身体特性を考慮した立位水平面作業域の設計要因*

金子智彦*1、川上満幸*2、鶴岡隆好*3

A Design of Horizontal Work Area on Standing Posture in Considering Worker’s Characteristics

Tomohiko KANEKO, Mitsuyuki KAWAKAMI*4 and Takayoshi UKAI

*4 Tokyo Metropolitan Institute of Technology, Dept. of Production and Information Systems, Asahigaoka, Hino, Tokyo, 191-0065 Japan

This paper presents a proposal to improve productivity and provide a more reasonable work area. The method of research is to observe and measure the motion characteristics of a typical standing worker doing “get and place.” The valuation index used in the experiment is obtained by measuring the characteristics of subjects (height, shoulder width and the height of Radial above the floor), the motion locus of Acromial, the Angular velocity of Elbow, the motion time and the amount of myoelectric discharges. The results lead to an experimental formula expressing the relation between the motion time, height of work desk and Angle of elbow. This paper also showed that a height of work desk and angle of elbow, which takes into consideration the difference of a physique of the worker, could minimize the motion time resulting in a more efficient and reasonable work place.

Key Words: Productivity, Motion Locus, Motion Time, Angular Velocity, Myoelectric Potential, Characteristics of Subjects

1. 緒言

我が国はバブル経済の崩壊後、経済状況は低迷を続け、企業の設備投資も今なお明るい材料を見出せない状況にある。これらの社会的背景において重要なことは、ローコストの機械設備をいかに有効に活用するか、すなわちマシンシステムの適性を最大限にまで活用することである。マシンシステムの適性という点から考えると最近の10～20年間の労働者構成の中高齢者比率が相対的に身長7.9cm、体重1.8kgの差異が認められているから、これらの身体特性の違いは作業者が同一の職場で勤務に従事することに不合理な点を生じさせている。例えば、家電メーカーにおける冷蔵庫製造ラインなどで、小形（幅47×奥行き43×高さ83cm）から大形（幅80×奥行き53×高さ178cm）までの製品を同一ラインで組立しているケースが多い。このような場合、作業者の身体特性（特に身長）の違いは、無理な作業姿勢による作業負担の増大、ならびに作業労能の低下に及ぼす影響が大と考えられる。特に立位姿勢において、作業台の高さは作業者の作業姿勢を決める大きな要素であり、作業能率の向上と作業負担の軽減を目指した作業システムの設計要因として、作業者の体格に合せた適正な高さに設定することは極めて重要であると考えられる。人間の動作研究については、Mandelによる動作とその速度の関係に関する研究**、宮代、Fittsらによる人間の動作速度特性、加速度変動ならびに上肢運動と動作時間に関する研究***、また作業者一人当たりが受けもつ適正作業量に関する研究****などがある。これらの研究対象にしている作業域は、ギルプレスの慣者した動作経済の原理からも上記の要因を考慮していない。そこで本研究では、労働集団型の作業システムを対象にし、立位姿勢における適正な作業台の高さと水平面作業域の基本的な設計要因を求めるために、身体特性の違いによる動作特性が、作業能率と作業負担に与える影響について考察を行う。

E-mail: kawakami@mntt.ac.jp

---337---
2. 研究方法

研究の方法は立位水平面作業域における適正作業域の設計要因をえるため、ヒトの身体特性の違いが動作特性に与える影響を考察するための実験による。実験の評価指標は単純な取置動作を対象とし、肩甲骨の変位（動作軌跡）、肘の角速度、動作時間ならびに筋放電量である。

3. 実験概要

3.1 実験の内容 本実験の条件を表1に示す。表1の中で実験の対象とした作業負荷は、重量が500gになっているが、この点はMTM基準（取扱い重量が1kg以内は補正係数1.00）により測定している。また実験の対象とする作業台の水平面作業域を図1に示す。図1に示したように、動作の始点となる基準点は体の中心（へそ）に位置するようにする。対象作業の目標設定点は、基準点からX軸正方向に20cmの位置を基準としてX軸に対してそれぞれ70°、90°、110°となる直線と、基準点からの距離がそれぞれ30cm、40cm、50cmとなる円周が交差する点に直径8cmの○枠をそれぞれ設ける。被験者は基準点から○枠の目標設定点間の往復動作を行う。

表2は本実験における被験者12人の身長、上肢長、肩幅ならびに床面から前骨点までの高さ（以下肘の高さとする）を測定し、肘の高さの違いからの3グループ（L、M、S）に分類したものを示している。作業台の床面からの高さ（以下作業台の高さとする）は、表2に示すように各グループの肘の高さ（平均値：cm）をMiddle、15cm低くした高さをLow、15cm高くした高さをHighとして、それぞれ定義し実験の条件とする。

3.2 CP（Control point）測定の考え方 本研究の評価指標である目標点の変位ならびに肘の角速度を測定するために表1に示した三次元動作解析装置を使用する。この装置では三次元座標を算出するためにコントロールポイントの測定が必要になる。一般にコントロールポイントは画面の中心に位置する。

Table 1 Condition of experiment

<table>
<thead>
<tr>
<th>Work Load</th>
<th>Shape: A right cylinder, Weight: 500g (diameter 65mm × 167mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Position</td>
<td>Total: 61 combination (9 × 3 × 3)</td>
</tr>
<tr>
<td></td>
<td>9 combination of horizontal (showed Fig. 1)</td>
</tr>
<tr>
<td></td>
<td>3 combination of vertical: High, Middle, Low (showed Table 2)</td>
</tr>
<tr>
<td>Number of repetitions</td>
<td>More than 1 times every 1 condition</td>
</tr>
<tr>
<td>Subjects</td>
<td>9 healthy men and 3 healthy women</td>
</tr>
<tr>
<td></td>
<td>Year: 22 ~ 25 years old</td>
</tr>
<tr>
<td></td>
<td>Height: 156 ~ 183 cm</td>
</tr>
<tr>
<td></td>
<td>Arm length: 60 ~ 75 cm</td>
</tr>
<tr>
<td></td>
<td>Shoulder width: 40 ~ 45 cm</td>
</tr>
<tr>
<td>Myoelectric Potential</td>
<td>Trapezius muscle, Biceps brachii muscle, Deltoide muscle and Brachioradialis muscle (showed Fig. 2)</td>
</tr>
<tr>
<td>Control Point</td>
<td>Space: X:105cm × Y:120cm × Z:80cm</td>
</tr>
<tr>
<td></td>
<td>points: 46 points (4 × 4 × 4)</td>
</tr>
</tbody>
</table>

Table 2 Characteristics of subjects

<table>
<thead>
<tr>
<th>Group</th>
<th>Average of Height (cm)</th>
<th>Average of shoulder width (cm)</th>
<th>Average of Radial above the floor (cm)</th>
<th>Height of work desk</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>157.3</td>
<td>39.8</td>
<td>99.0</td>
<td>High 115cm</td>
</tr>
<tr>
<td>M</td>
<td>169.0</td>
<td>42.0</td>
<td>105.0</td>
<td>Middle 120cm</td>
</tr>
<tr>
<td>L</td>
<td>179.5</td>
<td>43.0</td>
<td>111.0</td>
<td>Low 125cm</td>
</tr>
</tbody>
</table>

Fig. 1 Work area of experimental object

Fig. 2 The measurement point of viewing posture and Myoelectric Potential
トロールポイントの数が多いほど、実測値との標準誤差（σ）は小さくなるので望ましいと言われている。本実験においては、表1に示したように実験の対象作業が遂行される空間に、X=105 cm、σ=0.05、Y=120 cm、σ=0.2、Z=80 cm、σ=0.1の三次元座標系を設定する。

3.3 測定箇所 図2は三次元動作解析装置により撮影した画像をデジタイズする際の身体セグメント端点と、筋放電測定部位を示したものをである。身体セグメント端点は、Dactylium（指先点）、Ulnar（尺骨茎突起）、Radial（橈骨茎突起）、Acr unsupported（肩峰点）の4部位とし、デジタイズするときの基準となるマークを取付測定する。なお肘の角度は、背屈方向の動作を正、掌屈方向の動作を負として測定する。

筋放電の測定部位は、Trapezius（背縦筋）、Deltoid（三角筋）、Biceps brachi（上腕二頭筋）、Brachioradialis（腕前腕筋）の4部位とし、筋筋絡に沿って電極間を持ってる一方表面電極により測定する。なおアース電極は、測定箇所の影響を受けないように配慮する。

4. 結果と考察

4.1 肩峰点の変位 表3は、動作方向と作業台の高さの違いが、グループA、M、Sの肩峰点の時間的推移（変位）に与える影響をみるために3元配置（要因A：動作方向（Right、Center、Left）、要因B：台の高さ（High、Middle、Low）、要因C：体格差（L、M、S））による分散分析を行った結果である。表3から次のことがわかる。すなわち動作距離30 cmでは、要因A、Bにおいては危険率5%水準以上で有意差が認められるが、要因Cにおいては危険率5%水準においても有意差は認められなかった。つまり体格の違いが肩峰点の変位に与える影響は小さいといえる。

また動作距離40 cm、50 cmにおいては、要因A、B、Cいずれにおいても危険率1%水準で有意差が認められた。このことから動作距離が40 cm以上になると、体格の違いが肩峰点の変位に影響を与えていていることがわかる。図3は作業台の高さLowにおけるグループA、M、Sの肩峰点の変位を示したものである。図3から、肩峰点の変位は、動作方向がRight→Center→Leftになるにしたがって大きくなり、動作距離が長くなるに比例して、その傾向は大きくなる。特にグループSはこの傾向が強いかかった。この点は、被験者の動作が手首動作だけでなく、上体を前方に傾ける内容になっていることに起因し、動作距離が40 cm以上になると、体格の違いが肩峰点の変位に与える影響は顕著であるといえる。

4.2 動作速度 表4は、動作方向の違い、作業台の

<table>
<thead>
<tr>
<th>Table 3</th>
<th>w-way analysis of variance in case of displacement of Acr polymedial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>F</td>
</tr>
<tr>
<td>30cm</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>A&B</td>
</tr>
<tr>
<td></td>
<td>A&C</td>
</tr>
<tr>
<td></td>
<td>B&C</td>
</tr>
<tr>
<td></td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>40cm</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>A&B</td>
</tr>
<tr>
<td></td>
<td>A&C</td>
</tr>
<tr>
<td></td>
<td>B&C</td>
</tr>
<tr>
<td></td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>50cm</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>A&B</td>
</tr>
<tr>
<td></td>
<td>A&C</td>
</tr>
<tr>
<td></td>
<td>B&C</td>
</tr>
<tr>
<td></td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

**：A significant level （P<0.01），*：A significant level （P<0.05），F：Factor, S：Sum of Squares, V：degree of freedom, V：Variance, ρ：contribution

Fig.3 The displacement of Acr polymedial in case of Low work place

—339—
Table 4 3-way analysis of variance in case of Angular Velocity

<table>
<thead>
<tr>
<th>Distance</th>
<th>F</th>
<th>S</th>
<th>φ</th>
<th>V</th>
<th>F-value</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>30cm</td>
<td>A</td>
<td>9885.63</td>
<td>2</td>
<td>4942.81</td>
<td>9.7806**</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>7671.19</td>
<td>2</td>
<td>3355.59</td>
<td>7.5897*</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>101233.85</td>
<td>2</td>
<td>5062.16</td>
<td>1001.158**</td>
<td>69.8</td>
</tr>
<tr>
<td></td>
<td>A×B</td>
<td>349.04</td>
<td>4</td>
<td>87.26</td>
<td>0.1727</td>
<td>-1.2</td>
</tr>
<tr>
<td></td>
<td>A×C</td>
<td>10098.37</td>
<td>4</td>
<td>2502.09</td>
<td>4.9510*</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>B×C</td>
<td>10424.48</td>
<td>4</td>
<td>2605.87</td>
<td>5.1564*</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>4042.96</td>
<td>8</td>
<td>505.37</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>143614.52</td>
<td>26</td>
<td>10034</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 3-way analysis of variance in case of myoelectric potential

<table>
<thead>
<tr>
<th>F</th>
<th>S</th>
<th>φ</th>
<th>V</th>
<th>F-value</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>95.4906</td>
<td>2</td>
<td>47.705</td>
<td>0.966</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1920.5023</td>
<td>2</td>
<td>960.251</td>
<td>19.451**</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>719.2813</td>
<td>2</td>
<td>359.641</td>
<td>7.285**</td>
<td></td>
</tr>
<tr>
<td>A×B</td>
<td>16.4077</td>
<td>4</td>
<td>4.102</td>
<td>0.083</td>
<td></td>
</tr>
<tr>
<td>A×C</td>
<td>14.3177</td>
<td>4</td>
<td>3.579</td>
<td>0.073</td>
<td></td>
</tr>
<tr>
<td>B×C</td>
<td>47.0333</td>
<td>4</td>
<td>11.758</td>
<td>0.238</td>
<td></td>
</tr>
<tr>
<td>A×B×C</td>
<td>35.7246</td>
<td>8</td>
<td>4.466</td>
<td>0.090</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>5331.697</td>
<td>108</td>
<td>49.368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8180.774</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** A significant level (P<0.01), * A significant level (P<0.05), F: Factor, S: Sum of Squares, φ: degree of freedom, V: Variance, ρ: contribution

の高さの違いならびに体格の違いが肘の角速度に与える影響について、作業距離ごとに三元配置（要因A：動作方向, 要因B：作業台の高さ, 要因C：体格）による分散分析を行った結果である。表4から次のことがわかる。すなわち、要因Aについてはいずれの作業距離においても危険率5%水準以上で有意差が認められ、要因Cにおいては危険率1%水準で有意差が認められた。このことから、動作方向の違いならびに体格の違いは肘の角速度に影響を与えていることがわかる。特に表4に示した寄与率(ρ)に着目すると、すべての作業距離において要因C、すなわち体格の違いによる影響が大きくといえる。

図4は作業台の高さLowにおけるグループL, M, Sの肘の角速度を各条件別にまとめたものである。図4から動作距離が長くなるにつれて体格の違いによる影響が顕著に現れのあることがわかる。特に作業距離50 cmのLeft方向における角速度は、グループ間での違いが顕著に現れている。グループIは作業開始からスムーズに等加速度運動をしているのに対し、グループMは作業開始直後以后の方向に一度加速してから約150 m/s後に正方向の加速度に移行していることがわかる。さらにグループSについてはその傾向が大きいという。この点は、被験者は作業開始と同時に上体を前方に傾ける姿勢変化に起因していると考えられる。つまりグループM, Sは作業開始直後に取組動作を遂行しやすい姿勢に上体を修正していると推定される。

4-3 筋放電量 一般的に筋放電量の測定データは個人差が大きく、傾向があり、体格の違いによる筋放電量の比較は難しいとされている[11]。したがって本論では動作方向の違いと、作業台の高さの違いならびに動作距離の違いが、本実験における4箇所の測定部位に与える影響について考察する。

表5は作業条件の違いが筋放電量に与える影響をみるために、三元配置（要因A：動作方向, 要因B：作業台の高さ, 要因C：動作距離）による分散分析を行った結果である。表5から次のことがわかる。すなわち、要因Aにおいては有意差が認められず、要因B
および要因Cにおいては危険率1%水準で有意差が認められた。つまり、筋放電量においては動作方向の違いよりも作業台の高さの違いによる影響が大きいことがわかる。

図5～7は全被験者のデータの平均値をもとに4箇所の筋放電量を動作距離ごとに示したものである。図5～7から、4部位の総筋放電量は、作業台が高く（High）なると増加していることがわかる。特に作業台が高くなるにつれて僧帽筋、腕橈骨筋にかかる負担が大きくなる傾向にある。また三角筋、上腕二頭筋においては、MiddleのときがHigh、Lowよりも小さくなっており、肘の高さを基準にすれば、作業台の高低に係わらず三角筋および上腕二頭筋、つまり腕の上腕にかかる負担が大きくなっているといえる。

4.4 動作時間 動作方向の違いおよび作業台の高さの違いが動作時間に与える影響をみるために二元配置（要因A：水平面作業域、要因B：作業台の高さ）による分散分析を被験者の体格別に行った。その結果を各条件別に表6に示す。表6より、要因A、要因Bいずれにおいても危険率1%水準で有意差が認められた。このことにより、作業域設定における水平方向の作業域および作業台の高さの違いが動作時間に与える影響は大であるといえる。

そこで、水平方向における適正な作業域と作業台の高さを求めることため、有意差の認められた要因に関して、直交分解による回帰係数の推定を行った。この結果から直交多項式による回帰式を求めると、表7に示す実験結果がえられた（Z＝動作時間、α：作業台の高さ、β：肘角度）。これらの実験式を用いて、αとβそれぞれの極値を求め、動作時間値を最小にする水平方向の作業域とその条件における作業台の高さを求める。表8に示す結果がえられた。したがって本研究において作業条件においては、適正作業域を設定する基

<table>
<thead>
<tr>
<th>Table 6 3-way analysis of variance in case of motion time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion distance and group</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>A×B</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>40cm M S</td>
</tr>
<tr>
<td>40cm M A×B</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>40cm I</td>
</tr>
<tr>
<td>40cm I B</td>
</tr>
<tr>
<td>A×B</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>50cm M S</td>
</tr>
<tr>
<td>50cm M A×B</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>50cm I</td>
</tr>
<tr>
<td>50cm I B</td>
</tr>
<tr>
<td>A×B</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>50cm L S</td>
</tr>
<tr>
<td>50cm L B</td>
</tr>
<tr>
<td>A×B</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

** A significant level (P<0.01), F, Factor, S, Sum of Squares, ϕ, degree of freedom, V, Variance, ϕ, contribution
表 7 正交多项式

<table>
<thead>
<tr>
<th>距離と集団群</th>
<th>正交多项式</th>
</tr>
</thead>
<tbody>
<tr>
<td>40cm</td>
<td>(Z=431.796+57.7269 \alpha+2.18597 \alpha^2+20.9865 \beta)</td>
</tr>
<tr>
<td></td>
<td>(+0.37555 \alpha^2+2.18597 \alpha+2.18597 \beta+0.487803 \alpha \beta)</td>
</tr>
<tr>
<td></td>
<td>(-0.0278 \times 10^7 \alpha^2+2.5991 \times 10^7 \alpha^2)</td>
</tr>
<tr>
<td>50cm</td>
<td>(Z=641.006+111.04 \alpha+0.58511 \alpha+26.245 \beta)</td>
</tr>
<tr>
<td></td>
<td>(+0.57127 \alpha+2.57127 \alpha \beta+3.14732 \times 10^7 \alpha \beta)</td>
</tr>
<tr>
<td></td>
<td>(-4.9485 \times 10^6 \alpha^2+7.26861 \times 10^6 \alpha^2)</td>
</tr>
<tr>
<td>40cm</td>
<td>(Z=3520.29+51.0128 \alpha+0.25555 \alpha^2+39.5499 \beta)</td>
</tr>
<tr>
<td></td>
<td>(-1.89324 \beta+0.821499 \alpha \beta+4.5555 \times 10^7 \alpha \beta)</td>
</tr>
<tr>
<td></td>
<td>(-2.5555 \times 10^7 \alpha^2+2.00018533 \times 10^7 \alpha^2 \beta)</td>
</tr>
<tr>
<td>50cm</td>
<td>(Z=3749.1-25.5266 \alpha-0.26311 \alpha+40.126 \beta)</td>
</tr>
<tr>
<td></td>
<td>(-0.68558 \beta+1.78787 \alpha \beta-3.87372 \times 10^7 \alpha \beta)</td>
</tr>
<tr>
<td></td>
<td>(+1.7777 \times 10^7 \alpha \beta^2+5.9869 \times 10^7 \alpha \beta^2)</td>
</tr>
<tr>
<td>40cm</td>
<td>(Z=1961.68+19.5262 \alpha+0.0923326 \alpha^2+17.468 \beta)</td>
</tr>
<tr>
<td></td>
<td>(-1.6633 \beta+0.327457 \alpha \beta-1.54126 \times 10^7 \alpha \beta)</td>
</tr>
<tr>
<td></td>
<td>(+3.47802 \times 10^7 \alpha \beta^2+3.1038 \times 10^7 \alpha \beta^2)</td>
</tr>
<tr>
<td>50cm</td>
<td>(Z=2893.4-34.8199 \alpha+0.16777 \alpha^2-12.3087 \beta)</td>
</tr>
<tr>
<td></td>
<td>(-0.200587 \beta+0.225458 \alpha \beta-0.13389 \times 10^7 \alpha \beta)</td>
</tr>
<tr>
<td></td>
<td>(+9.74948 \times 10^7 \alpha \beta^2+6.6051 \times 10^7 \alpha \beta^2)</td>
</tr>
</tbody>
</table>

\(Z \): 質点機械(m)
\(\alpha \): 質点機械位相度(cm)
\(\beta \): 角度(度)

表 8 最適解

<table>
<thead>
<tr>
<th>距離と集団群</th>
<th>(\alpha)(cm)</th>
<th>(\beta)(deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group S</td>
<td>94.6</td>
<td>90.71</td>
</tr>
<tr>
<td>50cm</td>
<td>94.9</td>
<td>90.10</td>
</tr>
<tr>
<td>Group M</td>
<td>101.0</td>
<td>89.87</td>
</tr>
<tr>
<td>40cm</td>
<td>99.8</td>
<td>91.30</td>
</tr>
<tr>
<td>Group L</td>
<td>103.3</td>
<td>89.08</td>
</tr>
<tr>
<td>50cm</td>
<td>103.6</td>
<td>89.08</td>
</tr>
</tbody>
</table>

\(\alpha \): 質点機械位相度(cm)
\(\beta \): 角度(度)

結果

本研究は、立位水平作業姿勢における上肢の動作特性を明らかにし、適正作業姿勢を設定するための基本的な設計要因の考察を行った。結果の結論は次の通りである。

（1）水平作業者の高さが作業台の高さに対する影響は大きいことがわかった。

（2）体格の違いにより作業距離が異なり、作業台の高さが作業距離の違いから作業時間を求める実験式を提案した。

（3）提案した実験式から体格の違いにより、適正作業台の高さに到達を省略した。

（4）本論文での提案した内容を実務において適用する場合は、取扱い重量が1kg以下の物で、取扱いマニュアルの作業姿勢等比校的軽作業に適用された作業姿勢に限定する必要がある。

文献

（1）総務省統計局編、日本の統計、1987、323、両国統計協会

（2）Marvin, E. Mandel 著、山崎一郎監訳、作業・時間研究の実態、1961、556-568、東京研書房

（3）栚明文、「作業負担の軽減」、作業時における作業負担の解消の実験的考察、日本作業科学会誌、29(5)、1993、281-283

（4）Fitts, P. M. The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement、J. Exp. Psychol.、47(6)、1954、381-391

（5）Fitts, P. M. and Peterson, J. R. Information Capacity of Discrete Motor Responses、J. Exp. Psychol.、67-2、1964、103-112

（6）川上岡・上野俊夫、活用の理数学と数理からみた正式作業に関する研究、組立て作業システムの設計に関する研究、日本経済工業会誌、40(6)、1981、421-436

（7）長田直也、作業研究、66(97)、186-188、森北出版

（8）川上岡・上野俊夫、作業負担の軽減、取扱い作業における適正作業姿勢に関する研究、機械、61-592、C(1995)、260-265

（9）川上岡・上野俊夫、作業負担の軽減、取扱い作業における適正作業姿勢に関する研究、機械、63-612、C(1997)、369-374

（12）川上岡・金子光彦・井上俊夫・作業負担の軽減、取扱い作業における動作特性、機械、64-623、C(1998)、465-468

（13）川上岡・金子光彦・川崎ź介・作業負担の軽減、取扱い作業における適正作業姿勢の設計要因、機械、掲載可

（14）横渓光・小山田朋明・エキノニのための作業科学、1991、163、日本出版サービス