はく離を有する積層はりの自由振動

有 富 正 男*1, 隈 元 健*2
小 田 美 紀 男*1, 戸 谷 眞 之*1

Free Vibrations of Laminated Beams Containing a Delamination

Masao ARITOMI*3, Takeshi KUMAMOTO, Mikio ODA and Masayuki TOYA

Kagoshima University, Dept. of Mechanical Engineering, 1-21-40, Korimoto, Kagoshima 890-0065, Japan

A study is made on the effect of delamination on the natural vibration characteristics of laminated beams. Free vibration of the simply supported beam with a delamination of arbitrary size and location is analyzed on the basis of the Euler beam theory. Axial forces induced by bending in the parts of the beam above and below the delamination are determined by regarding the cracked part as two simply supported beams hinged at both ends. Numerical results for natural frequencies, mode shapes and normal contact pressure between the delaminated layers are presented for the first four modes. Experiments are also conducted. It is shown that the analytical solutions for natural frequencies agree well with experimental results.

Key Words: Free Vibration, Vibration of Continuous System, Delamination, Laminated Beam, Natural Frequency, Mode Shape

1. 緒 言

異種材料を接着積層することによって多種多様な特性をもつ材料ができるが、積層材は面に垂直な低速度衝撃を受けと、接着部分のはく離が生じやすい。この層間はく離は積層構造物の最終破壊の主要な原因となりうるだけでなく、剛性の低下を生じ、振動特性や安定性に影響を与える。

層間はく離が積層はりの自由振動特性に及ぼす影響を調査した研究はいくつか見受けられるが、Wangらは、はく離領域の上下のはりが異なるたわみをもつと仮定して理論解析をしているが、同種材からなる積層はりの中央面から外れたはく離を有する場合、その振動モードははく離部分の上下のはりがオーバラップするという不合理をきたす。そこでMujumdarとSuryanarayananは、はく離領域の上下のはりのたわみが等しいと仮定し、しかもその部分の上下のはりの各中面に軸力が作用するとして連続条件を考え、

同種材からなる積層はりの自由振動を解析している。TracyとParoentは、オイラーはり理論を用いて中央面にあるはく離を含む対称積層はりの自由振動を解析し、実験および有限要素法で求めた固有振動数と比較して理論の妥当性を検証している。ShenとGradyは、モンションはり理論を用いて、複合積層はりの固有振動数と振動モードに及ぼす影響を調査し、実験結果と比較検討している。Hwuは、はく離を有する複合サンドイッチはりの自由振動をせん断変形と回転慣性を考慮して解析し、心材、表板およびはく離が固有振動数と振動モードに及ぼす影響を明らかにしている。

本報では、層間はく離を有する異種材積層はりの自由振動を、オイラーはり理論に基づいて解析する。そのときに、はく離部分は両端でヒンジで止められた重ねはりとみなす（587）。上下のはりのたわみは等しく仮定して理論解析を行う。そして、はく離長さやはく離位置および上下のはりのせん断弾性係数の比などが、両端単純支持はりの固有振動数と振動モードに及ぼす影響を調査するとともに、はく離部分の上下のはりの接触力の分布状態を明らかにする。また、さまざまなはく離条件の異種材からなる積層はりを製作し、振動実験を行って共振法により固有振動数を測定する。その結果
はく離を有する積層はりの自由振動

2. 理 論 解 析

2.1 基 础 式

積層はく離が積層はりの自由振動特性に及ぼす基本的な影響を調査するため、上下のはりは複合材料ではなく、等質・等方性材料とする。解析モデルを図1に示す。はりの長さをl, 長方形断面はりの幅は上下ともにb とし、厚さ、線弾性係数および密度は、上のはりについてはb₁, E₁, ρ₁, 下のはりについてはb₂, E₂, ρ₂ とする。はりの左端からLの距離にはく離中心をもつ、界面に沿った長さ2c の幅全体でわたるはく離が含まれているとし、はりの両端から左右のはく離端までの距離はそれぞれL₁, L₂ とする。いま、材料に関する諸量を式(1)のように定める。

\[\begin{align*}
I₁ &= \frac{bh₁}{12} \quad S₁ = bh₁, D₁ = E₁I₁, (j=1, 2) \\
\rho &= \rho₁S₁ + \rho₂S₂
\end{align*} \tag{1} \]

また、接着部分の合成はりの曲げ剛性D'は以下のように与えられる。

\[D' = E₁I₁ + E₂I₂ \quad \tag{2} \]

ここで、I₁およびI₂は、合成はりの中立軸に関する上下のはりの断面二次モーメントで、上のはりの上面から中立軸までの距離をe とすれば次式で表される。

\[\begin{align*}
I₁ &= \frac{bh₁}{12} + (e - h₁/2)^2bh₁ \\
I₂ &= \frac{bh₂}{12} + (e + h₂/2 - e)^2bh₂ \\
e &= \frac{E₁h₁ + E₂h₂ (h₁ - h₂)}{2(E₁h₁ + E₂h₂)} \quad \tag{3}
\end{align*} \]

はく離部分は図2のように両端はヒンジで止められた重ねはりとしてみなし、振動中上下のはりが接すると、クラック界面に分布反力q(x, t) が作用すると仮定する。はく離部分の上下のはりに作用する軸力をZ とすると、自由体図線は図2となる。次に、図1で定めた座標軸x₁とx₂み合わせ、および時間t と各諸量を

\[(\xi₁, \xi₂, \xi₃, \xi₄, \xi₅, \xi₆, \xi₇, \xi₈, \xi₉) = (x₁, x₂, x₃, c, L₁)/l \]

\[(\bar{w₁}, \bar{w₂}) = (w₁, h₁)/h₁, \rho₁ = \rho₁/\rho \]

\[D_j = D_j/D, (j=1, 2, j=1, 2) \]

\[\bar{D} = D_1/D', a = E₁/E₂ \]

\[D' = \frac{4D}{E₁b₁h₁}, q = \frac{q₁}{D'/h₁}, Z = \frac{Z₁}{D'} \]

\[\tau = \frac{l}{4} \sqrt{\frac{D'}{\rho S}} \]

と無次元化すると、各部分の合成はりの運動方程式は

\[\frac{\partial^2 \bar{w₁}}{\partial x^2} + \frac{\partial^2 \bar{w₂}}{\partial z^2} = 0, (j=1, 4) \tag{5} \]

となる。また、はく離部分の上下のはりの運動方程式は、接触力が作用する場合には

\[\bar{\rho}_₁ \bar{h}_₁ \frac{\partial^2 \bar{w}_₁}{\partial x^2} + D_1 \frac{\partial^4 \bar{w}_₁}{\partial x^4} + Z \frac{\partial^2 \bar{w}_₁}{\partial z^2} + q = 0 \quad \tag{6} \]

\[\bar{\rho}_₂ \bar{h}_₂ \frac{\partial^2 \bar{w}_₂}{\partial x^2} + Z \frac{\partial^2 \bar{w}_₂}{\partial z^2} = 0 \quad \tag{7} \]

となり、接触力が作用しない場合には

\[\bar{\rho}_₁ \bar{h}_₁ \frac{\partial^2 \bar{w}_₁}{\partial x^2} + D_1 \frac{\partial^4 \bar{w}_₁}{\partial x^4} + Z \frac{\partial^2 \bar{w}_₁}{\partial z^2} = 0 \quad \tag{8} \]

\[\bar{\rho}_₂ \bar{h}_₂ \frac{\partial^2 \bar{w}_₂}{\partial x^2} + Z \frac{\partial^2 \bar{w}_₂}{\partial z^2} = 0 \quad \tag{9} \]

と表される。ここで、はく離部分に接触力が作用していない場合も、近似的に上下のはりはほとんどずき間のない状態で振動しているとし、上下のはりのたわみは両者の場合とも等しい(w₁ = w₂) と仮定する。また、条件としては、はく離部分の運動方程式式式(6) および(7) は式(8) および(9) を加え合せると

\[\frac{\partial^2 \bar{w}_₁}{\partial x^2} + D_1 \frac{\partial^4 \bar{w}_₁}{\partial x^4} = 0 \quad \tag{10} \]

のように非常に簡単な式で表される。式(6) および(9) で含まられる軸力Z は、クラック上面の織維の伸びはクラック下面の織維の伸びに等しいという条件から

\[\begin{align*}
B \quad &\rightarrow x₁ \quad \rightarrow C \\
| &\quad \rightarrow x₂ \quad | \\
W₁ \quad &\rightarrow x₃ \quad \rightarrow x₄ \\
\end{align*} \]

Fig. 1 Geometry of a laminated beam with a delamination

\[\begin{align*}
| &\quad \rightarrow x₁ \quad | \\
M₁ \quad &\rightarrow x₂ \quad \rightarrow x₃ \quad \rightarrow M₂ \\
| &\quad \rightarrow x₄ \quad | \\
W₁ \quad &\rightarrow x₅ \quad \rightarrow x₆ \\
\end{align*} \]

Fig. 2 Free body diagram in the delamination region

\[Z = -\frac{3}{D} \frac{\partial^2 \varphi}{\partial \xi^2} \quad \text{at} \quad \xi = \xi_0 \]

(11)

と示される。式(5)および(10)より \(X(\xi) \) および \(F_0(\xi) \) は

\[X(\xi) = C_1 F_1(\xi) + C_2 F_2(\xi) \]

(13)

\[F_0(\xi) = \sin \lambda \varphi + \sin \lambda \xi \]

(14)

と与えられる。次に、本報では単純支持ありを取り上げる。このとき、境界条件は

\[X(0) = X(\ell) = 0 \]

(16)

となる。ようって、歯の傾斜角方向成分は上下の歯間大さが等しく作用方向が反対となるため、せん断力の連続条件は軸力に無関係となる。したがって、連続条件は次式で表される。

\[E = -\frac{3}{D} \frac{\partial^2 \varphi}{\partial \xi^2} \quad \text{at} \quad \xi = \xi_0 \]

(15)

が得られる。次に、式(16)の右端における境界条件、および式(17), (18)の連続条件を適用し、はく離のない合成ひずみの正規関数 \(X_0, X_1 \) の中の定数 \(C_{10}, C_{11} \) および \(C_{11} \)を消去すると

\[[B] [C] = 0 \]

(20)

の形の関係式が得られる。ここで \([B]\) は 4 行 4 列の正方マトリックスである。

3. 計算結果

式(20)から求まる振動数方程式は、すなわち

\[B = 0 \]

(21)

は超転方程式となるため、振動数パラメータ \(\lambda \) はニュートン法で求めた。数値計算は \(\varepsilon = 0.01 \sim 0.99 \) のはく離長さの範囲で行った。

3.1 振動数パラメータと軸力

固有振動数 \(f \) と振動数パラメータ \(\lambda \) の間には

\[f = \frac{1}{2\pi} \frac{\sqrt{D}}{\rho s} \]

(22)

の関係がある。ただし \(D' \) と \(\rho s \) は、異種材からなる積層ばかりの場合には上層ばかりの厚さ \(h_0 \) によって変化する量である。

図 3 は、振動数パラメータに及ぼすはく離長さの影響を、はく離の厚さ方向の位置をパラメータにとって示したものである。このとき、継弾性係数比 \(\alpha = 0.5 \) の異種材層を有する、スパン中央には離騒をもつ \(L_e = 0.5 \) 左右対称はりを取上げた。まずはく離長さが零に近づくと、\(\lambda \) はほぼ \(0, \pi, 2\pi, 3\pi, 4\pi \) の値となっていいる。また、はく離長さが長くなると、はく離の位置や振動数に関係なく、\(\lambda \) の値をあまり固定振動数は減少するが、この減少の傾向は振動数によって異なる。まず二次と三次の左右対称モードの場合、固有振動数ははく離長さが約 0.4 から約 0.2 まで、はく離のない積層ばかりの振動数とほぼ同じ値となる。このこととは、ある程度のはく離長さまでははく離の存在による固有振動数の減少が、軸力の作用によって防がられているものと考えられる。これに対して、二次と四次の左右対称モードでは両はく離長さの傾きは常に等しく、軸力が作用しないため短いのはく離長さで固有振動数の減少が始まっている。

図 4 と 5 は、はく離のスパン方向の位置がそれぞれ振動数パラメータと軸力に及ぼす影響を示したものである。このとき、軸力 \(Z_0 \) は振動モードが論じて示される場合で、最大聞き \(A \) は積層ばかりの厚さ \(h \) の 0.3 倍、すなわち \(A = h/3 = 0.3 \) として計算した。また図 2 に示すように、軸力は上層ばかりの圧縮、下層のはりを引張るものを正とする。まず図 4 により、固有
はく離を有する積層はりの自由振動

Fig. 3 Effect of delamination length on frequency parameter \((L_e=0.3, \alpha=0.5)\)

Fig. 4 Effect of spanwise location of delamination on frequency parameter \((h_i=0.3, \alpha=0.5)\)

振動数に及ぼすはく離の影響は、一次と二次の振動モードでは、はく離長さに関係なくはく離中心がモードの節の部分に位置する場合が最も小さく、モードの節の部分に位置する場合が最も大きくなる。これに対して高次振動の場合、はく離長さが短い場合には同様な傾向を示すが、はく離長さが長くなるとはく離部分がモードの節と節の両者にまたがり、はく離のスパン方向の位置が固有振動数に及ぼす影響は複雑となる。また図5の軸力と図4を比較してみると、はく離中心がモードの節にあるとき軸力は最大で固有振動数も最大となり、節にあるときは軸力は零で固有振動数は最小となっている。したがって、軸力がはく離による固有振動数の減少を抑制しているものと思われる。

図6は、はく離の厚さ方向の位置が振動数パラメー
はく離を有する横層はりの自由振動

Fig. 5 Effect of spanwise location of delamination on axial force ($\hat{h}_1=0.3$, $\alpha=0.5$, $\hat{A}=0.3$)

タに及ぼす影響を、縦弹性係数比 α をパラメータにとって示したものである。同種材の場合、はく離が横層はりの中立面にあるとき λ の値、すなわち固有振動数は最小となる(2)。そこで式(3)において $e=\hat{h}_1$ おおっと

$a=1$ のとき $\hat{h}_1=0.5$

$a\neq 1$ のとき $\hat{h}_1=(\sqrt{a-1})/(a-1)$ で示すことができる(23)

Fig. 6 Effect of thickness-wise location of delamination on frequency parameter ($2\varepsilon=0.5$, $L_c=0.5$)

が得られる。図6をみると、λ の値は上式を満足する \hat{h}_1 のとき、つまり $\alpha=5, 3, 2, 1, 0.3, 0.2$ に対して $\hat{h}_1=0.3, 0.36, 0.5, 0.64, 0.69$ のとき最小となっている。したがって、振動数パラメータ λ の値は異種材からなる場合も、はく離が横層はりの中立面にあるとき最小となることがわかる。

3.2 振動モードとクラック界面の接触力 一次振動では、はりの径間内モードの節が表れない。そのため、いずれのはく離条件においてもはく離が振動モードに及ぼす影響はほとんどみられなかった。したがって、ここでは2～4次の振動モードを取上げる。図7

は、上層と下層のはりの曲げ剛性比が $D_1/D_2\approx 0.04$ で、最大振幅が $\hat{A}=0.3$ のときの振動モードである。図7

から、はく離部分の重ねはりの曲げ剛性 D が接着部分の合成はりの曲げ剛性 D' に比べて小さいため、モードの節ははく離部分に存在する場合、最大たわみははく離部分に生じることがわかる。それに伴って、モードの節ははく離のないはりに比べてはく離の中心方向へ移動している。

次に、クラック界面に分布する接触力 q は、式(6)または(7)からわかるように時間の関数である。そこでここでは
Fig. 7 Effect of spanwise location of delamination on mode shape \(2 \varepsilon=0.3, \bar{h}_1=0.3, \rho=0.3\)

\[
\phi_n(z) = \tilde{\phi}_n(z, z_0)
\]

の時刻における接触力の分布 \(\tilde{\phi}_n\) を

\[
\tilde{\phi}_n(z, z_0) = \pm \left[\tilde{\rho} \tilde{h}_1 \lambda X_2 dX_2 + Z \frac{d^2 X_2}{dz^2} \right]
\]

で計算する。図8は、図7と同じ積層はりがスパン中央に長さ \(2 \varepsilon=0.3\) のはく離をもつ場合の接触力分布を示す。図8中の \(\bar{A}\) は最大変位を表し、振動モードの振動の実線と点線に対応する接触力分布がそれぞれの線で表されている。また振動モードの第2の線の2点で示される接触力分布を示す。計算に用いた積層はりは、上層はりの曲げ剛性が下層はりの曲げ剛性よりもかなり小さいので、接触力はいずれの場合も、鉛直下方へたわむたはく離領域のみに発生している。まず一回振動の場合は、接触力の分布ははば一定で、その値も小さい。また三次と四次の分布図より、接触力は鉛直下方でのモードの誘で最大となることがわかる。さらに、最大振幅の大きいほど、接触力の値も大
はく離を有する併合付近の自由振動

きくなるとともに、高次振動になるほど、式(25)の右辺第1項の慣性力が大きくなり、接触力の値は大きくなる。HuとHwuは、接触力の分布は一定と仮定してはく離を有する複合サンドイッチはりの自由振動を解析しているが(10)。この仮定は一次振動の場合にのみ成立することがわかる。

4. 実験

解析結果の妥当性を検討するため、20種類の試験片を製作して微小振幅の振動実験を行った。

4-1 試験片と実験要領 長さ320mm、幅30mmのりん青銅とステンレスばね鋼を、シアノアクリレート系接着剤で接着して試験片を製作した。そのときのはり長日本語はりにはステンレスばね鋼を使用し、個別はりの厚さが1mmとなるようにさまざまな厚さの2つの材料を組合せた。また引張り試験により、りん青銅とステンレスばね鋼の線弾性係数の値は120GPaと182GPaとなり、密度はそれぞれ8.78g/cm³と7.77g/cm³である。

ところで、所定のはく離長さとはく離位置をもつ試験片を作成するため、まず2枚の透明なアルミ板を使用し、接着剤を未接着部分へ浸透することを考慮した。接着剤の適切な貼付位置と量を試行錯誤して取得した。さらに、この方法でりん青銅とステンレスばね鋼を接着し、重いものを24時間経過後、はく離端先付近と接着部分を切断して調査し、接着部分にあるが、しばしば所定のはく離が得られる接着方法を確立した後、試験片製作に取かかっ

両端単純支持ばりの境界条件を満足させるため、面内不動支持は試験片を上下2枚のロールで挟んでポルトに固定し、面内可動支持は軸方向の移動が可能となるように図9のごとくさらにローラにてペアリングを取付けた。振動実験は次のようにして行った。まず、発振器からの正弦波をバーワーハンプで增幅して磁石に入力し、試験片のモードの波の位置を増幅する。このとき、加振振動数を変化させ、バーワーハンプの波形とレーザー変位計の出力電圧をメモリーハイコーダに取り込み、リサージュ図形を描かせて共振点を検出し、固有振動数を計測する。また測定された変位波形はメモリーハイコーダに入力される。なお、今回使用した電磁石では三次の以上の振動実験を行うことはできなかった。

4-2 実験結果と考察 まず、実験装置が両端単純支持の境界条件を満足していることを確認するため、厚さ1mmのステンレスばね鋼はりりん青銅ばね鋼はりの振動実験を行った。表1の上2欄は、それらの固有振動数の測定結果と理論値を比較したものであり、両者の値は非常によく一致している。したがって、実験装置の両支持部に挟まれた試験片は、両端単純支持の境界条件を満足しているものといえる。次に接着層の影響を調べるため、0.3mmのりん青銅と0.7mmのステンレスばね鋼を完全接着させた個別はりの固有振動数を測定した。その結果が表1の一番下の欄に示しており、実験値が理論値よりも一次振動では約0.5%、二次振動でも約1.4%高くなる程度であり、今回の振動実験では、試験片の接着層が固有振動数の値にほとんど影響を与えないことが確認できる。

図10は、はく離部にはく離長さ、はく離のスパン方向の位置および厚さ方向の位置をとって、固有振動数の実験結果と理論曲線を比較したものである。まず図10(a)を見ると、実験で得られた固有振動数の値は、はく離長さが長くなるにつれて理論曲線とほぼ同じ傾向で減少している。図10(b)では、実験値と理論値の誤差は最大で約3.3%(二次振動のLc=0.45のとき)と非常に小さい。図10(c)では、はく離の厚さ方向の位置が変わると固有振動数の値はかなり変化するが、実験値は理論曲線によく一致している。なお、図10(c)でk₁=0のときがステンレスばね鋼はりの、k₁ =1のときがりん青銅ばね鋼の固有振動数である。

以上のことより、層ずりの面内はく離の長さおよび位置が変化した場合でも、理論解析で得られた固有振動数は実験値とよく一致し、本報で用いた解析モデルの妥当性が確認できる。

5. 結言

本報では、はく離を有する異種材仮層はりの自由振

Table 1 Natural frequency (Hz)

<table>
<thead>
<tr>
<th>Specimen</th>
<th>First mode</th>
<th>Second mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exp.</td>
<td>Theory</td>
</tr>
<tr>
<td>Stainless spring steel (k₁=1mm)</td>
<td>21.7</td>
<td>21.5</td>
</tr>
<tr>
<td>Phosphor bronze (k₁=1mm)</td>
<td>16.4</td>
<td>16.4</td>
</tr>
<tr>
<td>Perfect laminated beam (k₁=0.3)</td>
<td>19.2</td>
<td>19.1</td>
</tr>
</tbody>
</table>

Fig.9 Movable support
はく離れを有する積層はりの自由振動

（a）Effect of delamination length ($L_c=0.5, h_i=0.3$)

（b）Effect of spanwise location of delamination ($2\varepsilon=0.4, h_i=0.3$)

（c）Effect of thickness-wise location of delamination ($2\varepsilon=0.4, L_c=0.5$)

Fig. 10 Comparison between experimental and theoretical frequencies ($a=0.66$)

動を理論解析し、はく離れが固有振動数、振動モード、はく離れ部分の上下のとりに生じる軸力およびクラック界面に作用する接触力に及ぼす影響を調査した。またはく離れ条件の異なる試験片を製作して振動実験を行い、測定した固有振動数と理論結果を比較して解析モデルの妥当性を検討した。得られた結果を要約すると次のとおりである、

（1）理理论により得られた固有振動数は実験結果とよく一致し、解析モデルの妥当性が確認できた。

（2）はく離れ部分の上下のとりに作用する軸力は、はく離れによる固有振動数の減少を抑制する傾向にある。

（3）クラック界面に作用する接触力の分布状態が明らかになった。

（4）断面が長方形で幅が等しい2層の異種材積層はりでは、はく離れ積層はりの中立面にあるとき振動数パラメータの値は最小となる。

最後に、本研究は文部省科学研究費補助金の援助を受けて実施されたことを付記し、謝意を表する。

文 献

（7）戸谷覚之・井村健・原明健・有富正男, 機論, 60-578, A (1994), 2266-2272.