Hybrid Motion Simulation Using High-Speed Parallel-Link Robot

Susumu TARAO**4, Eiichi INOHIRA and Masaru UCHIYAMA

**Ichinoseki National College of Technology, Takanashi, Hagisho, Ichinoseki, Iwate, 021-8511 Japan

A new kind of motion simulation is proposed for the purpose of simulating complicated motions such as those caused by interactions between objects in special environments (e.g., those of micro-gravity). The motion simulation is based on a hybrid simulation: consisting of a combined analog-digital system. Hence it has functions of real-time numerical simulation and embedding a physical model in the simulation. In addition, the motion simulation is equipped with flexibility of modeling, effective human interface and scalability of system. Finally, as a preliminary experiment, motion caused by interaction between two simplified free-flying space robots has been simulated with a prototype of the hybrid motion simulator.

Key Words: Space Robot, Modeling, Servo Mechanism, Motion Simulation, Hybrid Simulation, Parallel-Link Robot

1. はじめに

モーションシミュレーションは、模倣的に様々な運動を生成させる技術である。日常では実現困難な運動を与える制限の下において模倣的に生成させるという観点で、宇宙開発では、早くからモーションシミュレーションが必要とされ、実際に様々な手法によって行われてきた。それらは、大きく分けて、計算機上に用意した数値モデル（ソフトウェアモデル）を用いる手法（1）、制限付きであるが物理的に目的のものとほぼ同一な環境下で実モデル（ハードウェアモーダル）を用いる手法（2）、（3）、これらのソフトウェアモデルとハードウェアモデルを組み合わせたモデル（ハイブリッドモデル）を用いる手法（4）～（7）の三つに分類できる。

ここでは特に、ハイブリッドモデルを用いたモーションシミュレーションをハイブリッドモーションシミュレーションと呼ぶ。これは、運動模倣の対象となるシステム全体を実モデルと数値モデルとに分割してモデリングし、これらを空間サーボ機構、力覚センサ等のインタフェースを介して相互にリンクしたモデルを用いて実時間で次ステップの運動を予測し示す処理によってシミュレーションを進めていく運動模倣手法である。この手法は、微小重力環境における宇宙ロボットのターゲット捕獲作業等、物体間の複雑な干渉を伴う運動模倣の場合にソフトウェアモデルの計算負荷の大きさを抑制し、かつハードウェアモデルを取り扱う際の時間の変化または空的な制限を回避する一手法として期待できる。

これまでに、ハイブリッドモーションシミュレーションによる運動模倣がいくつか行われてきた。例えば、井上らは、宇宙船のランデブードッキングの運動模倣を行った（5）、下地らは、特有のターゲットの宇宙ロボットによる捕獲作業の運動模倣を行った（6）、吉田らは、微小重力環境におけるフローシールドベース上に搭載されたロボットの衝撃運動模倣を行った（7）。

従来のハイブリッドモーションシミュレーションにおけるそれぞれの数値モデルと実モデルの構成比を考えると、従来数値モデルの占める割合が小さいことから、これは、ディジタル計算部分の負荷を減らすためにアナログ的に演算を取り扱う部分を組み込むハイブリッドシミュレーションの本来の目的に基づいており、かつ実機の総合テスト等でその全体を実モデルとしてシミュレーションに組み込むことが望まされる場合には妥当な構成と言える。しかしながら、モデリングの際にディジタル計算機を用いてプログラム化できる部分が最小化されているため、モデリングの柔
Fig. 1 Prototype hybrid motion simulation system.

Fig. 2 Preliminary experimental system.

软性、すなわち汎用性に欠ける。
これに対して、本論文では、模擬対象の内、必要最小限の部分を実モデルとして、かつ残り全ての部分を数値モデルとして、これら同者を組み合わせてモデリングする新たなアプローチによるハイブリッドモーションシミュレーションを提案する。これには、広い帯域幅を備えたモーションテーブル（8）、急速な処理能力の向上を遂げているディジタル計算機、およびそれに伴って充実してきたいくつかのソフトウェア技術を応用して実現化する。加えて、本手法の可能性を探るように、単純な構成のプロトタイプによって得られた実験結果に関しても報告する。

2. 実験システム
ここでは、二つの物理間の干渉を含む運動を模擬することを前提とし、前述したハイブリッドモーションシミュレーションを基にして、実時間シミュレーション、実機の組み込み等の機能を備えつつ、汎用性に富んだ適用範囲の広いモーションシミュレーションの実現を目指す。これに対応するため、モーディリングの柔軟性を含むことに加えて、効果的なヒューマンインタフェースおよびシステム自体の拡張性を確保することを念頭において、モーションシミュレーション実験システムを構築した。

2.1 シミュレータシステム
空間6自由度高速パラレルリンクロボットHEXA97（9）をモーションテーブルとして応用したハイブリッドモーションシミュレーション実験システムの構成を図1に示す。加えて、実験システムの外観を図2に示す。
本実験システムは、3台のディジタル計算機（LinuxPC、VxWorksPCおよびSGI O2WS）、モーションテーブル（HEXA97）とそのコントローラおよび6軸力覚センサとそのコントローラ等を基本的な構成とする。3台のディジタル計算機は、イーサネットで接
動をコンピュータグラフィックスを用いてリアルタイムに表示する。この表示に必要なデータは Linux PC から受け取る。数値モデルも含めたモデル全体の運動を可視化することは、マンマシンインタフェースの観点から重要である。

ここでは、先に述べたように、二物体間の干渉が含まれる運動を模擬対象として取り扱うため、二つの実モデルを用いる。それら二つの実モデルは、それぞれ対応する模擬対象の中から干渉時に力ノトルクがディレイクトに作用する部分を適当に取り出したものである。二つの実モデルの内、一方は、モーションテーブルの出力リンクに、もう一方は、6 軸力覚センサを介してフィクスドテーブル（地上に固定された架台）に、それぞれ搭載される。例えば、宇宙ロボットの浮遊ターゲット捕獲作業の運動模擬を行う際は、捕獲に携わる宇宙ロボット先端のハンドおよび浮遊ターゲットの把持される部分のみを取り出して実モデルとする。このような実モデルの一例を図 3 に示す。

Fig. 3 An example of two physical models selection.

空間 6 自由度のモーションテーブルは二つの実モデル間の相対運動を示すことができる。また、干渉時に発生する力ノトルクは、前述の 6 軸力覚センサによって定量化することができる。定量化された力ノトルクは、作用・反作用の法則より二つの実モデルそれぞれに作用する力ノトルクとして対応させることができる。実モデル以外は、全て数値モデルとして取り扱い、Linux PC の内部に構築される。このように実モデルと数値モデルを組み合わせたハイブリッドモデルを用いることで、模擬対象全体の運動をシミュレーションすることが可能となる。

2.2 モーションテーブル モーションテーブルには、空間 6 自由度高速パラレルリンクロボット HExA97 を用いる。HExA97 は、高速性に優れた HExA 型パラレルリンク機構 (10), (11) を適用している。これ

は 6 つの全く同等な要素錐で構成される。各要素錐は、高出力・低摩擦ディレイクトドライブモータにフランジを介して第 1 リンク（アーム）を連結し、これに第 2 リンク（ロッド）をポールジョイントで連結したものであり、6 つの全てのモータはベースに固定され、6 つのロッドのサムネル側は、ポールジョイントで出力リンク（トラベリングブレート）に連結される。この機構によってモーションテーブルは、全体の剛性を維持しながら可動部が軽量化され、極めて敏な空間 6 自由度の運動が実現できる。

図 1 に示した HExA97 コントローラは、先に述べた 6 つのモータに対応するモードライアイパルスカウンタおよび D/A コンバータからなる。モータの回転角はモータ内蔵のレーザによって検出される。レーザから出力されたアナログ信号はモードライバに取り込まれてディジタル信号に変換され、パルス列信号として出力され、パルスカウンタボードを介してメインコンピュータに取り込まれる。メインコンピュータは、与えられた制御則にしたがって制御量を計算し、D/A コンバータを通してモータのトルク指令値をモードライバに出力する。

3. 運動の呈示と干渉によって生じるカノトルクの定量化

二つの実モデルに対応した二つの多体系の数値モデルを用意し、運動方程式 (1), (2) で表す (12).

\[M_{1} \ddot{u}_{1} + f_{1} = 0 \] \hspace{1cm} (1)

\[M_{2} \ddot{u}_{2} + f_{2} = 0 \] \hspace{1cm} (2)

式 (1), (2) において、第 1 項、第 2 項は、それぞれ慣性項、非線形項であり、\(\ddot{u}_{1} \), \(\ddot{u}_{2} \) はシステムの状態変数として用いられる一般化速度である。一般化速度には多体系の基準となるベースボディの重心速度、角速度および多体系に含まれる関節の相対角速度を取る。本文論文では、動力学計算を高速にするため、O(n) の Rosenthal の手法 (13)～(15) を用いる。これにより式 (1), (2) で従う \(\ddot{u}_{1} \), \(\ddot{u}_{2} \) を求め、かつ、設定した時間刻みで数値積分を実行して、次ステップの各多体系のベースボディ重心位置と姿勢、および関節角度を求める（これは、コンピュータグラフィックスのデータに使用）、さらに、適度な座標変換等を行って実モデル間の相対位置、姿勢を求める。最終的にモーションテーブルの目標位置、姿勢 \(\phi_{t} \) を計算する。モーションテーブルは、これに従って運動呈示を行う。

運動呈示の際、実モデル間に干渉が生じ、出力リンクを拘束が生じた場合、カノトルク \(F \) が生じる。これは、6 軸力覚センサによって計測され、前章に示し
た処理によって定量化され，数値モデルに取り込まれる。ここで生じる F は，式 (3) に示すようなモーションテーブルの持つばね，質量，減衰特性，すなわちインピーダンス特性に依存すると考えられる。これに関しては，次章において実験による検証を試みる。

$$ F = M \ddot{p} + D(p - p_d) + K(p - p_d) \quad (3) $$

上式で，M, D, K, p_d は，HEXA97 の制御則，モーションテーブルの機構，および式 (1), (2) の数値モデルにおいて決まる。なお p, p_d, \ddot{p} は，目標値 p_d を入力した場合，出力リンクによって呈示される現在位置，姿勢，およびその一階，二階時間微分を表す。

衝突等，干渉を含む運動を数値シミュレーションする際に，干渉によって生じる力ノトルクを定量化する手法の一ととして，干渉する部分に仮想的にインピーダンス特性を設定することが一般に行われるが，ここでこの手法は，これをアナログディジタル的に行っていることに相当すると考えられる。

4. 運動模擬実験

本手法の可能性を探るため，ここでは，簡単な模擬対象を設定し，その運動模擬を実際に行う。

4-1 モデリング 模擬対象として，図2の構造からなる二つの宇宙ロボット1, 2を設定する。

Fig. 4 Two numerical models.

これらは，剛体ベースと四つ角の剛体リンクによって構成されたフリーフライアリングロボットである。ロボット1, 2それぞれにおいて四個の回転軸は全方向平行とする。これらの内，数値モデルとして取り扱った部分およびその初期姿勢を図4に示す。また，運動学および動力学パラメータを表1に示す。表1の $|r_1^i|$, $|r_2^i|$ は，それぞれ関箇 k ($k = 1, \ldots, 4$) とその前後リンク重心との距離を示す。また，動力学パラメータの内，各リンクの質量に関しては，ロボット1はベースが50 [kg], その他の四つ角のリンクは各々10 [kg] とする。ロボット2は，ベースが50 [kg], その他の四つ角のリンクは全て1 [kg] とする。

一方，ロボット1, 2それぞれの一部を実モデル1, 2としてモデリングする。実モデル1 (表2参照) は，

<table>
<thead>
<tr>
<th>Table. 1 Parameters of the numerical model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

ロボット1のターミナルポディの先端の一部であると想定し，6軸加速度センサを介してフィクスドテーブルに搭載する。また，実モデル2 (ジュラリッシェン) は，ロボット2のベースポディの一部であると想定し，モーションテーブルの出力リンクに搭載する。

<table>
<thead>
<tr>
<th>Table. 2 Parameters of the physical model 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass [kg]</td>
</tr>
<tr>
<td>m</td>
</tr>
<tr>
<td>0.288</td>
</tr>
</tbody>
</table>

シミュレーションの初期条件として，慣性座標系においてロボット1は，適当な制御によって各関節を一定に保った状態で静止させる（図4参照）。ロボット2は，各関節をフリーゲージ状態にして一定の速度 0.01 [m/s] でロボット1に接近させる。以上のように条件の下で運動模擬を行った。

4-2 インピーダンス 前章で述べたように，本手法では，モーションテーブルの機構と制御に依存するインピーダンスを介して干渉による力ノトルクの定量化が行われていると考えられる。

Fig. 5 Block diagram for the control system.

本実験におけるシミュレータの制御ブロック線図を図5に示す。モーションテーブルの各モータはトルク指令値の単純なPD制御を行い，そのトルク指令値 τ は次式となる。

$$ \tau = K_p(\theta_d - \theta) + K_d(\dot{\theta}_d - \dot{\theta}) \quad (4) $$

ただし，θ_d と θ は，それぞれ，3章で示した処理によって計算したモーションテーブルの目標位置，姿勢
p_d を逆運動学によって 6 つのモータ角度目標値に変換したもの、およびその現在値である。また、K_p は対角成分を共通の k_p とした 6×6 対角行列。K_d は対角成分を共通の k_d とした 6×6 対角行列である。

本実験では、比較的低速な運動を取り扱うことを考慮し、モーションテーブルの静力学的な関係がインピーダンスの決定に支配的だという考えの下に、以下のような特徴性のみに単純化したモーションテーブルのインピーダンス（スティフネス）を仮定する。

一般に、マニピュレータの出力リンクに作用する外力/トルク F と関節トルク τ には仮想仕事の原理より次式の関係が成り立つ。

$$ F^T \delta p = \tau^T \delta \theta $$

ただし、δp は出力リンク位置、姿勢の微小変位、$\delta \theta$ は、関節角の微小変位であり、ヤコビ行列 J を用いて

$$ \delta p = J \delta \theta $$

と表わせる。式 (5), (6) より次式を得る。

$$ \tau = J^T F $$

制御則に関しては、K_p が支配的として、単純に

$$ \tau = K_p \delta \theta $$

として考える。式 (6), (7), (8) より、次式を得る。

$$ F = (J^T)^{-1} K_p J^{-1} \delta p $$

4.3 実験結果
4-1 節で示したモデルと初期条件の下で実際に運動模様実験を行った。モーションテーブルのサーボ周期、おおよび動力学計算の時間ステップは、それぞれ 2 [ms] とした。運動模様の際にリアルタイムでモデル全体の運動を示したコンピュータグラフィックスによる画像を適当に拡大して図 6 に示す (k_p は 200 [Nm/rad] とした場合、ロボット間の干渉がはじめて起きた時間を 0 [s] としている)。

ここで、モーションテーブルの制御則における k_p を 200 [Nm/rad], 400 [Nm/rad], 800 [Nm/rad] とし、新たに定量化された干渉による力/トルク F をロボット 1 のターミナルポディ先端に固定した座標系で表し、その成分の内、f_2 に着目する。f_2 は、初期状態において、二つのロボット間の相対速度ベクトルの向きと一致させた座標軸の成分である。図 7, 8, 9 に各ゲインに対応した f_2 をそれぞれ実線で示す。比較のため、干渉に 42 節で示したインピーダンスを持たせ、数値モデルのみで運動模様を行った場合の結果を破線で併せて示した。

また数値モデルの動力学パラメータを変更した際の影響を検証するため、k_p を 800 [Nm/rad] とした場合において、ロボット 1 は、ベースを除いた四つのリンクの質量を全て 20 [kg] に変更し、また、ロボット 2 は、ベースの質量を 100 [kg] に変更した（その他のパラメータは共通のものを用いた）場合の運動模様の結果を図 10 に示す。

図 7, 8, 9 においてモーションテーブルのインピーダンス特性と干渉時に定量化された力/トルクとの因果関係が明らかに見られる。また、図 9, 10 よりモデルの動力学パラメータの変更が干渉時に定量化された力/トルクに反映されていることが確認できる。なお、これらの図 7, 8, 9, 10 において、定量化された力/トルクの波形に見られる振動成分は、式 (4) に示した単純な制御則によってモーションテーブルの運動を制御した際の軌道追従性に対応するものであり、モーションテーブルの制御則を工夫し、軌道追従性を向上させることにより抑制できると考えられる。

5. おわりに

数値モデルの比重を変化させ、実モデルを必要最小限に絞り込むアプローチにより、汎用性、拡張性を備えたハイブリッドモーションシミュレーションの手法の提案とその実験システムを構築した。

本手法において、物体間の干渉によって発生す力/トルクは数値モデルと実モデル間のインタフェースで定量化を行いシミュレーションに取り込むが、この定
量化のメカニズムをモーションチップルの不動ランダム特性に着目してモデル化し、実験によって本手法の有効性を明らかにした。

今後は、宇宙ロボットのターゲット捕獲作業等、現実的な運動シミュレーションの対象を選定し、特にロボットとターゲット間の複雑な干渉をも含めたモーションシミュレーションへ展開していく。

なお、本研究は、文部省科学研究費補助金（課題番号10450093）の援助を受けて行われたものである。ここに謝意を表す。

文献

(2) 橋谷・吉田・藤森・岡村, 自由浮遊する宇宙用デルタロボット・モデルによる対象物の捕獲制御実験, 日本ロボット学会誌, 7–6, (1989), 125-143.

(4) 吉田, 宇宙ロボットのための研究開発プラットフォーム, 日本ロボット学会誌, 14–1, (1996), 10–21.

(9) 猪台・高川・秋田・田中, 宇宙ロボット・ダイナミクスの設計・開発・評価, ロボティクス・メカトロニクス講演会'98講演論文集, (1998), 1A12–15.

(14) Banerjee A. K., Order-n Formulation of Extrusion of a Beam with Large Bending and Rotation, J. Guidance, Control, and Dynamics, 15–1, (1992), 121–127.

Fig. 10 $k_p = 800$ [Nm/rad] with different dynamics parameters.