1kHzから5kHzの範囲にあることがわかる。$N_2 = 0$では前節までに示したように歯面は圧力角誤差を有しており、マップでは約2kHz付近での周波数成分の強度が

Fig.6 Tooth root strain and Wavelet map at $N_2 = 0$

Fig.7 Tooth root strain and Wavelet map at $N_2 = 1.0 \times 10^6$

—334—
ウェブレット変換を用いた歯車動的性能変化による歯面損傷診断

4. 結 言

疲れ試験中の歯形誤差ならびに歯元ひずみと歯車箱の振動波形を経時的に測定し、それら波形をウェブレット変換により時間-周波数解析して考察するとともに、ウェブレット変換を歯面損傷診断に対して適用する際の有用性について調べた結果を要約すると以下のようになる。

(1) 歯車の疲れ試験中の歯車箱振動加速度を経時的に測定し、時間-周波数解析した結果、単独の歯の歯面損傷が起こる場合には、歯面損傷が発生した歯を特定できる。しかし、連続した複数の歯の歯面損傷が発生した場合には、大まかには損傷した歯を特定することが、正確には特定できなかった。

(2) 歯車試験中の歯車対のねじり振動を表す歯元ひずみを時間-周波数解析した結果、歯元ひずみに含まれる高周波成分の強度の変化の影響を受けた。また、歯車の荷重分解に大きく影響されると考えられる歯元ひずみの低周波成分の強度の変化は、わずかな歯形の変化にはあまり影響されなかった。

(3) ウェブレット変換を用いて歯車動的性能変化から歯面損傷診断を行った結果、歯車のどの歯が損傷しているかを診断するためには、歯車振動波形を用いればよい。一方、歯面のどの個所に損傷が発生したかを診断するためには、歯元ひずみを用いれば歯面の損傷箇所を検出できる可能性を示した。そして、歯面損傷診断に対し時間-周波数解析を行えるウェブレット変換は高速フーリエ変換よりも有用性があることを示した。

最後に、本研究に使用した焼結歯車は住友金属工業(株)から提供頂いたもので、イオン酸化処理は日本電子工業(株)の好意により行われた。また、潤滑油は、(株)ジャパンエンジニア総合研究所より提供頂いたものである。ここに謝意を表す。さらに、本研究の一部は文部省科学研究費補助金の援助により行われたことを付記し、謝意を表す。

文 献

(2) C.K.Chui著，坂井明・新井敏 共訳，“ウェブレット入門”，(1994)，東京電機大学出版局。
(6) 吉田彰・大上祐司・木原右二, 機論, 64-618, C(1998), 698-706.
(7) 吉田彰・大上祐司・岡野隆男・玉澤昌弘, 機論, 65-630, C(1999), 735-744.