Generation of Painting Trajectory by Cooperative Control in the Robot and Placer System

Kunio MIYAWAKI, Toshiaki SHINOHARA, Yukio SAITO, Tatsuo MIYAZAKI and Hiroshi OKUBO

The goal of this study is making up CIM of the painting process for large-scale steel products. In this process, placer–robot system is necessary to approach and spray paint on the workpiece. Unfortunately, dynamic efficiency of a placer is poor as a rule because of its insufficient stiffness. It causes fluctuation of the tool center point (TCP) in the trajectory, which has harmful effect on the film formation. In this paper, cooperative control of the placer–robot system is proposed to improve the TCP painting trajectory. TCP trajectory data and placer trajectory data with the moving pattern for vibration control are generated in the NC data generation system and given to the controller. In the controller, robot trajectory is generated from TCP and placer trajectory data, and compensates TCP trajectory. We studied various methods for such compensation through the dynamic response simulation of the placer–robot system, and found out that the compensation by the robot trajectory of wrist swing is effective in improving TCP trajectory. As a result of experiment in the prototype system for ship hull–block, significant improvement was confirmed in the film formation. In addition, method of the dynamic simulation for the film formation is also proposed. In this simulation, the response simulation above mentioned is linked to the quantitative process of coating.

Key Words: Painting Robot, Trajectory Control, Dynamic Response, Redundancy, Painting Process

1. はじめに

自動車など量産形製品の製造では、各種の作業工程でロボットが広く実用化されている。一方、船舶や橋りょうなど大形鋼構造製品においても、溶接工程のロボット化が積極的に進められ、なくてはならない存在となっている。そしてさらにCIM（コンピュータ統合生産システム）の構築に向けて数値化開発が行われている。この分野での次の開発目標とされるのが、溶接とともに重要な基礎技術である塗装のロボット化である。これにより、この分野での塗装ロボット化の試みは、極めて少ない。その理由は、溶接に比べて経済効果が十分でないと判断されることにある。しかしこの社会の成熟化に伴い、熟練した塗装技術者は急激に減少しつつある。一方、海洋汚染への対策としてオイルタンカーの二重底構造が要請されているように、社会基盤を成す鋼構造製品はより複雑な設計となり、より高い塗装品質を求められるとともに塗装作業の増大を招いている。

こうした背景の下に、我々は鋼構造塗装のロボットシステム開発に取組んでいる。ロボットの研究成果は数多く発表されているが、応用研究として塗装ロボットを取上げたものは少数、とりわけ大形の鋼構造ワーク塗装への適用についてはの研究は極めて少ない。しかし、ここには実用化のための多岐にわたる開発課題が存在する。そして、プレーザー・ロボット系に関する問題はその一つである。大形ワークの鋼構造塗装では、ロボットをワークに対して広域でアクセスさせるために、ロボットを搭載して移動するプレーザーが不可欠である。ここでは、プレーザーの剛性不足に起因する振動とその塗膜への影響が重要な問題である。本論文ではこの問題を取上げ、プレーザー・ロボット系の冗長性を利用して協調制御によって、プレーザーの振動を回避しつつ塗装品質の確保に必要な軌道制御を生成する方法を提案している。そして、プレーザー・ロボット系の動的制御シミュレーションを用いた協調制御法の詳細検討を通じて、良好な塗膜を得る制御手法を確立できた。さらに、ここで活用した動的単調シミュレーションを用いた
2. 鋼構造塗装におけるプレーサ・ロボット

2.1 プレーサによる装置化
鋼構造の塗装ロボットシステム構築には、対象となるワーク構造の特徴、塗装施工法、CIM化という三つの面からの検討が必要である。装置の構成は、これらのうち主としてワーク構造の特徴から決まるものである。対象となるワークは橋梁や部材もしくは船舶ブロックで、図1に示すようにパネル構造の組合せよりなる。その構造の特徴は、寸法で立体的であり、形状に付いて複雑であることである。
こうしたワークを対象とする。実用的かつCIM化を目指した塗装自動化では、装置化されたロボットシステムと、NC制御によるオフラインでの運転データ生成が必須となる。この中、装置化については考察され、複雑なワーク構造への対処という点からは、コンパクトで全姿勢塗装の可能な機械が必要であり、大形かつ立体的ワーク構造への対処という点からは、三次元での広域移動・アクセスが可能な機械が必要である。つまり、大きなストロークをもつ移動装置に、できるだけコンパクトで軽量な6軸塗装ロボットを搭載する形態が、塗装用の機械としては適切なようといえる。このように、はん用ロボットを広域移動させる装置をプレーサと呼ぶ。鋼構造ワーク用のプレーサ形式は、ステージとして固定化されたタイプとワーク内に

(図1) Panel type (b) 3D type (c) Closed type
Fig.1 Workpiece of steel product

(図2) Type of access from upside (b) Type of use in the workpiece
Fig.2 Placeır for steel product

塗装を行えるタイプに大別できる。図2に、ステージ化されたプレーサ例として、上からアクセスするタイプと、ワーク内に挿入するプレーサ例を示す。図2(a)では、外形直交座標型プレーサの先端に多関節型ロボットを立て下ろした形態であり、図2(b)ではガイドに沿った走行装置にロボットを搭載している。前者は自動化のレベルを高めることができる反面、設備が大掛かりになりやすい。後者は設備をステージとして固定化させずに済む反面、搬入・設置に工夫を要する。

2.2 動的性能の塗装への影響
プレーサのもと	

したワークを対象とする。実用的かつCIM化を目指した塗装自動化では、装置化されたロボットシステムと、NC制御によるオフラインでの運転データ生成が必須となる。この中、装置化については考察され、複雑なワーク構造への対処という点からは、コンパクトで全姿勢塗装の可能な機械が必要であり、大形かつ立体的ワーク構造への対処という点からは、三次元での広域移動・アクセスが可能な機械が必要である。つまり、大きなストロークをもつ移動装置に、できるだけコンパクトで軽量な6軸塗装ロボットを搭載する形態が、はん用性の観点からも合理的といえる。このように、はん用ロボットを広域移動させる装置をプレーサと呼ぶ。鋼構造ワーク用のプレーサ形式は、ステージとして固定化されたタイプとワーク内に

(図1) Panel type (b) 3D type (c) Closed type
Fig.1 Workpiece of steel product

(図2) Type of access from upside (b) Type of use in the workpiece
Fig.2 Placeır for steel product

塗装を行えるタイプに大別できる。図2に、ステージ化されたプレーサ例として、上からアクセスするタイプと、ワーク内に挿入するプレーサ例を示す。図2(a)では、外形直交座標型プレーサの先端に多関節型ロボットを立て下ろした形態であり、図2(b)ではガイドに沿った走行装置にロボットを搭載している。前者は自動化のレベルを高めることができる反面、設備が大掛かりになりやすい。後者は設備をステージとして固定化させずに済む反面、搬入・設置に工夫を要する。

実例として、開発した船舶ブロック塗装ロボットシステムにおける、プレーサの動的性能による塗膜への影響について述べる。図3にシステムイメージを示す。プレーサは下からのアクセス方式であるが、装置面よりも上方において昇降ストロークを限定する必要上、形状リンクによるパンドグラフ機構としている。形状リンクとは、図7に示す主幹リンクとそれを支持するサブリンクを、おのおの独立して横行させることによって、主幹リンク先端をY-Z面内で位置決めるようにした機構である。つまり、二つの直線軸の協調動作で横行するとともに昇降を行う機構である。図4に、鋼構造用として開発したブロトタイプによるモデルワークの塗装状況を示す。プレーサの昇降ストロークは2.4mである。一般にパンドグラフ機構は、リンクを構成している面と直角な方向(図3のX方向)に対する剛性を高くすることが困難で、この方
向への動的性能に限界がある。一定速度のプレーサ移動によって、同方向に塗装した時のかたまりようすが図5(a)である。塗装はエアレスガンによるタールエポキシ塗装で、塗装速度は200 mm/sである。図5における塗装のしぼ模様は、プレーサの振動によって塗装ガスの速度むらが生じ、膜厚のむらとなって现れたものである。

3. プレーサ・ロボット協調による軌道生成

3.1 ロボット・プレーサの協調制御 第2章では、プレーサの動的性能が原因となり、塗装品質が確保できない実例を示した。大尺寸で立体的なワークを対象とする鋼構造塗装システムにおいて、あらゆる動作に対して十分な剛性をもつプレーサを製作することは、実際に多くの困難を伴う。そこで、剛性の低いプレーサを制振速度波形で駆動するとともに、剛性の高いロボットの軌道制御によって、塗装ガン先端つまりTCP (Tool Center Point)の極端速度を補償する方法を提案する。つまり、プレーサ・ロボット間での協調制御による塗装軌道の生成である。

プレーサ・ロボット系の協調運転の枠組みは、以下のとおりである。図6に示すように、プレーサ・ロボット系には三つの座標系が存在する。つまり、システム全体の基準座標である装置座標系(L)と、プレーサ先端のロボット原点位置を決めるプレーサ座標系(P)、およびロボット原点から見たTCPの位置・姿勢を指定するロボット座標系(R)である(8)。開発したプレーサ・ロボット系のように、一般にロボットは6自由度必要であり、ロボットを空間内で位置決めするプレーサには最低3自由度が必要である。つまり、プレーサ・ロボット系は一般に冗長自由度系を成す。このシステムにおいて、装置座標系(L)で記述されているTCP運転データ(TCPの目標座標と軌道指定速度および移動パターンなどの属性からなるNCデータ)から、プレーサとロボットおのおのの軌道制御における指令データを生成する必要がある。しかし、冗長自由度系であるために、指令データの組合せは一義的には決まらない。冗長自由度系に対しては、擬似逆行列を利用する速度分解法による軌道生成法が知られている(8)。この方法によれば、一般に局所的には合理的な軌道が得られることが知られているが、ここで扱うプレーサ・ロボット系のようにおのおのの特性が大きく異なる場合や、大空間の信頼性のある運転データを必要とするシステムへの適用には必ずしも適さない。そこで、TCP軌道とともに、動作指定が比較的容易なプレーサ軌道をオンライン運転データ生成システムで決定し、オンライン軌道制御においてロボット指令データを生成する方法をとる。これも冗長性利用の一方法である。以下は軌道制御におけるロボット指令データ
生成の原理である。TCP指令データの同名変換行列1T_rを表され、TCPの発表変換行列1T_sと、T_bを発表ロボット原点を表す変換行列1T_sおよびRを示すTCPを表す変換行列1T_rの積として次式のように表される。ここで、1T_sは既知である。

\[^5T_r = ^5T_s \cdot ^5T_b \cdot ^5T_r \] ...

つまり、装置座標系で与えられるTCP指令データ5T_rに対して、式(1)を満たす5T_sと5T_bを定めることが必要となる。この中、プレーザ指令データ5T_sの生成を運転データ生成段階において指定すると、ロボット指令データは、オンラインの軌道制御において次の式より生成される。

\[^5T_r = ^5T_s \cdot ^5T_b \cdot ^5T_r \] ...

3.2 TCPの動的挙動シミュレーション

上述の方式の評価ツールとして、A形リンクプレーザ・ロボット系におけるTCPの動的挙動のシミュレーションを作成した。図5(a)に示した塗装機は、プレーザ走行軸の一定速度移動によるものである。この動作に関して、プレーザ・ロボット系の機構を図7に示す。この機構におけるTCPの挙動を時系列での応答計算によって求めたためには、図7に示した機構の力学モデルを作成する必要がある。ここで、シミュレーションを、計画段階での性能チェックや制御方法改善など簡便で有益な設計ツールとするためには、各要素の機械変数を、TCP挙動への寄与の観点から同レベルで把握・比較できることが望ましい。つまり、各要素の慣性性、剛性などの特性値は、すべてTCP動作相当の値に換算した上でモデル化する手法をとる。プレーザを走行方向（X軸方向）に駆動する時の機構を、離散的な集中定数分布系でモデル化したもののが図8である。ここでは、チェーンによる走行駆動系・プレーザリンクの支持吸収・リンク構造・ロボット旋回軸の四つの主要なコンプライアンス要素を着目している。

次に、各変数の特性値をTCP動作相当値に換算した上でモデルリダクションし、走行機構部A形リンク・ロボットの各部ごとにばね・マス系としてモデリングしたものが図9である。このモデル化手法によれば、各要素のTCP挙動に及ぼす影響を定性的かつ直接的に評価できる。表1に各部剛性と集中質量の値を示す。このモデルに基づいて、プレーザ走行軸の一定速度移動によるTCP挙動をシミュレーションした結果を図10に示す。ここで、図10(b)は軌道の経路に沿ってTCP速度がどのように変動するかをシミュレーションしたものである。これにより、しま模様の原因である塗装方向へのTCP速度変動の波長は約100mm程度であり、図5(a)に示した実際のしま模様の原因である塗装方向へのTCP速度変動の波長は約100mm程度であり、図5(a)に示した実際のしま模様の原因である塗装方向へのTCP速度変動の波長は約100mm程度である。このことから、プレーザを走行方向に駆動する時の機構を、離散的な集中定数分布系でモデル化したもののが図8である。ここでは、チェーンによる走行駆動系・プレーザリンクの支持吸収・リンク構造・ロボット旋回軸の四つの主要なコンプライアンス要素を着目している。

Table 1 Stiffness/weight for model

W	1.94x10^4 N/m
W	1.85x10^4 N/m
W	1.37x10^4 N/m
W	3.62x10^4 N/m
W	6.76x10^4 N/m
W	3.09x10^4 N/m

Fig. 7 Mechanism of A-type placer & robot

Fig. 8 Mechanical model of the placer & robot

Fig. 9 Dynamic model for TCP control without cooperation

Fig. 10 Result of simulation for step input
様の波長80〜90mmと比べて、シミュレーションは塗装動作の事前評価に十分使用できようと考えられる。

3.3 協調制御による軌道生成 \(\lambda \) 形リンクによるプレーサ・ロボット系に対して、提案した協調制御方式による塗装軌道生成を適用する。例えば、速度台形波によるプレーサ軌道指令 \(V_T \) と一定速度の TCP 軌道指令 \(V_T \) から、式（2）によりロボット軌道指令を生成することにより、プレーサの振動を低減して TCP 軌道による悪影響を少なくし、かつ塗装のための適切な TCP 軌道が期待できる。図11に、プレーサとロボットの速度を合成することによって定的 TCP 経路速度を生成する協調制御の原理を示す。図11は一定速度の TCP 軌道の場合を示すが、他の TCP 軌道についても同様である。以下、3.2節で述べた TCP 動作の動的シミュレーションを活用した、協調制御の結果について述べる。

（1）アーム動作による協調制御 通常、ロボット速度つまりロボット座標から見た TCP 速度は、主として第1軸のスクリューブラインによるアーム動作によって生成する。この軌道生成のようすを図12に示す。この軌道生成における TCP 動作を、3.2節に述べたシミュレーションによってシミュレーションした。その力学モデルを図13に、結果を図14(a)に示す。速度台形波によるプレーサ動作によって、TCP 速度の変動は大幅に改善を示している。また、変動成分はあるものの、TCP 速度を一定にするという協調制御の目的を達成されている。TCP 速度変動の拡大に及ぼす定常的な影響については後述する。一方、終点近くでは、かなり大きな変動が発生している。この変動は、主としてロボット旋回軸の動きによりであるが、図12に示すように、ロボットアームのイナーシャを急激に駆動させたことが原因と思われる。ただし、シミュレーション結果のように比較的短い時間で減衰するならば、スプレーのON/OFFを動作のスタート/ストップに比べて時間的にずらすことにより、塗装への悪影響を最小限にとどめることは可能である。実際にも、閉じたワーク構造の塗装では、ガスON/OFFのタイミングがスタート/ストップの内側に設定すべきである。

（2）手首の振り動作による協調制御 アーム動作に伴う振動を低減する手段として、可動部イナーシャの小さな手首振り動作によって協調制御を行う方法が考えられる。これは、イナーシャの小さなアームの急激な動きを回避するためであり、可動部イナーシャはほぼ無視できる。この軌道生成のようすを図15に示す。この場合、TCP ではなく SCP (Spray Center Point) の速度を制御することになる。この軌道生成における SCP 動作シミュレーションの力学モデルを図16に示す。図14(b)に示すシミュレーション結果によれば、終点での SCP 速度の変動低減に大きな効果がある。\(\lambda \)形プレーサ・ロボットのプロトタイプにおいて、この協調制御法を実際に適用し、塗装した
ブレーサ・ロボット協調制御による塗装機械の生成

Fig. 15 SCP trajectory generation by wrist swing

Fig. 16 Dynamic model for TCP trajectory generation by wrist swing

Fig. 17 SCP compensation with polynomial placer input

塗装のようすは図5(b)である。しかしこの様が消えており、塗膜の改善に大きな効果があることがわかる。

(3) 加速度連続波形によるブレーサ駆動 以上のように、手首振り動作による協調制御によって、TCP速度を一定に制御しつつ、TCP挙動の大きな改善が見られる。しかし、ブレーサの速度変化に伴う振動は残っており、これを低減できればより良い軌道となる。そこで、ブレーサの速度波形として、式(3)で表される加速度変化が連続な多項式波形を採用し、その効果をシミュレーションする。

\[v_p(t) = -\frac{2V_p}{(T_i - T_f)^3} (t - T_f)^2 \]

\[+ \frac{3V_p}{(T_i - T_f)^4} (t - T_f)^3 : \text{acc.} \]

\[v_p(t) = \frac{V_p}{(T_i - T_f)^4} (t - T_f)^4 : \text{dec.} \] (3)

協調制御による軌道の生成方法は台形波の場合と同じであり、図17にその原理を示す。図14(c)に示すシミュレーション結果でわかるように、加減速時の振動が低減されているが、台形波に比べて大きなパワーを要するので、シミュレーションによる効果を勘案した

定量的比較が必要である。

3.4 協調制御による軌道生成の特徴 以上の結果によれば、制振速度波形を用いたブレーサ駆動によって、TCPまたはSCPの速度変動はかなり低減され、しかも、協調制御による軌道生成において、TCPまたはSCP軌道は、塗装用の定速軌道となっている。さらに速度変動の少ない定速軌道を得ようとするならば、ブレーサによる弾性変位をロボット動作によって積極的に補償するなどの方法が考えられる(11)。しかし、4章に述べるように、膜厚にはある範囲内のばらつきが許容されるので、プロモタイプでは安定した運転が期待できる本補償法を採用している。以上に述べた協調制御の特徴をまとめると下記のようになる。

(1) ブレーサとロボットの動きが事前に把握でき、オンラインでの運動データ生成でミスを犯さない限り、大別的に信頼性のある軌道生成が保証される。

(2) 受動的な制御であるため、軌道の精度向上に限界があるが、補償のための特別な検出や装置が必要であるなど、装置として信頼性に富む。

4. 塗装形状の動的シミュレーション

4.1 施工条件と膜厚の関係 ブレーサ・ロボット系の協調制御による塗装軌道生成の設計に、TCPの動的挙動シミュレーションが有効であることがわかり、ここでは一歩進めて、塗装方向へのTCP速度変動による膜厚変動を定量的に評価できる、シミュレーションとしてより有益となる。TCP速度は、図18に示す塗装施工条件の一つである。施工条件とは、塗装速度・塗布面/TCP間のスプレー距離・塗布面に対する塗布スプレー姿勢の3諸元をいう(11)。これらは塗装ガムの運行諸元であって、ロボットが制御できる因子である。施工条件は塗膜の膜厚を定量的に左右するので、塗装速度の変動は、塗装方向に沿っての膜厚変動を生じる。

塗料の適切な着色のために必要な塗料粘度やボンプの吐出圧など、塗装機・塗料の設定諸元を塗装条件と
Fig. 19 Fig. 20 Fig. 21

呼ぶ。基本塗装条件の下での標準的な施工条件に対し
て、塗装パターン幅方向（図 18 の y 方向）での厚壁
分布が、例えば次の実験式として得られる[13]。

\[u(y) = B - A y^2 \]

この実験式を基に、施工条件である塗装速度・スプレー
距離・スプレー位置と厚壁分布との関係が定式化でき
るが、スプレー位置については標準的な施工条件で
ある直角位置とし、塗装速度とスプレー距離の変動に
よる厚壁変化のシミュレーションを目指す。単位時間
当たりのガスからの塗装量は一定であるから、標準施
工条件から大きく外れた条件以外では、厚壁はスプレー
距離と塗装速度に比例すると考えてよい。すると、
厚壁分布、標準施工条件での厚壁分布式 (4) を基に、
式 (5) で表すことができる[13]。ここで、 \(k_0 \) と
\(k_1 \) は、おおの標準塗装速度 \(v_0 \) に対する実際塗装
速度 \(v_0 \) の比で定められる速度係数、および標準スプレー
距離 \(l_0 \) に対する実際スプレー距離 \(l_0 \) の比で定めら
れるスプレー距離係数である。

\[u(y) = \frac{1}{k_0 k_1} \left(B - \frac{1}{k_1^2} A y^2 \right) \]

4.2 動的塗装成形のシミュレーション

式 (5) は、定常的にも速度変化の過程においても、要因され
る厚壁精度から見て、実際の厚壁分布を実用的な精度
範囲内で表すことがわかった[13]。速度変化の過程
で式 (5) が厚壁評価に使用できる実証として、前述
の手首振幅区間において SCP 速度変化を与え、
装置速度が厚壁を考慮に入れられた実験とシミュ
レーションの対比を図 19 に示す。図 19 は、図 18
に示す \(x \) 方向を有する塗装速度を測定した塗装成形中
央の厚壁 \(u(0) \) の変化を示し、塗装がある速度変化に
応じて厚壁が変化するデータである。手首振動の部分
では、TCP に加速度 200 mm/s² を与えて、SCP で
の塗装速度とスプレー距離を変化させている。図 19
によれば、式 (5) に基づくシミュレーションと実験と
の差は、±25 μm 程度に収まっていることがわかる。
この数値は、鋼構造塗装において許容できる厚壁のば
らつきに比べて十分に小さい。以上により、図 10 (a)
に示すような塗装速度が変動または変動する振動
挙動を表すために、前述の TCP 動的振動シミュレー
ションと、式 (5) による厚壁形成の定式化を組合せる
ことによって、プレーザ・ロボット系における動作的
塗装成形シミュレーションが可能となる。図 20 に動
的塗装成形シミュレーションの一般的な構成を示す。プ
レーザ・ロボットおのおのの塗装速度が変動する振動
が入力となり、塗装方向に対する SCP での厚壁が出
力として得られる。例えば、加速度連続のプレーザ速
度パターンと手首振動による TCP 速度補償を併せた
協調制御では、塗布中央部の厚壁は図 21 のようにシ
ミュレーションできる。この結果によれば、所要厚壁
150 μm に対して、厚壁のばらつきは ±20 μm 以内で
ある。この値は、造船などの重塗装で要求される厚
のばらつき以内に収まっている。このように、塗装
成形シミュレーションは、厚壁精度つまり厚壁のばら
つきを定量的に把握するのに有効である。

5. 結 わ り に

鋼構造塗装のロボット化を目的とし、プレーザ・ロ
ボット系での動き性性能に関わる塗装成形の改善に、プ
レーザ・ロボット間の協調制御を用いる方法を論じ
た。得られた成果は次のとおりである。

（1）鋼構造塗装システムにおいて、プレーザ・ロ
ボット系の剛性不足に起因する動き性性能が、塗装品質
に悪影響を及ぼすことを、船殻ブロックの塗装ロボッ
トプロトタイプにおける実験で示した。

（2）プレーザ・ロボット系における塗装成形の改
善方法として、プレーザを制御速度波形で駆動しロボット動作で軌道補償する。協調制御による TCP 軌道生成方法を提案した。そして、協調制御方式が TCP 軌道の改善に有効であることを、シミュレーションによって示した。

（3）ロボットの手首振り動作による協調制御をプロトタイプに組込み、塗装実験を行った結果、塗膜の改善に大きな効果があった。

（4）協調制御の評価ツールとして、TCP 動的挙動のシミュレーションを作成した。シミュレーション結果は、塗装軌道で問題となる TCP 速度変動のシミュレーションに有効である。

（5）TCP の動的挙動シミュレーションと、塗装施工条件と壁厚の定量的関係を結合することにより、塗膜形成の動的シミュレーションが可能なことを示した。

本論文は、プレーザ・ロボット系の動的性能による塗膜への影響を、協調制御によるその改善について述べたものである。しかし、鋼構造塗装ロボットシステム化のためには、他にも確立すべき技術開発項目が多々ある。引き続き、これら要素技術研究と実用化開発を実施し、鋼構造塗装 CIM 化の実現に向けて尽力する所存である。

文献

7. 奥本光幸, 船舶造船学会論, 94(1997), 205-212.
11. 吉川恒夫・加藤吉善・土井利治, ロボット学会誌, 11-1(1993), 140-147.
12. 例えば, 石原晃介・今井一番・土井利治・多田義典, 最新手業塗装技術(1977), 328-331, オーセン.