超音波の音軸を交差させて生成される
定在波音場を用いた二次元マイクロマニピュレーション*

小塚晃透*1, 辻内 亨**2, 三留 秀人*1
新井 史人*3, 福田 敏男*4

Two-Dimensional Micromanipulation Using an Ultrasonic Standing Wave Field Generated by Crossing Sound Beams

Teruyuki KOZUKA*5, Toru TUZIUTI, Hitodo MITOME,
Fumihito ARAI and Tosio FUKUDA

*National Institute of Advanced Industrial Science and Technology,
1-1 Hirate-cho, Kita-ku, Nagoya-shi, Aichi, 462-8510 Japan

As a non-contact micromanipulation technique, it is possible to trap particles in water at nodes of an ultrasonic standing wave field generated between a transducer and a reflector and to transport them using a frequency-shifting operation. Since there are several problems coming from resonance of the sound field with this scheme, the authors proposed a novel manipulation technique for particles using a standing wave field generated by two transducers whose sound beam axes were crossing to each other and accomplished one-dimensional manipulation of a polystyrene particle. The present paper describes an extension of this method adding one more transducer, which realizes two-dimensional manipulation suppressing unstable motion observed in the one-dimensional operation. Experiments in water using polystyrene particles confirmed the principle of the two-dimensional manipulation and agreed well with a numerical analysis of the sound field.

Key Words: Ultrasound, Acoustic Radiation Pressure, Micro Machine, Noncontact Micromanipulation, Standing Wave Field, Crossing Sound Wave

1. 緒 言

マイクロマシンの研究開発において、微小領域で微小物体に非接触で力を作用させる技術が求められている(1), で非接触で微小物体に作用させるためには、静電力(2)やレーザ光の放射圧(3)を用いた研究が数多く行われているが、超音波の音響放射圧を用いることも可能である(4)。これまで著者らは、振動子と反射板を用いて水中に定在波音場を作成し、その音圧の節に微小物体を捕捉し(5), 周波数を変化させる(6)ことや、振動子の電極を複数に分割して駆動部分を選択する(7)ことで、捕獲した物体の位置制御を行ってきた。しかし、反射板を用いた定在波音場において周波数を連続的に変化させた場合、音場の音響状態が周期的に変動し、また、反射板からの距離によって捕捉物体の移動方向や移動距離が異なるなどの問題点がある。

そこで著者らは、2 個の振動子から同一周波数の進

注: 本稿は、2000年8月24日、平成12年7月10日、名古屋市北区手作り町1-1

2. 音場

2.1 定在波音場 振動子から流体媒質中に超音波が放射され、音波が伝搬している音場中に振動子と平行に反射板を設置すると、進行波と反射波が干渉することで定在波音場が生成される(図1(a))。定在波音場中では振動子と反射板の間に1/4 波長間隔で音圧の節と腹が交互に存在し、波長に比べて十分に小さき固有粒子は、一般に音圧の節から節に向かう力を受け、音圧の節に捕捉される。そして、周波数を変化させ

E-mail: kozuka@aisl.go.jp

NII-Electronic Library Service
せると波長が変わり、音圧の波長の関係が変化するため、音圧の関係で求めた微小物体は音圧に沿って動く。

しかし、周波数変化時には音場の共鳴が問題となる。音場を共鳴させることで、少ないエネルギーで強力な音場を生成することが可能であるが、周波数を変化させた際にその共鳴状態を維持することは困難である。図2は、直径20mm、共振周波数1.75MHzの振動子を下方に設置し、その後の30mm離れた位置に反射板を平行に設置して生成される定在波場中の媒質の密度変化をシュリーレン法を用いて観察した音場の光学的可視化像である。振動子と反射板の間に定在波場が発生観察されている。図2(a)は1.743MHz、(b)は1.749MHzであるが、周波数がわずかに変化しただけで共振状態が変わり、音場は大きく異なることがわかる。周波数を連続して変化させると、振動子と反射板の間隔が音波の半波長の整数倍になることに共鳴するため、音場は周期的に変化する。

定在波場の共鳴を避けるためには、音源から放射した音波が同じ音源に戻らないようにする必要がある。そのための方法として、複数の音源を用いて放射される音波を重ね合わせて定在波場を生成することが考えられる。波源は薄板状の微小セリに、外部の2方向から音波を照射してセリ中に定在波場を生成し、セリ内で微小物体の一次元操作を試みている。超音波による微小物体の操作を行うためには、音場の状態を安定して維持することが必要であり、必ずしも共鳴させる必要はないと、図1(b)に示すように、音場が一点で変化するように設置した2個の振動子を用いて、共鳴しない定在波場を生成しても、微小物体の操作が可能である。また、定在波場中の微小物体には、音場の垂直方向については音場に向けた力が作用するので、二次元的に広がる媒質中の定点に微小物体を捕捉することも可能である。

2-2 音圧分布
振動子の形状、駆動する信号の周波数、位相等により音場は異なる。シュリーレン法を用いて、実験時の音場を光学的に観察することは可能であるが、所要の音場を効率的に設計するためには、振動子から放射される超音波の音圧分布を、実験前にコンピュータでシミュレートすることが望ましい。音源面Fから進行波の音圧を、Rayleighによって次式で表されると(1)

\[p = \frac{j \omega V}{\lambda} \exp(j \omega t) \int_{F} \exp(-jk_{r} \rho_{r}) dF \]

ここで、\(V \)は音源面の振動速度振幅、\(\rho \)は媒質の密度、\(\lambda \)は媒質中の波速、\(k = \omega / c \)、\(r \)は音源面Fの面積素点から観測点までの距離である。このうち\(\exp(j \omega t) \)は、時間tに関する変動分であるので、空間的な分布を求めるには、二重積分部分についてのみ計算を行えばよい。

周波数および音源音圧の等しいn個の超音波が干渉する音場中の音圧\(p_{n} \)の空間分布は、以下のようになることができる。

\[p_{n} = A \sum_{i} \left(\frac{\exp(-jk_{r} \rho_{r})}{r_{i}} \right) dF \]

\(r_{i} \)は音源面Fの面積素点から観測点までの距離であり、\(i \)は音源番号、\(A \)は位置に依存しない項である。

計算結果の一例を図3に示す。計算条件は、3軸の実験条件に準じて、1.75MHz、音源直径11mmの円形ビストン音源、音源からの音波の交点までの距離を33mmとして計算を行った。図3(a)は、2音源（\(n=2 \)）を左右の下方に設置して、音波が120°の角度で交差する場合の音場を含む音圧分布である。音圧の節（図中の黒と虚線）が交互にしま状になり、定在波場が生成されていることがわかる。図3(b)は、さらに上方から第三の音波を加えた場合、すなわち三つの超音波（\(n=3 \)）の音場を、120°の角度で交差させた時の音圧分布の計算結果である。音圧は六角形の蜂の巣状に分布していることがわかる。

3. 実験

3-1 実験装置
図4に実験装置を示す。振動子
は図2の実験で用いたものと同型のもので、直径20
mm、共振周波数1.75 MHzの平板円形の圧電セラミ
ックス製で、直径30 mmのアクリルパイプ中にシリ
コンゴムで固定した。ハドロボンを用いて進行波音
場中の音圧分布を測定したところ、振動子から最終極
大までの距離は約33 mmで、直径11 mm相当の部分
が摂動していると考えられる。3′個の振動子（Trans-
ducer 0～2、以下 Tn、T1、T2 と記す）は水槽中の同一
平面内に音源が存在し、その音源は1点で交差するよ
うに配置した。2 チャンネルの出力を持つファクショ
ンジェネレータ（NF 回路設計ブロック製1964）を2
台用いて、位相を同期させて生成した4チャンネルの
うちの3チャンネルの正弦波信号を、3台のアンプ
（ENI 製325 LA、50 dB）で増幅して各振動子に
10～30 Vppの電圧を印加した。水中に超音波が放射
され、音源の交点付近に定在波音場が生成された。各
振動子からは同じ音圧を得ることが望ましいが、アン
プおよび振動子ごとにその電気的特性にばらつきがあ
る。そこで、振動子に加える電圧をオシロスコープで
観察し、各振動子に同じ電圧が加わるようにファンクシ
ョンジェネレータの出力を調整した。

3′2 音源による一次元操作 まず、第一に2個
の振動子による定在波音場の生成を試みた。既報10
と同様、水槽の底に斜め上方を向け配置した振動
子 T1、T2 において（T3 は使用せず）、振動子から音軸
の交点までの距離を30 mmとし、音軸の交差する角
度θを150°として実験を行った。振動子に1.75
MHz、20 Vppの連続正弦波を印加すると、振動子間
の上方に定在波音場が生成された。図5は、音場のシ
ューレン像であり、2個の音源から放射された音波
が干渉して、定在波音場が形成されていることがわか
る。この定在波音場中にポリチレニ粒子（比重1.05、
粒径100～500 μm）を投入したところ、粒子は音圧の
節に捕獲され静止した。2つの振動子に入力する信号
の位相を変化させると、捕獲された粒子は水平方向に
360°につけ約半波長の距離を移動した。なお、θ=90°、θ=120°の場合についても同様の実験を行ったが、θ=90° では捕獲不可能であり、θ=120° では捕獲
はできたが移動は困難であった。定在波音場中では、
音圧の節から軸に向かう力は強力であるが、その鉛直
方向に作用する力は弱いため、θ が小さい場合には、
上方へ向かう2つの進行波による音響放射力の合力の
影響が大きく作用するためと考えられる。

![Fig. 4 Experimental apparatus for the crossing sound beams with three transducers](image)

![Fig. 5 Schlieren image of the standing wave field generated by two crossing sound beams](image)
位相を連続して等速度で変化させることは、周波数に差を持たせることと等価である。そこで、周波数をわずかに異なる値とした実験を行った。図6(a)に実験に用いたポリスチレン粒子を示す。図6(b)は、θ=150°で各振動子に1,750,000 MHz。1,750,000 MHzの信号を入力した際に、移動する粒子を1/30秒間隔で28秒間撮影した多重露光写真である。周波数の差は0.5 Hzであるので、180°/秒の位相変化が存在し、図6(b)から毎秒約1/4波長の粒子移動が確認できる。移動速度は周波数の差に比例し、周波数の差が大きくなると位相の変化が早くなり、音圧の節に捕獲されている粒子が速く移動する。なお、音波が対称方向に180°で重畳して干渉する場合、波長をλとすると、音圧の節の間隔はλ/2となるが、音圧が増すと音圧の節の間隔はλ/2より大きくなり、λ/(2sin(θ/2))となる。今回の実験ではθ=150°であるので、音圧の節の間隔は波長の1.035倍となるが、実験における計測誤差の範囲内であり、実験では確認できなかった。また、図6(b)の多重露光写真より、明らかに垂直方向には周期的に振動していることがわかるが、原因是不明である。

3-3 3音源による二次元操作 垂直方向の音圧分布は、図3(a)の音圧計算、図6のシュリーレン像より明らかのように、液中で変化する。そのため、垂直方向には粒子を捕捉する力が弱く、音場のわずかな変化により、粒子は垂直方向に移動すると考えられる。垂直方向の動きを抑制するために、垂直方向に定在波を生成して、音圧の節に粒子を捕捉することが必要である。

そこで、音源の数を1個追加して3音源とし、それらの音を一点で交差させる実験を行った。図4の実験装置において、これまでの実験で用いたものと同型の3個の振動子（直径20 mm、共振周波数1.75 MHz）を水槽の中を同一平面上の正三角形の各頂点に配置し、その音場が三角形の中心で120°の角度で交差するように設置し、各振動子に20 Vppの電圧を印加した。

図7に、音場の交点付近の音場を、シュリーレン法で観察した写真を示す。蜂の巣状の定在波音場が生成されており、図3(b)の計算結果と同形状であることかわかる。この音場中には3-2節と同様のポリスチレン粒子を投入したところ、音場の交点付近の音圧の節に粒子が捕捉され静止した。そして、3個のうちの1個の振動子に入力する信号の位相を変化させたところ、粒子はそれぞれの音場に沿って移動した。

3-2節と同様に、周波数を変えて位相を連続的に変化させる実験を行った。図8に結果の一例を示す。3個の振動子を1.75 MHzで動揺して粒子を写真下方に捕捉した後、上方の振動子の周波数を0.5 Hz減じると粒子は上方へ移動した。その後、上方の振動子は
1.75 MHz に戻し、下左の振動子の周波数を 0.5 Hz 減じたところ粒子は下左に移動した。図 8 は、そのときの粒子の挙動を 4 秒間隔 (位相 720° 間隔に相当) で撮影した多重露光写真である、捕捉された粒子はそれぞれの振動子の方向に等速度で移動することがわかる。すなわち、3 音源のうちの 2 音源間の位相を変化させることで 2 方向に移動することができるので、二次元移動が可能となった。

4. 考察

実験では、個々の振動子の位相または周波数を制御することで、各音源に沿った移動が可能なることを示し、4 章では、同時に 2 個の超音波の位相を変化させて、捕捉粒子を任意の方向へ移動させることを検討する。

4.1 複数音源による音圧の節の分布 同じ周波数の進行波が 2 方向から重なり合うと、図 9(a) に示すように、2 音源間を結ぶ線上の方向 (図中の水平方向) に音圧の節と腹が交互に生成される。音圧の節 (点線) の間隔は、波長を λ とすると、λ/2sinθ/2 となる。垂直方向には比較的広範囲に音圧の節および腹が広がることが、図 3(a) の音圧計算、および図 5 のシュリーレン像により示されている。音圧の節に捕捉された粒子は、この垂直方向に広がる節線内で、比較的自由に移動すると考えられる。振動子間の位相を変化させ、音波面の重なる位置を连続的に移動し、位相を 360° 变化させることで図中の節の節線に移動する。図 9(b) に示す T1, T2 の 3 音源において、T2 の位相を変化させた場合に考えると、3 音源のうちの 2 音源により生成された音圧の節の分布を線で示す。T2 の位相を 360° 追加ると、音圧の節線は T1, T2 間では T2 から T1 に向かう方向の節の節線に移動し、T0-T1 間では T2 から T0 に向かう節の節線に移動する。そして、音圧の節に捕捉された微小物体は、移動した節線の交点に移動する。T2 と T1 およ

Fig. 9 Generation of standing wave fields by superposition of sound beams

Fig. 10 Combined movement by changing the phases of two transducers

Fig. 11 Examples of two-dimensional manipulation of a particle
び T_2 と T_e の音軸が成す角度 θ_m, θ_a が等しいならば，移動方向は T_2 の音軸と平行となり，捕捉物体はその音軸の方向に移動する。さらに，T_2 と T_e の音軸が成す角度 θ_0 が他と同じであれば($\theta_0 = \theta_m = \theta_a = 120^\circ$), いずれの音軸の位相を変化させても，その音軸の方向に移動し，その移動距離は 1 周期当り $2\lambda/3$ となる。また，図 9(c) は，角速度が異なる場合の一例 ($\theta_0 = \theta_m = 150^\circ$, $\theta_a = 60^\circ$) であり，このような場合は音軸と異なる方向に移動することがわかる。これらのことばは，実験による粒子移動の画像計測においても確認されている。

4・2 2音源制御による移動方向の選択 次に，二次元上の任意の方向への音軸を検討する。図 10 に示すように，３個の振動子 T_0, T_1, T_2 の音軸を y 軸とし，各音軸は xy 平面上の原点 O で 120° の角度で交差するように配置する。図 9(b) に示すように，音軸上には音圧の節は，$2\lambda/3$ の間隔で分布するため，各振動子の位相を $\Delta \phi$ で変化させた場合，音圧の節で捕獲された粒子は，各音軸に沿って $\Delta \phi \lambda/3\pi$ 移動する。2 個の振動子 T_0, T_2 の位相変化量をそれぞれ $\Delta \phi_0$, $\Delta \phi_2$ とした場合，それらの音軸に沿って移動ベクトルの合成ベクトル ({$\Delta \phi_0$, $\Delta \phi_2$}) は次式で与えられる。

\[
(\Delta x, \Delta y) = \left(\frac{3\lambda}{6\pi}(\Delta \phi_0 - \Delta \phi_2), \frac{\lambda}{6\pi}(\Delta \phi_1 + \Delta \phi_2) \right)
\]

例えば，T_1, T_2 の位相をそれぞれ $\Delta \phi$ だけ変化させた場合 ($\Delta \phi = \Delta \phi_0 = \Delta \phi_2$) は，($\Delta x, \Delta y$) = (0, $\Delta \phi \lambda/3\pi$) となる。これは音軸が y 軸上にある T_2 の位相を $\Delta \phi$ 変化させた場合と等価であり，y 軸に沿って移動する。また，T_1, T_2 の位相をそれぞれ反対方向に同距離変化させた場合 ($\Delta \phi_1 = \Delta \phi$, $\Delta \phi_2 = -\Delta \phi$) は，($\Delta x, \Delta y$) = (0, $\sqrt{3}\Delta \phi \lambda/3\pi$) となり，$x$ 軸に沿って T_1 から T_2 へ移動する。すなわち，T_1, T_2 の振動子の位相を同時に変化させることで，二次元上の任意の方向への音軸が可能となる。

4・3 2音源の影響 2音源の位相を周期的に変化させることで円軌跡を描かせることも可能である。図 11 は，音軸の交差角度が異なる三つの音場において，$\Delta \phi = 4\pi \sin a$, $\Delta \phi = 4\pi \cos a$ として ϕ を変化させた場合の，粒子移動の多重関光写真である。図 11(b) は $\theta_0 = \theta_m = \theta_a = 120^\circ$ で正三角形の頂点に音源を配置しているが，(a) は $\theta_0 = 150^\circ$, (c) は $\theta_0 = 90^\circ$ の T_1, T_2 を底辺とする等辺三角形の頂点に音源を配置している。図 11 より，θ_0 が大きくなるほど，軌跡が円周に近づくことがわかる。各振動子の位相変化に伴う音圧分布の移動する方向が直交すれば，円軌跡となるはずであるが，そのためには $\theta_0 = \theta_m = 90^\circ$, $\theta_a = 180^\circ$ である必要があり，これは 2 音源が対向するため，2・1 節で述べている音場の問題がある。T_i, T_j の位相変化による音圧分布の移動方向が傾いているために，粒子は T_i, T_j を結ぶ方向に移動する。同様に T_a, T_b の位相を変化させた場合には，T_a, T_b を結ぶ線上の方向に移動する。実験により確認されている。

5. 結 言

本報では，水中超音波の定在波を用いた非接触マイクロマニピュレーションを検討した。反射板を用いた定在波音場中では，周波数変化時の音場の共鳴，そして捕捉物体の移動方向，移動距離が問題であった。そこで，2 個または 3 個の音源を用いて，これらの音軸を交互に干渉させることによる定在波を用いた微粒子操作について検討した。ここで得られた結果を以下に示す。

(1) 2 音源により生成される定在波においては，音軸が交差する角度 θ が 150° の場合に，音圧の節に粒子を捕獲し，位相を変化させることで捕捉粒子の一次元移動が可能であるが，移動方向と垂直な方向への周期的な振動が発生することが実験により確認された。

(2) 振動を抑え，かつ二次元移動を行うために，3 個の音源を用いて，その 3 音源の音軸を 120° の角度で交差させ，六角形の蜂の巣状の定在波音場を生成した。音軸の交点付近の音圧の節に微小物体を捕捉し，振動子に加える位相を変化させることで，それぞれの音軸に沿った粒子の音軸が可能であった。

(3) 3 音源のうちの 2 音源の位相を同時に制御することで，任意の方向への二次元操作が可能であり，2 音波を 90° の位相差で正弦的に変化させることで，微小物体を円軌跡に沿って移動できることが実験により確認された。

(4) また，2 音波，3 音源のいずれの場合にも，各振動子に加える信号の周波数無使いに差を持つことで等速度で連続して位相を変化させ，捕捉物体を一定速度で移動させることが可能であった。

文 献

超音波の音束を交差させて生成される定在波音場を用いた二次元マイクロマニピュレーション

(5) 小塚晃道・辻内 亨・三留秀人・黒田敏男, 水中超音波の定在波を用いた非接触マイクロマニピュレーション, 機論, 63-608, C(1997), 1279-1286.

(6) 小塚晃道・辻内 亨・三留秀人・福田敏男, 集束超音波による定在波を用いたマイクロマニピュレーション, 信学論, 80-10, A(1997), 1654-1659.

(7) 小塚晃道・辻内 亨・三留秀人・福田敏男, 多電極振動子を用いた音場制御による非接触マイクロマニピュレーション, 機論, 65-637, C(1999), 3650-3657.

(9) 山越芳樹・小林正樹・超音波の過密定在波を用いた微小粒子の粒径測定, 音響学会誌, 50-3(1994), 198-204.

(10) 植木幸雄・高木聖一郎, 超音波技術, (1984), 59-69, 東京大学出版会.