Chaotic Vibrations and Internal Resonance Phenomena in Rotor Systems
(Case that the Critical Speeds of a Combination Resonance and Subharmonic Resonances of Order 1/2 are close)

Tsuyoshi INOUE*, Yukio ISHIDA and Takuji MURAYAMA

*Department of Electronic-Mechanical Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464-8603 Japan

In rotor systems, if the gyroscopic moment is small, a forward natural frequency and a backward natural frequency almost satisfy a condition of 1: (−1) internal resonance. In such systems, the critical speeds of the forward and the backward subharmonic resonances of order 1/2 and the combination resonance are close in the vicinity of twice the major critical speed and internal resonance phenomena may appear. This study clarifies dynamical characteristics of nonlinear phenomena due to internal resonance, such as steady-state oscillations, almost periodic motions, bifurcation phenomena, and two kinds of chaotic vibrations, at the rotational speed of twice the major critical speed.

Key Words: Vibration of Rotating Body, Nonlinear Vibration, Critical Speed, Internal Resonance, Combination Resonance, Subharmonic Resonance, Chaotic Vibration

1. まえがき

多くの回転軸系では、ジャイロモーメントの作用が小さく、低次の前向きと後向きの固有振動数間に、ほぼ1: (−1)の関係が成立する。また、回転機械の振動解析に用いられているジェフコットロータは、前向きと後向きの固有振動数をPJ, PKに、あるいはPJ: PK = 1: (−1)の関係を持つモデルである。このような系では、内部共振1)−8)により、さまざまな特徴ある非線形現象が現れることが予想される。

著者らはこれまで回転軸系の内部共振現象を明らかにしてきた。まず、ジェフコットロータの主共振速度付近およびその2倍と3倍の回転速度付近において、共振曲線の変化等が発生することを明らかにし4)5)

さらに、ジャイロモーメントの作用が小さい回転軸系の主共振速度付近で、カオス振動が発生することを示し、その特性を明らかにした6)。

本報では、ジャイロモーメントの作用が小さく、弱い非線形性を持つ回転軸系を取り扱う。そこで、PJ−PK = ωが成立するとき発生する和差調波共振（以後、和差調波共振[pj−pk]とする）と前向きおよび後向き1/2次分数調波共振の共振点が近接する主共振速度の2倍の回転速度領域における振動現象を調べた。まず、実験において、2つの共振速度領域における1/2次分数調波共振の発生と和差調波共振[pj−pk]の発生、および分岐現象とカオス振動の発生を明らかにし、つぎに、それらの定性的特性を、簡単な2自由度モデルを用いた理論解析により説明する。

2. 実験

2.1 実験装置

実験装置の概要を図1(a)に示す。軸受中心間距離L = 700 mm、直径12 mmの軸に、直径300 mm、厚さ14 mmの回転体を取り付け、上端を複列自動調心球軸受(#1200)、下端を単列深み
図回転系のカオス振動と内部共振現象

まず軸受（#204）で支持し、軸中央から回転体までの距離を \(a \) とする。本研究では、回転体が軸中央に比較的近く、低次のたわみ優位なモードに対するジャイロモーメント的作用が小さい場合を考える。この装置を回転体のたわみと傾きに関する 4 自由度系とみなすと、例えば、回転体位置が \(a = 80 \text{ mm} \) のとき、主危険速度の 2 倍付近の固有振動数線図は図 1(b) で表される。このような場合には、低次の前向きと後向きの固有振動数 \(p_2 \) と \(p_3 \) は \(p_2 : p_3 = 1 : (-1) \) に近い関係を持ち、その結果、前向き 1/2 次数回調運動、後向き 1/2 次数回調運動、和差回調運動 \([p_2 \pm p_3]\) の共振点 \(\omega_1, \omega_2, \omega_3 \) はお互いに近接して存在する。

本装置で用いたような、単列深みぞ軸受には、一般に、わずかなクララランスが存在する。そのため、本装置では、軸下端の傾きが軸受クララランス内にあるときは単純支持、クララランス外にあるときは固定支持となることに起因して、強い非対称非線形性が現れる。さらに、下側軸受の軸受中心線の延長線と上側軸受の中心とのずれを \(\delta = 2 \sim 6 \text{ mm} \) の範囲で変化させて詳細に実験を行った。

2.2 実験結果

本研究では、回転体位置を \(a = 50 \sim 130 \text{ mm} \) と比較的軸中央に近いさまざまな位置に設定し、また、それぞれの場合における下側軸受の軸受中心線の延長線と上側軸受の中心とのずれを \(\delta = 2 \sim 6 \text{ mm} \) の範囲で変化させ、詳細に実験を行った。

2.2.1 1/2 次回調波共振における分岐現象とカオス

回転体位置を \(a = 80 \text{ mm} \)、下側軸受の軸受中心線の延長線と上側軸受の中心とのずれを \(\delta = 6 \text{ mm} \) に設定し、前述の 3 つの共振点、すなわち \(\omega_1, \omega_2, \omega_3 \) が近接する危険速度の 2 倍付近において発生する共振現象を観察した結果を図 2 に示す。共振点 \(\omega_1 \) と \(\omega_2 \) に対応する 2 ヶ所の回転速度領域（\(\omega = 1530 \sim 1670 \text{ rpm} \) 付近と \(\omega = 1330 \sim 1430 \text{ rpm} \) 付近）において 1/2 次回調波共振が発生し、その間の和差回調共振 \([p_2 \pm p_3]\) の共振点 \(\omega_1 \) に対応する回転速度領域（\(\omega = 1460 \sim 1520 \text{ rpm} \) 付近）で、振幅変調運動が発生した。図 2(a) には 1/2 次回調波共振と和差回調共振 \([p_2 \pm p_3]\) の振幅変調運動の前向き成分を示し、図 2(b) にはそれらの後向き成分を示した。\(\omega \) は定常振動の振幅を、\(\omega \) は振幅変調運動の振幅の最大値と最小値を表す。

低速側の 1/2 次回調波共振 B では後向き成分が優勢であり、高速側の 1/2 次回調波共振 A では前向き成分が優勢であった。また、高速側の 1/2 次回調波共振 A では、1550 rpm 付近から定常振動が分岐により振幅変調運動へと発展し、そして、\(\omega = 1570 \sim 1600 \text{ rpm} \) 付近において、より大きな変調幅を持つ振幅変調運動が確認された。

この 1/2 次回調波共振 A における定常振動から振幅変調運動へ発展する過程（図 2 中の d, e, f 点）の時刻歴と、軸の 1 回転毎にサンプリングした波アンカー写像を図 3 に示す。図 3(a)(d 点 : 1542 rpm) は定常的な 1/2 次回調波共振であり、波アンカー写像では 2 点が現れる。図 3(b)(e 点 : 1562 rpm) では振幅を Fine. 2}

(a) Forward whirling component : \(R_2 \)

(b) Backward whirling component : \(R_3 \)

Fig. 1 Experimental system

Fig. 2 Resonance curves
(Experiment : \(a = 80 \text{ mm} \))
2.2.2 和差調波共振 \([p_2 - p_3]\) における分岐現象

回転体位置は \(a = 80 \text{ mm}\) のままで、下側軸受の軸受中心線の延長線と上側軸受の中心とのずれを \(\delta = 3 \text{ mm}\) としたとき得られた前向き成分を図 5 に示す。これは非対称非線形性が小さくなった場合である。

\(\omega = 1280 \sim 1460 \text{ rpm}\) 付近において和差調波共振 \([p_2 - p_3]\) の振幅変調運動が発生し、1330 rpm 付近から高速側の 1/2 次分数調波共振 A が発生した。また、1/2 次分数調波共振の B は発生しなかった。この和差調波共振の振幅変調運動の時刻歴とポアンカレ写像図 6 に示す。図 6(a)(g 点 : 1324 rpm) では、ポアンカレ写像は 1 重のループとなり、回転速度を上げると、図 6(b)(h 点 : 1368 rpm) では 2 重の閉ループ、図 6(c)(i 点 : 1385 rpm) では、閉ループが崩れた様子が観測された。

ジャイロモーメントと非対称非線形性の大きさの

が軸の回転周期と比較して長い周期で変化していることが確認でき、ポアンカレ写像は 2 つの閉ループを描く。そして、最後に図 3(c) (f 点 : 1589 rpm) では時刻歴はカオス様式となり、ポアンカレ写像では閉ループが崩れ、有限領域内の点の集合として観察された。

実験で得られた変位 \(x\) の時刻歴データから遡座標標による擬似空間を用いて最大リャプノフ指標 \(\lambda\) を計算した結果を図 4 に示す。この方法では、0 未満の指標数は計算できず、計測誤差等に起因して、微小な正の値が得られる場合もある。この図中の d, e 点近傍は、このような誤差の範囲内である。回転速度 1589 rpm 付近 (図 2, 3 中の f 点付近) における振動は、リャプノフ指標が他の点 (d, e 点) と比べて大きな正の値となっており、カオス振動であることが確認できる。

Fig. 3 Time histories and Poincaré maps (Experiment)

Fig. 4 Largest Lyapunov exponents (Experiment)

Fig. 5 Resonance curves (Experiment: \(a = 80 \text{ mm}\))

Fig. 6 Time histories and Poincaré maps (Experiment)
表1 ロータの位置の影響（δ = 4 mm）

<table>
<thead>
<tr>
<th>a [mm]</th>
<th>50</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>[p23] B</td>
<td>○</td>
</tr>
<tr>
<td>[p2 - p3]</td>
<td>○</td>
</tr>
<tr>
<td>[p2 - pA]</td>
<td>○</td>
</tr>
</tbody>
</table>

変化が分岐現象に与える影響を調べるために、回転体位置 a と、上下軸中心線間のずれ δ を変化させ、共振現象を観察した結果を表1,2に示す。ここで○は定常振動の発生、○は分岐現象の発生、そして●はカオス振動の発生を表す。aやδがある範囲にあるときに分岐現象やカオス振動が発生することが分かる。

3. 理論解析

3.1 運動方程式と図示傾角数図
実験において発生した共振現象の特性を明らかにするため理論解析を行う。
実験装置をそのまま回転体のたわみと傾きに関する4 自由度系としてモデル化すると、回転体の位置の影響のある実験結果との対比はしやすいが、非線形現象の解析に用いるには非線形項の数が非常に多くなり、また、それぞれの非線形項の物理的意味や具体的要因を明確にすることが難しい。(9)。したがって、本研究では、ジャイロモーメントの作用を考慮した最も簡単なモデルである2自由度非線形モデル（図7(a))を用いる(8)～(10)。質量のない弾性軸の中央に回転体を取り付けた系では、回転体のたわみ運動と傾き運動の関連が無くなり、それぞれの運動を独立して扱うことが可能である。このモデル（図7(a))はそのうちの傾き運動を表したものである。このモデルにおける非線形項の物理的説明は他の周報で示してある(8)～(10)。
回転体の慣性モーメントを I_p, 直径に関する慣性モーメントを I, 回転体の位置の軸の傾きを θ_x, θ_y, 軸のばね定数を δ, 滑り係数を c, 回転体の動つまりあいを τ, 回転角度を ω, 時刻を t です。このモデルの運動方程式は次式となる(8)～(10)。

\[
\begin{align*}
I\ddot{\theta}_x + I_p\omega \dot{\theta}_y + c\ddot{\theta}_x + \delta \theta_x &= (I - I_p)\tau^2 \cos \omega t, \\
I\ddot{\theta}_y - I_p\omega \dot{\theta}_x + c\ddot{\theta}_y + \delta \theta_y &= (I - I_p)\tau^2 \sin \omega t.
\end{align*}
\]

式 (2) などの無次元化した結果を用いることにより、無次元数の運動方程式系は次式のように得られる(8)～(10)。なお、無次元化後に t は省略した。

\[
\begin{align*}
\theta_x' &= \theta_x / \tau_0, \quad \theta_y' = \theta_y / \tau_0, \\
\tau_p' &= \tau / \tau_0, \\
I_p' &= I_p / I, \\
\omega' &= \omega / \sqrt{\delta / I},
\end{align*}
\]

式 (2) の無次元数を用いることにより、無次元数の運動方程式系は次式のように得られる(8)～(10)。なお、無次元化後に t は省略した。

\[
\begin{align*}
\theta_x' + i\omega \theta_y' + c\theta_x + \theta_x + N_{ex} &= (1 - i\rho)\tau^2 \cos \omega t, \\
\theta_y' - i\omega \theta_x' + c\theta_y + \theta_y + N_{ey} &= (1 - i\rho)\tau^2 \sin \omega t
\end{align*}
\]

ここで、座標をいう非線形項の影響(4)(8)を表す N_{ex}, N_{ey} を加える。パラメータ \rho は、回転体の慣性モーメント I_p と直径に関する慣性モーメント I 的比であり、系に作用するジャイロモーメントの大きさを表す。本研究では、ジャイロモーメントの作用が小さい場合を考えているので、\rho 小さい場合を考える。

振動数方程式は、式 (3) において、c = 0, \tau = 0, N_{ex} = 0, N_{ey} = 0 とし、\theta_x = A \cos pt, \theta_y = A \sin pt とおくことにより次式で与えられる。

\[
G(p) = 1 + i\rho \omega p - p^2 = 0
\]

このモデルの図示傾角数図の例を図7(b)に示す。前向きふれまわりと後向きふれまわりの図示傾角数 p_f と p_b は、ジャイロモーメントの作用により、回転速度の関数として変化する。したがって、\rho 小さい場合、系に作用するジャイロモーメントが小さい場合には、図7(b)のように、回転角度に対してあまり変化しない。その結果、前向き1/2 次数変波共振、後向き1/2次
回転軸系のカオス振動と内部共振現象

3.2 1/2次分数調波共振の解析

前向きおよび後向き1/2次分数調波共振の共振点 \(\omega_1 \) および \(\omega_2 \) が近接するため、内部共振の影響により、振動数 \((1/2)\omega_2\) および \(-(1/2)\omega_2\) の振動に同時に発生すると予想して、解を \(O(\epsilon)\) 精度でつぎのように仮定する。

\[
\begin{align*}
\theta_x &= R_f \cos(\omega t + \delta_f) + R_0 \cos(-\frac{1}{2} \omega t + \delta_0) \\
&\quad + P \cos(\omega t + \beta) + A_x \\
\theta_y &= R_f \sin(\omega t + \delta_f) + R_0 \sin(-\frac{1}{2} \omega t + \delta_0) \\
&\quad + P \sin(\omega t + \beta) + A_y
\end{align*}
\]

式 (5) を式 (3) に代入し、振動数 \((1/2)\omega_2\) および \(-(1/2)\omega_2\) および定数項について、\(O(\epsilon)\) 精度で両辺を等置するとき、\(R_f, R_0, \omega, \delta_f, \delta_0\) および定数項 \(A_x, A_y\) に関する次式が得られる。

\[
A_f R_f = \frac{1}{2} \omega R_f \\
+ 2\epsilon(1) \{-P R_f \sin(2\delta_f - \delta_0) \\
+ R_0 A_x \sin(\delta_f + \delta_0) - R_0 A_y \cos(\delta_f + \delta_0)\} \\
+ 4\beta(0) \{R_0 R_f \{(A_x^2 - A_y^2) \sin(\delta_f + \delta_0) \} \\
- 2R_0 A_x \cos(\delta_f + \delta_0) + 2P R_0 A_y \cos(\delta_f + \delta_0) \\
- 2P R_0 A_y \sin(\delta_f + \delta_0)\}
\]

\[
A_f R_0 \delta_f = G(\frac{\omega}{2}) R_f \\
+ 2\epsilon(1) \{-P R_f \cos(2\delta_f - \delta_0) \\
+ R_0 A_x \sin(\delta_f + \delta_0) - R_0 A_y \cos(\delta_f + \delta_0)\} \\
+ 4\beta(0) \{R_0 R_f \{(A_x^2 - A_y^2) \sin(\delta_f + \delta_0) \} \\
- 2R_0 A_x \cos(\delta_f + \delta_0) + 2P R_0 A_y \cos(\delta_f + \delta_0) \\
- 2P R_0 A_y \sin(\delta_f + \delta_0)\}
\]

上式において、\(A_f = (1 - i_p)\omega, A_0 = -(1 - i_p)\omega, G(\omega/2) = 1 + i_p \omega^2/2 - \omega^2/4, G(-\omega/2) = 1 - i_p \omega^2/2 - \omega^2/4\) である。また、調和振動成分の振幅 \(P\)、位相 \(\beta\) は、\(O(\epsilon)\) 精度の解析により得られる \(P = -(1 - i_p)\omega^2/2(1 + i_p \omega^2 - \omega^2)\)、\(\beta = -\pi\) を用いた。

3.3 和差調波共振 \([p_f - p_0]\) の解析

和差調波共振 \([p_f - p_0]\) の共共振点 \(\omega_3\) 付近で、固有振動数 \(p_f, p_0\) および調整

\[
\begin{align*}
\theta_x &= R_f \cos(\omega t + \delta_f) + R_0 \cos(\omega t + \delta_0) \\
&\quad + P \cos(\omega t + \beta) + A_x \\
\theta_y &= R_f \sin(\omega t + \delta_f) + R_0 \sin(\omega t + \delta_0) \\
&\quad + P \sin(\omega t + \beta) + A_y
\end{align*}
\]

式 (9) を式 (3) に代入し、振動数 \(\omega_2\) および定数項について、\(O(\epsilon)\) 精度で両辺を等置することにより、

\[
R_f, R_0, \omega, \delta_f, \delta_0\] および定数項 \(A_x, A_y\) に係る解を次のように仮定する。

\[
\begin{align*}
\theta_x &= R_f \cos(\omega t + \delta_f) + R_0 \cos(\omega t + \delta_0) \\
&\quad + P \cos(\omega t + \beta) + A_x \\
\theta_y &= R_f \sin(\omega t + \delta_f) + R_0 \sin(\omega t + \delta_0) \\
&\quad + P \sin(\omega t + \beta) + A_y
\end{align*}
\]

44

NII-Electronic Library Service
に関する以下の式を得ることができる。

\[
\begin{align*}
A_f R_f' &= -\{c R_f \omega_f + 8 P A_x R_0 \beta^{(0)} \sin \psi + 8 P A_y R_0 \beta^{(0)} \cos \psi + 2 P R_0 \varepsilon^{(1)} \sin \psi\} \\
A_b R_b' &= -c R_b \omega_b + 8 P A_x R_f \beta^{(0)} \sin \psi + 8 P A_y R_f \beta^{(0)} \cos \psi + 2 P R_f \varepsilon^{(1)} \sin \psi
\end{align*}
\]

\[
\psi = \frac{1}{A_b A_f R_0 R_f} \left\{ 4(2A_b - A_f) R_0^3 R_f \beta^{(0)} \right. \\
+ 2A_b P R_0^2 (-4 A_x \beta^{(0)} \cos \psi + 4 A_y \beta^{(0)} \sin \psi - \varepsilon^{(1)} \cos \psi) \\
- 2A_f P R_0^2 (-4 A_x \beta^{(0)} \cos \psi + 4 A_y \beta^{(0)} \sin \psi - \varepsilon^{(1)} \cos \psi) \\
+ R_0 R_f (-A_f G(\omega_b) + A_b G(\omega_f) \\
+ 4(2A_b - A_f) P^2 - 2A_f P^2 + 2A_b A_2^2 \\
- 2A_f A_2^2 + 2A_b A_2^2 - 2A_f A_2^2 \\
+ A_b R_f^2 - 2A_f R_f^2 \beta^{(0)} \\
+ 4A_b A_2 \varepsilon^{(1)} - 4A_f A_2 \varepsilon^{(1)}) \left\}
\end{align*}
\]

\[
i \omega_A x_A = A_3 + 4 A_3 \beta^{(0)} + 4 A_4 \beta^{(0)} \\
- 12 P R_0 R_f \beta^{(0)} \cos \psi \\
+ 6 A_4 (P^2 + R_0^2 + R_f^2) \beta^{(0)} \\
+ A_4 (6 P^2 + R_0^2 + R_f^2) \beta^{(1)} + 2 A_4 \varepsilon^{(1)} \\
- i \omega_A x_A = A_2 + 2 A_2 (P^2 + R_0^2 + R_f^2) \beta^{(0)} \\
+ 2 A_2 (P^2 + 2A_2 R_0^2 + R_0^2 + R_f^2) \beta^{(0)} \\
+ A_2^2 \varepsilon^{(1)} - A_2 A_2 (A_2 \beta^{(0)} + 3 \varepsilon^{(1)} \\
+ 2(-2 P R_0 R_f \beta^{(0)} \cos \psi \\
+ P^2 \varepsilon^{(1)} + R_0 \varepsilon^{(1)} + R_f^2 \varepsilon^{(1)})
\end{align*}
\]

ここで、\(A_f = 2a_f - i \omega_f, A_b = \omega_b - i \omega_f, G(\omega_f) = 1 + i \omega_f + \omega_f^2, G(\omega_b) = 1 + i \omega_b + \omega_b^2 \) である。

3.4 共振曲線
1/2次分数遮波共振の共振曲線は式 (6)-(8) を解くことにより、また、和差遮波共振の共振曲線は式 (10)-(12) を解くことにより求まる。パラメータ \(t_0 \) の値が小さい場合の共振曲線の例を図 9 に示す。この図には1/2次分数遮波共振および和差遮波共振の値を示す。和差遮波共振 \([p_f - p_b] \) の前向き成分のみを示した。実線は安定解、破線と鎖線は不安定解を示す。破線は、ホップ分岐による不安定解である。図の○・×は数値シミュレーション結果である。

図 7(b) で示した共振点 \(\omega_1, \omega_2 \) に対応して、2 個の回転速度領域において1/2次分数遮波共振が発生し、高速側の共振曲線ではホップ分岐により振幅変調運動が発生した。○は定常解の振幅、×は1/2次分数遮波共振からのホップ分岐により発生した振幅変調運動の振幅の最大値と最小値を示す。そして、図 7(b) の1/2次分数遮波共振の間の回転速度領域において、和差遮波共振 \([p_f - p_b] \) の共振曲線に対応し、振幅変調運動が発生する。△は和差遮波共振 \([p_f - p_b] \) の振幅変調運動の振幅の最大値と最小値を示す。これらの共振や分岐の様子、および発生する振動の種類の分布は、図 9 で示した実験結果と定性的に良く一致している。

3.5 1/2次分数遮波共振におけるカオス
図 8 の1/2次分数遮波共振 A の分枝の鎖線の領域における振動現象を、式 (3) を直接数値積分して調べる。図 8 で定常解から振幅変調運動に変化した \(\omega = 2.1 \) 付近のいくつかの回転速度での \(\theta_0 \) の時刻歴、ポアンカレ写像およびスペクトルを図 9 に示す。

図 9(a) \((\omega = 2.095) \) は、1/2次分数遮波共振に対応し、ポアンカレ写像では2点が現れる。そのスペクトルでは回転速度 \(\omega \) 成分、 \(\pm (1/2) \omega \) 成分、そして定数成分が大きく現れている。図 9(b) \((\omega = 2.099) \) では、ホップ分岐により振幅が軸の回転周波数と比較して長い周期で変化していることが確認でき、ポアンカレ写像は2つの開ループを描くようになる。このときスペクトルは \(\pm (1/2) \omega \) 成分、および定数成分に加え、その両側に等間隔に多くの振動数成分が発生している。さらに回転速度を上げると、周期倍分岐が発生しポアンカレ写像のループは2重（図 9(c) \((\omega = 2.100) \)）4 重と変化していく。そして、図 9(d) \((\omega = 2.131) \) では時刻歴は非周期的となり、ポアンカレ写像は有限領域内に分散した点の集合になる。スペクトルにおいては \(\pm (1/2) \omega \) 成分付近、および定数成分付近だけでなく、広い範囲で振動数成分が連続的に分布して発生していることが分かる。これらの解析結果は図 3 で示した実験結果と定性的に一致している。

以上の理論解析で得られた振動現象について、ラプラシアン指数 \(\lambda \) を計算した。図 10 に、図 8 の A の分枝 \((\omega = 2.087 \sim 2.200) \) に関する最大ラプラシアン指数を示す。回転速度 \(\omega = 2.125 \) あたりでは B の分枝に引
き込まれ、また $\omega = 2.175$ では $[2p_f]A$ の高速側の分枝に引き込まれるため、リャプノフ指数は負となっているが、$\omega = 2.135 \sim 2.165$ 付近における回転速度範囲でリャプノフ指数が正となる。

以上の解析結果により、実験で発生したカオス振動の振動特性と内部共振の影響を説明することができた。

3.6 和差調波共振 $[p_f - p_b]$ におけるカオス

非対称非線形性的大きさを表すパラメータ $\varepsilon^{(1)}$ を小さくしたときの共振曲線を図 11 に示す。図 8 の場合と異なり、和差調波共振 $[p_f - p_b]$ に関連した振幅変調運動が優勢となる。そして、その振幅変調運動において、$\omega = 2.00 \sim 2.05$ 付近で、大きな振幅変調幅の領域が発生する。

図 12 に、この和差調波共振 $[p_f - p_b]$ に関する振幅変調運動の θ_0 の時刻歴、ポアンカレ写像、スペクトル図を示す。図 12(a) ($\omega = 1.96$) では振幅が軸の回転周期と比較して長い周期で変化し、ポアンカレ写像は 1 重の閉ループとなる。スペクトルは、ω_f, ω_b 成分、回転速度 ω 成分と定数成分に加え、その間隔に等間隔に発生する。回転速度を上げると図 12(b) ($\omega = 1.998$) に示すようにポアンカレ写像は 2 重の閉ループに分岐する。さらに回転速度を上げると、図 12(c) ($\omega = 2.00$) に示すように、時刻歴は非周期的となり、ポアンカレ写像は有限領域内に分散した点の集合になる。スペクトルは ω_f, ω_b 成分、回転速度 ω 成分と定数成分近傍に数多く発生する。

図 11 の和差調波共振 $[p_f - p_b]$ の振幅変調運動についての最大リャプノフ指数の計算結果を図 13 に示す。$\omega = 1.95$ 付近から、和差調波共振 $[p_f - p_b]$ の振幅変調運動の発生に対応して、最大リャプノフ指数は零となり、振幅変調幅が大きい領域 ($\omega = 2.00 \sim 2.05$ 付

Fig. 9 Time histories and Poincaré map

Fig. 10 Largest Lyapunov exponents

Fig. 11 Resonance curves ($\varepsilon^{(1)} = 0.07$)
回転軸系のカオス振動と内部共振現象

近) に対応して最大リャプノフ指数は正となることから、カオス振動の発生が確認できる。
これらの解析結果は実験で得られた図 5、6 の結果を定性的に説明しており、さらにパラメータの状態によばって、和差調波共振 \([f_r - f_0]\) に関連したカオス振動の発生の可能性があることを明らかにしている。

4. 結論

弱い非線形特性を持ち、前向きと後向きの固有振動数がほぼ 1 : (−1) の内部共振の関係をもつ回転軸の主危険速度の 2 倍付近における共振現象について以下の結論を得た。

(1) 2 種類の 1/2 次分数調波共振の発生、および、和差調波共振の振幅変調運動の発生を確認した。

(2) 1/2 次分数調波共振の高速側の分枝では、ホップ分岐による振幅変調運動から、カオス振動が発生することを観察した。

(3) 和差調波共振の振幅変調運動からの分岐現象を観察した。実験では、ポアンカレ写像における 1 重から 2 重のスプールへの分岐現象を観察し、理論解釈では、同様な現象に加え、さらにカオス振動の発生を明らかにした。

文献

(2) 山本・安田，機論，42-328(1976)，1692。
(4) 石田・井上，機論 C, 63-606(1997), 321。
(5) 石田・井上・竹内，機論 C, 63-614(1997), 3335。
(6) 井上・石田・近藤，機論 C, 66-642(2000), 370。
(8) 山本・石田，機論，41-345(1975), 1374。
(9) 山本・石田・川村，機論，41-341(1975), 133。
(10) 山本・石田，回転機械の力学 (2001),21, コロナ社。
(11) 山本，機論，22-123(1956), 868。
(12) 山本，機論，26-164(1960), 612。