ロボットによる鋳物素材仕上げ作業の自動化*
（打撃工具の開発とその外乱補償機能）
杉田真一*1，竹内芳美*2

Automation of Casting Products Finishing Works by Robot
(Development of Hammering Tool and Compensation Function for it)
Shinichi SUGITA and Yoshimi TAKEUCHI*3

*3 The University of Electro Communications, Dept. of Mechanical Engineering and Intelligent Systems,
1-5-1 Chofugaoa, Chofu shi, Tokyo, 182 8585 Japan

This study deals with the development of new hammering tool called “air chipper”. Hammering tool
is one of typical deburring tools, and air-chipper is conventionally used to perform the deburring
work for cast workpieces. Although air-chipper is an effective tool, there are problems of durability
and quality since it is driven by compressed air. Excess energy after hammering motion transfers
to dumper rubber and causes the deterioration of rubber, which leads to the breakage of a chisel holder
of air chipper due to the crash with the stopper. In addition, the difficulty to directly measure the
chisel motion causes uncertainty of deburring quality. Thus, the improvement of air chipper was
intended to solve the above problems by introducing an air damper to the air-chipper. It is possible
to diagnose the deburring quality by measuring the inner pressure of air damper room. As a result,
airchipper installed in a deburring robot system reveals an effective performance in combination with
the image processing device.

Key Words: Deburring, Castings, Robot, Hammering tool, Air Chipper

1. 結論

鋳造物の仕上げにおいては、目標とする製品の品質
精度や設備コストの観点から、多関節型ロボットを使
用することが多い1,2)。その場合の加工品質精度は、
ロボットの荷重、動的な性能と、適用する手法である
加工技術に依存するが、現実にはこの目標加工品質精
度の達成を阻害するいくつかの要因が存在する。それ
は、工作物の設置位置と形状寸法のばらつきや、除去
対象であるバルスのばらつき等の工作物側要因と、
刃具摩耗や加工能力劣化などの刃具・工具側要因で、
これらを外乱と呼ぶ。

そこで、ロボットエンジニアリングにおける新たの
関心事は、これらの工作物側要因と刃具・工具側要因
をいかに生産システムで制御するかというところにあ
る。例えば、人手で作業を行う場合、目で見て、耳で
聞き、手で感じると、これらの情報から判断して、最
も効率的な作業で、最高の品質を達成することができ
る。このセンシングからの判断と、作業動作の最適化
を自動化システムにおいて実現するのが補正機能や適
応制御機能であり、これらを「外乱補償技術」と呼ぶ
ことになる。これは、工作物の状態や作業状態、加工
品質を何らかの計測手段により、事前に、またはシス
テムの自動運転中にリアルタイムに監視し、作業進行
上の問題を検出・判断した際に、それを補償するため
の何らかの演算や動作を行うことにより、目標と
する作業品質を確保しようとするものである。

しかし、自動化システムを成立させるためには、生
産性への配慮も必要であり、効率のよいセンシングと
補償方法が要求される。すなわち、適用する手法と結
合した外乱補償技術の開発が重要であるといえる。
本研究では、鋳物素材仕上げのための、ロボット工
法の一つである打撃加工法について、工具の耐久性に
関する課題を解決し、かつ外乱補償の概念を導入して
自己診断機能と加工品質評価機能を搭載した工具を考
案し、工法を確立したので報告する。

2. 仕上げ工法における外乱補償技術

鋳物素材仕上げ加工のための基本的なロボット工法
として、研削、切断、打撃の三つの加工原理が存在す
る。表1は、先に述べた外乱要因に対してこれまでに
確立されている外乱補償技術を整理したものである。
ロボットによる鉄材材仕上げ作業の自動化

工作物の寸法や設置位置のばらつきに対しては、変位測定による補正が行われている。また、除去すべきバリ寸法の変動に対しては、加工反力や工具負荷電力を測定することにより、バリ寸法と加工結果品質を推定し、工具送り速度の制御や加工サイクルの制御を行う方法が開発されている。しかし、打撃工法においては、工作物のバリ寸法変動に対する補償や、チゼル摩耗による加工能力劣化補償、工具自身の機能診断などの外乱補償技術が大きく確立されていないため、角状バリの除去加工において効率的な工法であるにもかかわらず、作業の不確実さや後述の工具耐久性の問題からその適用が敬遠されているのが実状であった。

3. 従来の打撃工具における課題

鉄材材仕上げ作業における代表的な打撃工具は、図1に示すエアーチッパであり、これは圧縮空気を駆動源として自動的に打撃振動を生ずる工具である。ロボットが工具を把持することから、比較的コンパクトで大きな出力が得られる空気圧駆動式が一般的であり、本工具の打撃力は2KN以上、打撃数は27Hzである。省エネルギー的志向から、研削や削切工法では加工効率が悪い角状バリの除去加工に対して有効で、穴の奥部の加工などツーリング的にも不可欠な工法である。

従来よりロボット用工具として用いられているエアーチッパには、工具自身の耐久性と加工品質確保に関する二つ目の課題が存在していた。

耐久性に関する課題は、工具自身が出力したエネルギー消費の問題である。工具が出力した打撃運動エネルギーは、バリを除去するために消費されるが、バリ除去に必要なエネルギーに対して、工具で出力したエネルギーが十分に大きい場合、または加工しているときそれがすぐにバリがない、すなわち突打ちの場合、工具で出力したエネルギーは行き場を失い、工具自身のエネルギーを発生することになる。工具の構造上、この余剰エネルギーの消費経路は、①リターン

<table>
<thead>
<tr>
<th>Classification</th>
<th>Factor of affecting processing accuracy</th>
<th>Compensation function</th>
<th>Measurement object</th>
<th>Control object</th>
<th>Processing principle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece</td>
<td>Displacement of workpiece setting position and workpiece shape</td>
<td>Position and path revision</td>
<td>Displacement image</td>
<td>Robot path</td>
<td>Developed</td>
</tr>
<tr>
<td></td>
<td>Floating unit</td>
<td>*****</td>
<td>Robot path</td>
<td>Developed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispersion of burr size and existence part</td>
<td>Processing force, Power consumption</td>
<td>Path speed</td>
<td>Developed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processing cycle control</td>
<td>Processing force, Power consumption</td>
<td>Speed, Path, Number of path</td>
<td>Developed</td>
<td></td>
</tr>
<tr>
<td>Cutter, Tool</td>
<td>Tool size change due to abrasion</td>
<td>Tool dimension revision</td>
<td>Tool size</td>
<td>Path, Tooling point</td>
<td>Developed</td>
</tr>
<tr>
<td></td>
<td>Ability deterioration by the abrasion or damage</td>
<td>Processing ability revision</td>
<td>Processing force, Power consumption</td>
<td>Speed, Tooling point</td>
<td>*****</td>
</tr>
</tbody>
</table>

Table 1 Compensation function for deburring robot system

Fig. 1 Appearance and structure of conventional air-chipper

—284—
ロボットによる鉄板材料仕上げ作業の自動化

ブリッジのボテンシャルエネルギーへの置換。①ダンバーガムのポテンシャルエネルギーへの置換。②ダンバーガムの内部摩擦損失（熱）、③振動部の振動損失（熱）。⑤チゼル、チゼルホルダでの構造損失（振動、音）の五つである。

リターンスプリングへの衝撃を緩和するために配置されているダンバーガムは、余剰エネルギーをリスツロック導で圧縮変形され、内部摩擦発熱により急速に劣化していく。このダンバーガムは、ダンバーガム効果を失うと、スプリングは衝撃荷重による疲労破壊に至り、さらにチゼルをストッパがチゼルホルダへの衝突することによる構造損失に移行し、チゼルホルダが過大応力により疲労破壊に至るという構成部分の連鎖的な破壊状態となる。

また、加工品質確保に関する課題は、作業の確実性に関するものである。例えば回転工具の場合は、その回転数や消費電力の変動により加工品質が損なわれる。したがって作業品質を推定することができるが、この工具においては、空気圧駆動であることから電気動力信号が扱えないこと、大きな反力を伴う振動現象を測定することの難しさから、チゼルの運動状態を直接測定することは困難であった。

4. 改良型ロボット用打撃工具

先の二つの課題を解決した改良型アーカーチャップの機構図を図2に示す。工具は、ハンマー駆動部とチゼルホルダ部、排気消音部、および振動絶縁ホルダ部にて構成される。供給された圧縮空気は、エアパス切り替えバルブによりハンマーを直線往復運動させる。チゼルホルダ部には、除去対象のバリを打撃するチゼルが保持されており、ハンマーの前進端においてチゼルと衝突し、このときチゼルは運動エネルギーを新進しバリを打撃する。打撃運動速度は27 Hzである。

チゼルに与えられた運動エネルギーは、バリを折断除去するために消費されるべきものであるが、仮に打撃した部位にバリが存在しない場合、またはバリの厚さが薄いために容易に除去される場合、チゼルはダンバーガムとリターンスプリングを介して、ストロック導のホルダと衝突し、余剰運動エネルギーを構造損失に消費することになる。これにより工具自身の破壊につながることがあり、これを解決するのがエアダンバーガムである。エアダンバーガムは、リターンスプリングを配置された空間とストッパと呼ばれる部分で構成され、余剰エネルギーをエアダンバーガム内室空気の圧縮損失により消費させることで、工具の自身耐久性を飛躍的に向上する。図3の空打撃荷重耐久試験結果が示すよう

Fig. 2 Structure of improved air chipper

Fig. 3 Effect about durability

Conditions for durability test

- Hammering object: The air
- Posture of air-chipper: Vertical
- Power source air pressure: 0.4 MPa
- Damper air pressure: 0.1 MPa
- Hammering frequency: 27 Hz
- Chisel stroke: 9.5 mm

- Life of damper rubber hours

Conventional air-chipper

Improved air-chipper

—285—
に、ダンパゴムの寿命は、従来と比較して15倍に向上した。
また、エアーダンパ室に供給する空気圧力値を変え
ることにより、エネルギー蓄積距離、すなわちチセル
ストローク量を調整することが可能になった。図4に
示すように、圧力の増加とともにストロークは減少す
る。この特性は、チセル先端と工作物母材との干渉を
避けることを目的として作業部位ごとにストローク量
を変える場合に有効である。
エアーダンパにおける内部圧力は、チセルのストロ
ークにより変動するため、チセルの運動状態、すなわ
ち加工状態を知るための代用特性値になる。例えば、
バリが打ち抜けない場合、圧力は上がらず、逆に打ち
抜けた場合はストロークに応じた圧力上昇を生じる。
そこでエアーダンパの内部圧力を測定するためのセン
サを搭載し、圧力変動情報をリアルタイムに監視して
解析することにより、作業状態、すなわち加工品質の
診断が可能となる。

5. 外乱補償機能を有する打撃工具

5.1 自己診断機能　ロボット作業を人が行う作
業に近づけ、人が行う認識、判断、動作のロジックを
ロボット機能化することにより、高効率で高品質な作
業を実現できるシステムが望ましい。
作業者は、工作物状態を目視して作業が必要な部位
と不要な部位を認識し、最適な動作サイクルと加工条
件を設定する。加工中は、加工状態を目で見、耳で聞
き、反力を手で感じながら作業結果がよいか否かを常
に判断し、状況に対応した効率のよい動作で加工品質
を生み出すことができる。
開発した打撃工具は、チセルホルダ部エアーダンパ
の内部圧力を計測するためのセンサを搭載している。
エアーダンパへは圧縮空気が常時供給されており、チ
セルの戻り原位置においてはダンパ室は大気に開放さ
れているため、ダンパ室内の圧力は大気圧であるが、

![Fig. 4 Characteristic of Chisel stroke](image)

![Fig. 5 Detection circuit for self check and check of processing quality](image)
かじめ、パリのない作業物のカメラ画像をメモリに記憶させておき、これとパリのある作業物画像とを比較することにより、光量差を差を生じた部位をパリとして認識させるものである。実際にはカメラ視野をエリア分割して画像記憶を行い、このエリア単位でパリの有無を判定する。パリの取り加工を行う前に、この情報をロボットへと伝送しておく。ロボットはこの情報をもとに、加工が必要とする部位と不要な部位を認識し、効率的な作業動向を決定して加工を開始する。

6. 打撃工具による仕上げ実験

外乱補償機能を搭載した打撃工具におけるシステム図を図7に、また、5章までに説明した動作サイクルの流れを図8に示す。システムは、まず工作物上部に設置されたカメラにより膜パリの有無を検出し、この情報をロボットコントローラへと伝送する。ロボットはこの情報を受けて、膜パリが存在する部位のみ加工を行うよう動作プログラムを構成する。続いて工具を空

作動させ、工具動作の自己診断を行う。各穴の打ち抜き加工中は、エアダンパの圧力変動をセンサの信号を演算し挿入駆動の出力を監視する。

図9は改良したエアチッパを装着したロボットによるパリ取り実験の状況を示す。本実験における工作物は、図10に示すようなアルミニウム板の各面から、同径で直径40mmと50mmの穴を加工するためで、直径40mmの穴の奥に厚さ0.7〜1.5mmの膜状パリが存在する作業仕掛を想定している。またチッパ先端は約8mmで、チッパ先端部が円形膜パリを沿うよう、あらかじめロボットの円弧補間動作にて教示しておく。

ツーリングと動作を図11に示す。各穴の加工は、四つの円弧で構成される。開始位置でまず最初の打ち抜きを確認した後、円弧1から円弧2、円弧3へ

Fig.6 Example data for checking processing quality

Fig.7 Deburring system with the improved air chipper

Fig.8 Flow chart for automatic deburring works

Fig.9 Robot with the improved air chipper
7. 結 言

鉄物素材仕上げのためのロボット用打撃工具として、高耐久で各種機能を備えたエアーチャッホを考案するとともに、ロボットに組み込んで作業を行い、次のような結論を得た。

（1）従来のエアーチャッホにおいて、バリのばらつきにより発生する工具自身的耐久性と加工品質確保の二つの課題を明らかにした。

（2）エアーチャッホのネズルホルダ内にエアーダンバーを設け、空気の圧縮流を利用して、空撃打時の余剰エネルギーを消費させる方式にしたもので、工具の耐久性を向上できた。

（3）エアーダンバーに供給する空気圧力制御により、チゼルストローク量の調整ができるようになったため、加工部位の形状に応じてストローク量を変えることで、チゼル先端が工作物母材へ干渉することによる加工品質不良を解消した。

（4）圧力センサを用いてエアーダンバーの内部圧力を測定することでチゼルの運動状態を認識でき、これにより工具機能と作業状態の診断が可能となった。この情報に基づくロボットの適応制御により、加工品質を確保することができた。

（5）外乱対策機能搭載のエアーチャッホと画像処理装置を組合せることにより、高効率で高品質なロボット加工システムを構築できた。あらかじめカメラによりバリの存在を認識することで、効率的な加工作業を完全にバリの除去作業状態にリアルタイムに認識して完全にバリが除去できるまで加工することを確認できた。

さらに、本開発により、ロボットを用いた鉄物素材仕上げ作業の自動化に適用可能な打撃工法を確立できた。

最後に、本研究を行なうにあたり、ご助言いただいた豊田工機（株）の方々に感謝の意を表する。

文献

（1）浅田直順・伊藤輝男・竹内茂美．ロボットによるバリ取り作業の自動化・自作曲面の製作の場面．精密工学会誌，64-5（1998），773-778。

（3）中村晃一・杉村利雄・小島慎之郷・青木敏雄・道木一郎・ロボットによるバリ取り．豊田工機技術，29-1（1988），13-19。

（5）尾上守夫・藤田薰．画像処理技術の応用と自動化システムハンドブック，（1990），236-238。