負荷トルク変動条件下でのトラクションドライブの性能評価*
（第2報、負荷トルク変動時のローラの損傷評価）

林 信之**，東崎 康嘉**
松 本 将**，吉 田 孝 文**

The Study on Tribological Characteristic of Traction Drives at Non-Steady Condition

Noriyuki HAYASHI**，Yasuoshi TOZAKI，
Susumu MATSUMOTO，Takafumi YOSHIDA

**Mitsubishi Heavy Industries, Ltd., Nagasaki Research and Development Center，
5-717-1, Fukahori-Machi, Nagasaki, Nagasaki, 851-0392 Japan

In this study the influence of slip ratio, contact pressure and slip time on the seizure of steel rollers was investigated experimentally by two roller type tester and theoretically by non-steady thermal elastohydrodynamic lubrication (THL) theory. Following conclusions were obtained. (1) The slip time influences on the critical condition for seizure. Long continuous slip causes the seizure easily. (2) Break of the oil film between the rollers more strongly effects on the occurrence of seizure than the temperature of the rollers. (3) By the THL calculation, it is possible to estimate the occurrence of the break of oil film between the rollers.

Key Words: Machinery, Tribology, Numerical Analysis, Traction Drives, Seizure

1. 緒言

トラクションドライブは、歯車装置などに比べ低騒音、低振動である等の利点から、静音性を要求される大型機器の増減速機への適用が期待されている。しかし、トラクションドライブは油膜のせん断力を利用して動力伝達を行うため、歯車装置と同等の動力を伝えるためには装置が大型にならざるを得ないという欠点がある。また、機器によっては負荷トルクが変動し、瞬間に極めて大きなトルクが作用する場合もある。そのような過大なトルクを基準にトラクションドライブの設計をすると、ともに大型の機器がさらに大型化するという問題が生じる。そこで著者らは、トラクションドライブに過大な変動トルクが作用した場合の伝達特性を解析する手法を開発し、光学干涉法を利用した実験との対応を確認した**。この手法により、過大な負荷トルクが作用した場合の動力伝達特性、油膜厚さ変動などは把握できたものの、ローラ間ですべりが生じた際に発生する発生発生状況を把握できていない。そのため、損傷防止のために許容できるすべりの上限が分かっていない。

従来の研究では、焼き付きの発生は摩耗面温度に依存するとの考え方が一般的であり**，摩耗面温度を支配するPV値(面圧とすべり速度)と温度を用いた損傷発生限界の

2. 変動すべり発生時の焼き付き限界把握試験

2.1 試験方法 すべり時間をパラメータとした焼き付き限界把握試験に用いた二軸型トラクションドライブ試験装置の構成を図1に示す。本試験装置は、2つのローラを別々のモータで駆動することが可能であり、ローラ間で任意のすべりを発生させることが可能である。また、動圧(低速度)のモータをACサーボモータで駆動し、サーボモータの回転速度をプログラムコントローラを利用して制御することにより任意の時間、任意のすべりを発生させる試験を行うことが可能である。

今回の試験では各ローラの回転数、ローラ間の荷重、伝達トルクの他、ローラ温度、ローラ間接触電気導通の計測を行った。ローラ温度は、試験中にローラ表面にシース径
Table 1 Test condition

<table>
<thead>
<tr>
<th>Test condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>1.2, 2.5, 6.2 kN</td>
</tr>
<tr>
<td>Maximum contact pressure</td>
<td>0.7, 1.0, 1.5 GPa</td>
</tr>
<tr>
<td>Rotating speed of the drive roller</td>
<td>2200 rpm (8.1 m/s)</td>
</tr>
<tr>
<td>Maximum slip ratio</td>
<td>Slip ratio, Maximum slip ratio</td>
</tr>
<tr>
<td>Slippage time</td>
<td>2, 4, 8, 16, 32, 64, 128 sec</td>
</tr>
<tr>
<td>Material of the rollers</td>
<td>JIS SNC420 (Carbonized, Hardness: 760HV)</td>
</tr>
<tr>
<td>Lubricant</td>
<td>Commercial traction oil</td>
</tr>
<tr>
<td>Supplying rate of lubricant</td>
<td>1.2 cm³/sec</td>
</tr>
<tr>
<td>Temperature of lubricant</td>
<td>40±2°C</td>
</tr>
</tbody>
</table>

Fig. 1 Schematic of test apparatus

(a) Drive roller (b) Driven roller

Fig. 2 Shape of roller specimens

0.5mmの熱電対を軸に付けて計測した。また、接触電気導通は相対速度の軸を試験装置の軸から電気的に絶縁し、ローラ間に電流を流した際の電圧を計測することにより求めた。

試験に用いたローラの形状を図2に示す。ローラの外径は70mmとし、接触幅が約2.5mmとなるよう従動ローラにクラウニングを設けた。また、ローラの表面あらさは微小すべりの際に十分な油膜形成がなされるよう、Rms（表面あらさのrms値）が0.2μm以下になるように仕上げた。なお、供試したローラの材質はニッケルクロムモリブデン鋼（SNC420）であり、外周面を浸油焼入処理しビッカース硬度を約760としました。

試験条件を表1に示す。ローラ間の接触面圧は3通り変化させた。また、駆動側（高速側）のローラの回転速度を一定とし、従動側（低速側）の回転速度を減速させてすべりを与えた。焼付き発生条件を見い出すため、最大すべり率を最高100%まで、すべり時間最大128秒まで変化させた。

Fig. 3 Relationship between maximum slip ratio and traction coefficient at maximum slip ratio

NII-Electronic Library Service
負荷トルク変動条件下でのトラクションドライブの性能評価（第2報）

Fig. 4 Relationship between maximum slip ratio and ratio of resistance between rollers at maximum slip ratio

せ，焼付き試験を実施した。なお，供試油は市販のトラクションオイル（40℃における動粘度108mm²/s）を用いた。

2.2 試験結果と考察

2.2.1 変動すべり作用時の動力伝達特性および油膜破断発生条件

まず，ローラ間で焼付きが生じない場合のトラクションドライブの動力伝達特性と，焼付き発生に影響すると考えられるローラ間油膜破断発生条件について調べた。

図3はローラ間の最大すべり率（＝（駆動ローラ周速度-従動ローラ周速度）/駆動ローラ周速度）と最大すべり率時のトランジション係数（＝ローラ間トランジショング力/荷重）の関係を，接触面圧をパラメータとして示したものである。図3中ではすべり時間が異なるものをプロット点の形で示している。また，図3には焼付きが生じなかった場合のデータのみを示している。図3より，ローラ間で発生するトランジション係数はすべり時間にはほとんど依存せず，最大すべり率の増加とともに減少する傾向にある。また，トランジション係数は面圧の増加とともに増加する傾向にあった。

通常すべり率が過大になると，トランジション係数は油のせん断発熱にともなう粘度低下により減少する傾向にあるが，面圧0.7GPaの場合には，最大すべり率60%以上で最大すべり率の上昇とともにトランジション係数がやや増加した。この理由について，現状はっきりしたものではない。しかし，圧縮原因として，面圧が低い場合には圧力増加にともなう油の粘度上昇が少なく，トランジション係数も大きくなりにくい。その結果，後述するが，最大すべり率増加による油膜破断にともなうトランジションの増加が，面圧が高い条件より顕著に現れたことが考えられる。

図4はローラ間の最大すべり率と最大すべり率時のローラ間電気導通度の関係を，接触面圧をパラメータとして示したものである。ここで，ローラ間電気導通度とは計測されたローラ間電圧を油膜分離時のローラ間電圧にて除した値であり，油膜分離時は1，油膜破断時は0となる油膜形成状態を示す指標である。図4中ではすべき時間が異なるも
のブロック点の形を変えて示している。図4より電気導通度0, すなわち油膜破断の発生は接触面圧、すべり時間に依存しており、接触面圧が高いほど、またすべき時間が長いほど油膜破断を生じやすいことがわかった。また、低圧面で最大すべき率が増大した場合にトラクション係数が増大した条件では、油膜の破断が発生していた。

2.2.2 変動すべき作用時における焼きつき発生条件

焼き付が生じなかった場合と生じた場合のすべき率、トラクション係数の経時変化を図5に示す。焼き付が生じない場合、トラクション係数は最大すべき率の時に極値値となり、微小すべき時に0.1程度の最大値をとる。微小すべき時にトラクション係数が増大するのは、トラクション油のセント断により発生するため、すべきが小さい場合にすべき率の増加とともにトラクション係数が増大するが、すべき率が過大になると、油のセント断発熱によりトラクションが減少することによる。一方、焼き付が発生すると、すべき率が大きい状態で急激にトラクション係数が増大する。図5(b)からわかるように、焼き付発生時のトラクション係数（時刻約13sec）は微小すべき時の最大トラクション係数（時刻約5sec）を上回る。

図6は焼き付前と焼き付後のローラの断面形状を示したものである。焼き付発生により、主に縦に近い部分で従来ローラ側から軸向ローラ側への移着を生じており、移着量は5μmを超えている。縦側で移着量が多くなっているのは、ローラにクラウンを設けたものの、やや縦側での接触面圧が高くなっていたために推定される。一定の状態になると、微小すべき状態でも油膜分離はできない。

図7は最大すべき率と接触面圧を両軸とする図に焼き発生条件をプロットしたものである。図7中ではすべき時間による焼き発生条件の違いをプロット点の形を変え示している。また、図7中に破線ですべき時間の増加にともなう焼き発生領域の境界の変化を示した。図7より、高PV値の場合は4秒程度の短いすべき時間でも焼き付が生じ、すべき時間が増加するとほど焼き付が生じるPV値の範囲が拡大することがわかる。

図8は接触面圧をパラメータに、焼き発生条件をすべき時間と最大すべき率を2軸とする図上に示したものである。図8より、接触面圧が1.5GPaで焼き付が発生した条件は、面圧比グラフ上ではほぼ直線となった。現状この直線の傾斜の物理的な意味は理解できていないが、焼き付発生に対してはPV値のみならずすべき時間も重要な因子になること、またPVマップと同様すべき時間を軸としたマップ上に焼き発生領域を表現できる可能性があることがわかった。

焼き付発生には、PV値やすべき時間と同様に、ローラ温度も影響する可能性がある。そこで、図9に示すように、ローラ温度と電気導通度を両軸とする図に焼き付が発生した
Table 2 Condition of calculation

(a) Drive condition

<table>
<thead>
<tr>
<th>Condition No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>1.2kN</td>
<td>2.5kN</td>
<td>8.2kN</td>
<td>6.2kN</td>
</tr>
<tr>
<td>Maximum slip ratio</td>
<td>95%</td>
<td>75%</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>Slip time</td>
<td>32sec</td>
<td>128sec</td>
<td>8sec</td>
<td>16sec</td>
</tr>
</tbody>
</table>

(b) Size and property of roller

<table>
<thead>
<tr>
<th>Diameter</th>
<th>70mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface roughness</td>
<td>0.12μm Rms</td>
</tr>
<tr>
<td>Elastic modulus</td>
<td>210GPa</td>
</tr>
<tr>
<td>Poison ratio</td>
<td>0.3</td>
</tr>
</tbody>
</table>

(c) Property of lubricant

Thermal conductivity	0.13W/m°C
Specific heat	1884J/kg°C
Density	0.9kg/m³
Eyrie stress	8MPa

点をプロットした。図9より、焼付き発生は必ずしもローラ温度とは相関性がない。すなわち、ローラ温度が十分上昇しない場合でも、電気導通度が0、つまり油膜が破壊した場合には焼付きが発生し得るということがわかった。

今回の試験から、焼付き発生はPV値、すべり時間の影響を受けるが、必ずしもローラの温度の影響は受けないと見える。すべり時間はローラの温度以外にも、ローラ表面に形成される油の境界膜や化学反応層、酸化層の摩耗に対しても影響すると考えられる。すなわち、温度が上昇しても境界膜などに保護されていれば焼付きにはならないが、温度が上昇しても境界膜などが摩耗すれば、金属同士が直接接触して焼付きに至る可能性がある。今回は焼付きデータが少なく定量的なデータ整理は困難である。現象解明のためには、今後焼付きと表面層の摩耗に関する検討が必要と考える。

3. 非定常THL解析による焼付き発生条件の予測

実験の結果、油膜破断が焼付き発生の必要条件となって

点をプロットした。図9より、焼付き発生は必ずしもローラ温度とは相関性がない。すなわち、ローラ温度が十分上昇しない場合でも、電気導通度が0、つまり油膜が破壊した場合には焼付きが発生し得るということがわかった。

今回の試験から、焼付き発生はPV値、すべり時間の影響を受けるが、必ずしもローラの温度の影響は受けないと見える。すべり時間はローラの温度以外にも、ローラ表面に形成される油の境界膜や化学反応層、酸化層の摩耗に対しても影響すると考えられる。すなわち、温度が上昇しても境界膜などに保護されていれば焼付きにはならないが、温度が上昇しても境界膜などが摩耗すれば、金属同士が直接接触して焼付きに至る可能性がある。今回は焼付きデータが少なく定量的なデータ整理は困難である。現象解明のためには、今後焼付きと表面層の摩耗に関する検討が必要と考える。

3. 非定常THL解析による焼付き発生条件の予測

実験の結果、油膜破断が焼付き発生の必要条件となって
の値を用いた。なお、潤滑油の特性応力は二円筒トラクションドライブの伝達特性から求めた。

図10は試験で得られた焼き付着前までのトラクション係数のすぺリ率に対し変化と非定常THL解析から求められたトラクション係数を比較したものである。今回は特に焼き付
اورが発生しやすい高面圧条件下でのトラクション係数が良く
合うように油の特性応力を選んだため、低面圧(0.7GPa)で
のトラクション係数は試験と解析で差を生じている。この
原因は明確ではないが、木村は特性応力が面圧の変化によ
り変化するデータを示しているk)。今回の供試油の特性応力が面圧の増加とともに増加する傾向にあったとすると、
計算でも特性応力を一定としていたため、低面圧条件下でト
ラクション係数を過大に評価してしまう可能性がある。

トラクション係数が実験と解析で良く対応し、かつ焼き付
き発生の危険性が増す高面圧条件(1.0GPa, 1.5GPa)での
ローラ間の最小油膜厚さを解析し、A値(=(ローラ間最小
油膜厚さ)/(同軸ローラのRrms))^2と
電気導電度の関係を調べた結果を図11に示す。
図11よ
り焼き付け発生の危険性がある電気導電度0となる領域は理
論的に求めたA値が1.5以下になる領域とはほぼ対応する。

4. 結言

変動すぺリが生じた場合のトラクションドライブの焼き付
き発生条件を検討するために、すぺリ時間をパラメータと
した二円筒型トラクションドライブの焼き付き試験および非
定常THL解析を実施し、以下の結果を得た。

(1) ローラ間の油膜形成状態や焼き付けの発生はすぺリ時
間の影響を受ける。同一接触面圧条件であれば、すぺリ時
間が長いほど、低いすぺリ率で油膜破断、焼き付が発生する。

(2) 焼付きはローラ温度が十分上昇する前に生じる場合が
ある。焼き付け発生の必要条件はローラ間の油膜破断である。

(3) 油膜破断の発生は、理論的に求められたローラ間最小
油膜厚さを用いたA値が1.5以下になった場合に生じる。ま
た、A値が2以上であればローラ間に十分な油膜が形成さ
れ、焼き付き発生の危険性はないものと考えられる。

以上の結果から、すぺリを許容したトラクションドライ
ープの設計を行う場合には、最大すぺリ発生時でも油膜厚さ
がローラ表面合成あらさの倍以上で確保できるよう許
容すぺリ率、すぺリ時間、ローラ表面仕上げなどを決定す
る必要がある。