On the Coefficient of Restitution of Link Manipulators Using Wave Propagation Theory

Jun KOYAMA, Saburo MATUNAGA* and Yoshiaki OHKAMI

*Dept. of Mechano-Aerospace Eng., Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552 Japan

The usual method to derive the intermittent motion of a system has some limitations, such as the need to specify the value of the coefficient of restitution. In deriving the value of the coefficient of restitution, Newton, Poisson or Strong equation is used. All of the methods have problems to cause energy contradiction and give the different value in non-co-linear collision or collision with friction. This is due to the assumption of rigid body. For the analysis of the flexible body dynamics, authors proposed wave propagation theory. Wave propagation theory is the method which is considered to be superior to the Newton method for its rigorous sense. By using wave propagation theory, we discuss the characteristics of the coefficient of restitution in detail and confirm that the values of the coefficient of restitution greatly depends on the conditions of impact.

Key Words: Impact, Coefficient of Restitution, Wave Propagation Theory, Flexible Multibody, Link Manipulators

1. 論 論

衝突問題の解析方法として、速度不連続量、反発係数を考慮した方法が広く用いられる(1)-(9). この方法は反発係数をあらかじめ知っておかねばならず、反発係数値は一定と仮定する。しかしこの仮定は必ずしも正しくないのはよく知られている(10), 反発係数の定義としてニュートン法(11), ポアソン法(12), ストランジェ法(13)が一般に用いられる。ニュートン法は衝突前後の速度比、ポアソン法は圧縮相と反発相のインバランス比、ストランジェ法は圧縮相と反発相のエネルギー比より反発係数を求めめる。これらの方法は摩擦を考慮しない場合や、co-linear 衝突(14)の場合のみ反発係数値同じ値となる(15)。実際にはそのような衝突はまれであり、摩擦等を考慮すると3方法によって導出した値に違いが生じる。ニュートン法は摩擦を考慮すると衝突後にエネルギーが増加したり、衝突断面に対して接線方向の運動が妥当でなくなる。ポアソン法を用いた完全弾性衝突(反発係数 e=1)のとき、衝突後
目的とする。

2. 波動伝播法による反発係数の導出

柔軟マニュレータに衝突物体が衝突する場合の反発係数は以下のよう導出される。具体的に図1に示すモデルを用いてnリンクマニュレータと衝突物体の二次元衝突問題を扱い、反発係数を求める。反発係数を求める方法としてニュートンの方法を採用するとき、反発係数\( e_n \)は

\[
V \cdot n = -e_n V \cdot n \tag{1}
\]

で与えられる。ただし文字とは衝突後、文字は衝突前の速度を表し、衝突前後は相対速度、すなわち衝突前後はマニュレータと衝突物体の相対速度が零のとき、衝突後は衝突力が圧縮力から引張力に変えるときに定義する。また、\( V, v \)はおのおの

\[
V = (e)^T V_n + \sum_{i=1}^{n} (b)^T \Gamma \Omega_n - (p)^T V_r - (p)^T d, \Omega_r
\]

\[
V = (e)^T V_n + \sum_{i=1}^{n} (b)^T \Gamma \Omega_n - (p)^T V_r - (p)^T d, \Omega_r
\]

で示される。ここで\( (b) \)は\( (e) \)系から\( (e) \)系への変換方向余弦行列、\( (b)^T \)は\( (e) \)系から\( (p) \)系への変換方向余弦行列を表す。\( V_n, \Omega_n \)はマニュレータの並進速度、\( V_r, \Omega_r \)は衝突物体の並進速度、\( \Omega_n, \omega_n \)はマニュレータの各ジョイント部における角速度、\( l \)はリンク長さ、\( \Omega_n, \omega_n \)は衝突物体の角速度、\( d, \Omega_r \)は衝突物体の座標中心から重心までの位置を表す。上付きの\( ^T \)は反対称行列化計算子である。以上の関係式を用いて柔軟マニュレータと衝突物体の衝突による反発係数を求める。

3. 衝突と反発係数に関する理論的考察

衝突に関して、縁波の伝播は考慮した厳密な解析がある。しかし曲げ衝突に関しては、曲げ波の位相速度が周波数によって変わるため時間領域で議論するのが難しく、曲げ衝突を厳密に扱った例はほとんどない。本章では反発係数との関係を念頭に入れつつ、曲げ波の伝播の性質について以下に述べる。

3-1 減衰項および波動エネルギーと反発係数の相関性

縁波を記述する際、構造減衰を無視するモデルを用い、衝突に関してエネルギーの散逸を考慮しない。一方、曲げ波に関してはnear field wave, far field wave 2とおりの波を考慮する。near field waveは空間減衰の性質を表し、far field waveは波動運動を表す。その近場waveとfar field waveに関して次の相関性が得られ、実験で確認されている。なお、曲げ波の伝播式

\[
V(x,t) = \sum_{n} \left( A_n e^{-\alpha_n x} + B_n e^{-\alpha_n x} \right) e^{i\omega_n t} \tag{3}
\]

に対し

\[
A_x = iB_x \tag{4}
\]

という関係である。ここで\( A_n, B_n \)はnear field wave, far field wave 2とおりの波の振幅を表し、各\( \alpha_n \)に対応する。ただし\( \alpha_n = \omega_n n, \omega_n \)は波動数、\( j \)は虚数単位である。これは曲げ波の伝播エネルギー\( A_x \)と散逸エネルギー\( B_x \)が等しいことを示す。以上のことがから曲げ波を励起する衝突波はエネルギーが多く散逸するということがわかる。

次に縁波および曲げ波の波動エネルギーの観点から反発係数との相関性を説明する。波がリンク中で伝播する際、波動エネルギーは縁波の場合

\[
T = \frac{1}{2} \int \rho A \left( \frac{\partial U}{\partial t} \right)^2 \, dx, \quad P = \frac{1}{2} \int EA \left( \frac{\partial U}{\partial t} \right)^2 \, dx \tag{5}
\]

曲げ波の場合

\[
T = \frac{1}{2} \int \rho A \left( \frac{\partial V}{\partial t} \right)^2 \, dx, \quad P = \frac{1}{2} \int EA \left( \frac{\partial V}{\partial t} \right)^2 \, dx \tag{6}
\]

と表される。ここで\( T \)は運動エネルギー、\( P \)はポテンシャルエネルギーを示す。縁波および曲げ波におけ

\[
k_n = \frac{\omega_n}{\sqrt{E}} \tag{7}
\]

ここで\( k_n \)は縁波の波数、\( k_n \)は曲げ波の波数を表す。この関係式を式(5), (6)へ代入して両エネルギーの
占める割合を計算すると、縦波に関しては運動エネルギー：ポテンシャルエネルギー＝1：1、曲げ波に関しても運動エネルギー：ポテンシャルエネルギー＝4：1という結果を得る。ただし上記で示したように、曲げ波に関して変換するエネルギー：伝播するエネルギー＝1：1である。このことから、もし縦波ないし曲げ波が同じ運動エネルギーでリンク中を伝播すると、運動エネルギーおよびポテンシャルエネルギーの比率が異なるためそれぞれ反発係数を与える影響も変わる。例えば速度比で定義されたニュートンの反発係数では速度項に依存する運動エネルギーと密接な関係をもち、波の反射等が無視できれば、運動エネルギーの全エネルギーに占める割合が破壊だけの場合50%、曲げ波だけの場合20%となり、総衝撃のほうが曲げ衝撃よりも反発係数は大きくなる。一方、内部振動、すなわち、ポテンシャルエネルギーが大きければ運動エネルギーの占める割合が小さくなるため反発係数も小さくなる。これが内部振動と反発係数の関係を形成する。ただし曲げ波の場合激散するエネルギーも大きいため、内部振動が小さくても反発係数は小さくなることが予想される。

3-2 境界条件と反発係数の相関性 境界条件として自由端および固定端を考える。ただし波の反射の性質として自由端に対し、(a)：変位に関し入射波と同じ大きさで同符号の波が反射、(b)：応力に関し入射波と同じ大きさで同符号の波が反射、一方、固定端に対しては、(c)：変位に関し入射波と同じ大きさで同符号の波が反射、(d)：応力に関し入射波と同じ大きさで異符号の波が反射。と仮定する。

境界条件を考慮すると波の位相が変化するため波動エネルギーや運動エネルギーとポテンシャルエネルギーの比率は変わる。3-1節で導出した関係を用いて境界条件が自由端の場合[条件(a)]を考えると縦波は

\[ U(x,t) = \sum \left( A_n e^{-\alpha_n x} + A_n e^{\alpha_n x} \right) e^{\lambda_n t} \]  

と表現される。ここで \( A_n \) は横波の振幅を表し、1 項目が入射する縦波、2 項目が反射する縦波を表す。式（8）より

\[ \frac{\partial U}{\partial x} = \alpha_n \left( -A_n e^{-\alpha_n x} + A_n e^{\alpha_n x} \right) e^{\lambda_n t} \]  

\[ \frac{\partial U}{\partial t} = \lambda_n \left( A_n e^{-\lambda_n x} + A_n e^{\lambda_n x} \right) e^{\alpha_n x} \]  

が得られ、エネルギーを計算すると境界におけるポテンシャルエネルギー＝0が得られる。同様に境界条件が固定端の場合[条件(c)]、縦波は

\[ U(x,t) = \sum \left( A_n e^{-\alpha_n x} - A_n e^{\alpha_n x} \right) e^{\lambda_n t} \]  

と表され、境界における運動エネルギー＝0という関係が得られる。この結果、自由端で波が反射した場合波のエネルギーがすべて運動エネルギーへ変換されるのに対し、固定端ではすべてポテンシャルエネルギーへ変換される。この関係は波の解離距離が長いと仮定し空間減衰項を無視すれば、曲げ波に対しても成立する。以上のことから本の境界条件により波動エネルギーや中エネルギーの比率が変わる。すなわち、境界条件が自由端の場合運動エネルギーが波動エネルギーの100%を占めるのに対し、固定端の場合ポテンシャルエネルギーが100%を占めるため、両境界条件の反発係数を比較すると固定端の反発係数値のほうが自由端のそれより小さくなると考えられる。

4. 数値シミュレーション

本論では図2に示すようなアルミニウム材の3リンクマニュレータと衝突物体との衝突を例にとって、波動伝播法を用いた数値シミュレーションを行い、3章の理論的考察の検証を行う。右手系正規直交座標系である座標系[\( e \)]、ポディ座標系[\( b_i \) \( (i=1,2) \)]、衝突物体座標系[\( p \)]を図2のように選ぶ。\( b_i \) を\( b_i \) 系への一価回転、\( b_i \) を\( b_i \) 系への一価回転を表す。また、\( l_i, r_i \) はマニュレータのリンク \( i \) \( (i=1,2,3) \) の長さおよび断面半径、\( l_i, r_i \) を衝突物体の長さおよび断面半径を表し、表1に具体的な値を示す。これらの値と物性値および初期速度を与え、数値シミュレーションを行う。シミュレーション結果を踏まえ、反発係数と各パラメータの相関関係の比較検討を行う。

リンク1, 2, 3および衝突物体の材料、寸法、形状、境界条件を表1に示す。初期速度に関しては、マニュレータを静止状態、すなわち初期速度、初期角速度と

Fig. 2 Model for the numerical simulation
Table 1 Specifications of the system

<table>
<thead>
<tr>
<th></th>
<th>Link1</th>
<th>Link2</th>
<th>Link3</th>
<th>Impacting Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E$ (MN/m$^2$)</td>
<td>72,000</td>
<td>72,000</td>
<td>72,000</td>
<td>72,000</td>
</tr>
<tr>
<td>$\rho$ (kg/m$^3$)</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Length (m)</td>
<td>8.13</td>
<td>8.13</td>
<td>1.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Diameter (m)</td>
<td>1.0</td>
<td>1.0</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Angle (°)</td>
<td>$\theta_1$</td>
<td>$\theta_2$</td>
<td>$\theta_3$</td>
<td>$\theta_4$</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>Free</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Boundary condition vs. coefficient of restitution

<table>
<thead>
<tr>
<th></th>
<th>free</th>
<th>fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficient of restitution</td>
<td>0.403</td>
<td>0.391</td>
</tr>
<tr>
<td>kinetic energy (%)</td>
<td>45.4</td>
<td>43.2</td>
</tr>
<tr>
<td>potential energy (%)</td>
<td>48.5</td>
<td>50.8</td>
</tr>
<tr>
<td>energy dissipation (%)</td>
<td>6.1</td>
<td>7.6</td>
</tr>
</tbody>
</table>

もに整，衝突物体の初期速度を$-0.01$ m/s，初期角速度を$0$ rad/sとする，特に断らない限り，表1の条件を標準として衝突角度，マニピュレータ形状，材料，ジョイント，寸法，境界条件のパラメータを変化させて数値シミュレーションを行う。

4.1 境界条件と反発係数 リンク1における境界条件を自由端ないし固定端と仮定した際の反発係数の変化を調べた結果を表2に示す。3.2節において予想したように，固定端の場合のほうが反発係数値は小さく，運動エネルギーの全エネルギー比も小さいことがわかるが，この例では値にそれほど大きな変化はない。境界条件の影響が小さいのは，ジョイントが境界より衝突点に近い位置にあるため，実に反発係数は後述するように境界条件よりジョイントの影響をよく受ける。

4.2 寸法と反発係数 織衝突に関し，境界条件が自由端のとき反発係数は寸法に対して比例関係を示した。これは衝突物体のもつエネルギーはその寸法に依存するため，マニピュレータへ与える影響も寸法に依存するためである。しかし，境界条件が固定端に変わるとき寸法の値を変化させても反発係数値にほとんど変化は見られない。これにより緒衝突の初期衝突から波のエネルギーが衝突物体に戻ってくるが，緒波は伝播の際エネルギーが散逸しないと仮定しているためである。

Fig.3 Impacting body size vs. coefficient of restitution

縫および曲げのカップリングした衝突の寸法による反発係数への影響を見るために，衝突物体の寸法を$1.0$ mから$16.0$ mと変化させる。比較のため，境界条件が自由端および固定端についてシミュレーションを行う。境界条件が自由端で寸法を変化させた場合を図3(a)に，固定端で寸法を変化させた結果を図3(b)に示す。

縫衝突と同様，縫波および曲げ波のカップリングした衝突に対しても，境界条件が自由端のとき反発係数と寸法の比例関係が得られた。しかし，境界条件が固定端の場合，寸法が大きくなるにつれて反発係数は小さくなっている。寸法が大きいとき，マニピュレータ境界端まで衝撃波が十分に届き，衝突終了時までに衝撃エネルギーが減少するからである。反発係数と運動
エネルギーの関係を3章において議論したが、図3(a)より境界条件が自由端で寸法が8m以上のとき相関性を示している。しかし寸法が8m以下の場合、運動エネルギーの占める割合に変化が見られない。これは衝突物体の変形運動エネルギーと衝撃波として伝播する際、反射、透過などの影響を大きく受ける前に衝突が終わったためである。一方、境界条件が固定端のとき、反発係数と運動エネルギーの相関性はっきりと現れている。

4-3 剛性と反発係数 剛性、すなわち、ヤング率の値を100, 10,000倍と変化させて反発係数の変化を調べる。まず、衝突物体の剛性を変化させた結果を図4(a)に示す。その際、衝突物体の寸法2, 8, 14mと変化させ、マニピュレータの境界条件を自由端および固定端の場合とし、同様にマニピュレータの剛性を変化させたときの結果を図4(b)に示す。

図4(a)より、衝突物体の剛性が大きくなると反発係数が幾何条件に依存せず、一定になる。剛性が大きい波の伝播速度が極めて大きくなり、衝撃波は反射して衝撃点まですぐに戻る。3章で議論したように、衝突物体の境界条件を自由端としているため、同位相、同振幅の波が反射して衝撃点から伝播する。その結果、衝撃波によるエネルギーがすべて運動エネルギーへ変換されるため、物体内の内部振動が存在せず、剛体的な運動を行う。以上のことがから物体の剛性を大きくすると、物体内の内部振動はすべて剛体運動の運動エネルギーへ変換され、結局、反発係数が大きくなる。図4(b)はマニピュレータの剛性を増大させた場合である。マニピュレータ内を伝播する波の速度が無限大に近づくため、衝突が終わるまでに波が境界へ届くようになる。そのため反発係数は境界条件に依存する。境界条件が固定端のとき、自由端より反発係数は小さくなる。すなわち、一端で固定端からの位相、同振幅の波が衝撃点で反射するため、物体内のエネルギーがすべて内部振動へ変換されるからである。しかし剛性を大きくすると伝播する波の振幅が小さいために際だった差は生じない。

4-4 ジョイントのエネルギー吸収と反発係数 ジョイントに入射した波のエネルギーを零から100%吸収させた際の反発係数の変化を調べる。すなわち、
で示されるηを零から100まで変化させた際の反発係数を求め、そのときの結果を図5に示す。ただし、$E_{in}$ はジョイントへ入射するエネルギー、$E_{out}$ をジョイントから反射および透過するエネルギーとする。結果より明らかのようにエネルギーの散逸が大きくなるほど反発係数値は小さくなる。これは3章で説明したように、反発係数を計算する際の必要である速度項を支配する運動エネルギーが散逸してしまうためである。ジョイントにおいてエネルギーを100%散逸させても反発係数値が零とならないのは、ジョイント部へ到達する前の応力波および衝突物体に存在する応力波の波動エネルギーによるためである。これについては縦衝撃と全く同じである(13)。

4.5 リンク角度と反発係数 リンク角度$\theta_1$ ないし$\theta_2$ を0°から180°まで変化させた際の反発係数への影響を調べる。

4.5.1 リンク角度$(\theta_1)$ と反発係数 縦衝撃において、リンク角度を変化させても反発係数にはほとんど影響はないと(14)。これはジョイント部におけるエネルギー流れ(11)からも明らかのように、リンク角度を変化させても曲げ波の反射および透過がほとんど生じないためである。

一方、曲げ波とカップリングさせた衝撃に関してリンク角度と反発係数の関係を調べたため、リンク角度$\theta_1$ を0°から180°まで変化させた結果を図6(a)に示す。図6(a)から明らかように、反発係数がリンク角度に依存していることがわかる。これは後述するように曲げ波がジョイント部へ入射する場合、縦波の反射-透過による影響が無視できないためである。

本稿ではジョイント部における反射-透過関係を得るため、力の釣合い条件および連続条件を考慮した(9)。まず、縦波と曲げ波による力の釣合いを考慮したとき、縦波、曲げ波によって生成される力が、それぞれ

$$ F = E A \sum_\theta (\kappa^2 \xi e^{i(\kappa x + \omega t)}) $$

$$ F = E I \sum_\theta (\Lambda^2 e^{-\alpha x} - \Lambda^2 e^{\beta x}) e^{i\omega t} $$(13)

で表される。この際、波数$k$および$k'$ が大きく影響を与える。波数と周波数の関係が式(7)に示されていることからわかるように、周波数におけ曲げ波の波数のほうが縦波の波数より小さくなる。しかも衝撃波が多く存在する最低周波数領域における曲げ波の波数が1未満であるため、力を計算する際に必要な波数の3乗はより小さな値となる。したがって、両波に釣合うためには曲げ波の振幅が縦波の振幅より大きくなると必要である。次に連続条件、すなわち、両振幅が同じ大きさでなければならないので縦波および曲げ波によるエネルギー-
Fig. 8 Impact angle vs. coefficient of restitution and impulse

\[ P_1 = \frac{1}{2} E A o k / \gamma \]  \[ P_2 = E I k^2 a A^3 \]

に関して、以下が結論づけられる。（1）綱波が入射する際、曲げ波によるエネルギーの影響が大きくなる条件は、波数の違いから曲げ波の振幅が綱波の振幅より大きくなるときである。しかし連続の条件より不可能である。（2）曲げ波が入射する際、綱波の波数は曲げ波の波数より大きいため、綱波のエネルギーの及ぼす影響は振幅が小さくても無視できない。

図7に曲げ波が入射したときの各波のエネルギー比を示す。リンク角度が20°および160°周辺において綱波の影響が無視できない、綱波の占めるエネルギーが卓越する。すなわち、運動エネルギーの割合もずつ、散逸する波のエネルギーも少なくなるということがいえる。図6(a)においてリンク角度が20°および160°周辺で反発係数の値が大きくなったのはこれが大きな原因と考えられる。

4・5・2 リンク角度（α）と反発係数 リンク角度 α を0°から180°まで変化させた際の反発係数の変化を調べる。そのときの結果を図6(b)に示す。αと比較して反発係数の変動が小さい。これはジェイントが衝突点から遠いため、波の伝播に時間がかかるうえ、曲げ波のエネルギーが散逸してしまうからである。しかし、反発係数のピーク値に関してはリンク角度 α を変化させた際と同じことがいえる。

4・1・5 衝突角度と反発係数 衝突角度 φ (0° ～90°) と反発係数の関係を調べる。10°おきに計算した結果を図8に示す。衝突角度が90°のときに曲げ衝突が多く起こるので、3章の議論から反発係数も一番小さくなると考えられる。しかし衝突角度が30°から70°のほうが反発係数が小さく、これは衝突角度が90°の際、マニュレータでは曲げ波、衝突角物では綱波しか観察しないため、前述したように綱波の入射では曲げ波による影響は小さく、衝突角物のエネルギーがマニュレータへ十分伝わらず、大半が衝突角物へ反射したためである。衝突角度が30°から70°のとき、変位や力が連続して曲げ波が有する程度生じ、その大きさは衝突角度に依存しインパルスの大きさに影響を及ぼす。

5. 結論

本稿では綱波と曲げ波の関連した衝撃問題を波動伝播法を用いて解析し、境界条件、材料寸法、衝突角度、形状等の各条件が反発係数を与える影響を調べた。曲げ波は綱波と異なり、空間変形（near field wave）を含み無視できないためエネルギー散逸が大きく、反発係数に大き影響を与えることがわかった。また数値シミュレーションにより以下に挙げることが確認された。

（1）反発係数は寸法に大きく依存する。
（2）反発係数は材料の剛性が大きく、すなわち、剛体に近づくほど物体の内部変形が剛体運動に変換され、反発係数が大きくなる。
（3）反発係数は形状や衝突角度に依存するが、これは綱波と曲げ波の関係に依するところが大きい。

衝突面に作用する振動の影響に関しては別報で記す。

文献

(3) Goldsmith, W., *Impact*, (1960), 4-21, Edward Arnold Ltd.
波動伝播法を用いたマニュピレータの反応係数に関する考察

(13) 吉田和雄・指田直毅・横谷陽二, 日本ロボット学会誌, 11 (1993), 410-418.
(14) 松永三郎・小山淳・猿嘉彰, 機論, 64-624, C(1998), 139-146.

(19) 林毅, 重構造の理論とその応用, (1966), 461, 日本科学技術連盟.