磁気軸受のファジモデリングと
μ設計理輪によるロバスト超平面を有するスライディングモード制御*

許有志*1, 野波健蔵*2

A Fuzzy Modeling of Active Magnetic Bearing System
and Sliding Mode Control with Robust Hyperplane Using μ-Synthesis Theory

Youzhi XU*3 and Kenzo NONAMI

*3 EBARA DENSAN LTD., 4-1-1 Honfujisawa, Fujisawa-shi, Kanagawa, 251-8521 Japan

The aim of this paper is to realize a sliding mode control system using robust hyperplane based
on fuzzy model for active magnetic bearing (AMB) system with gyroscopic rotation. A fuzzy model
of AMB system is built from the input and output data of the actual turbo-molecular pump by using
fuzzy neural network. The sliding mode controller has a switching hyperplane using μ-synthesis
theory which has a powerful robustness and can suppress spillover phenomena. The super high-
speed operation test of the actual turbo-molecular pump has been done by using the proposed
controller. The good experimental results have been obtained. Therefore, it has been clarified that
the proposed scheme is very useful strategy for AMB system.

Key Words: Active Magnetic Bearing, Turbo-Molecular Pump, Fuzzy Neural Network, Fuzzy
Model, Robust Hyperplane, Sliding Mode Control, μ Synthesis Theory

1. 緒 言

磁気軸受デジタル制御におけるロバスト制御理論の
適用の研究11)〜17)が数多く発表されている。著者らは、
前報16)で、数学モデルが未知で構築できない磁気軸受
系に対して、動特性をファジモデル16)で表現し、シス
テム同定に有効なファジニューラルネットワーク
（以下 FNN と略称）技術11)を用いてファジモデリ
ングを行い、そして同定した磁気軸受のファジモデリ
ングを基にスライディングモード制御系を構成する手法
を提案した。本論文では、数学モデルが未知な磁気軸
受の制御問題を解決する同時に、さらに実システム
における磁気軸受のパラメータの変動が大きく発生し
た場合、または製造及び開発段階でのコストを大きく
下げるため、1つの制御器で、異なる多機種磁気軸受
系を制御することが可能なμ設計法に基づくロバスト
超平面を有するスライディングモード制御による磁気
軸受制御を提案する。

まず、FNNに基づくモデリングについて、前報が
1出力系としてモデリングを行ったのに対し、本報で
は、μ制御超平面を設計するには、制御対象を正
準形の方程式で表す必要があるため、2出力系として
モデリングを行う。つぎに、得られたファジモデル
から、実パラメータを含む構造的な変動ブロックを求
め、複数の構造的な不確かさに対するロバスト安定性
とロバスト性能保持のできるμロバスト超平面を有す
るスライディングモード制御による磁気軸受制御系を
設計する。そして、その制御系をDSPを用いたデジ
タル制御器に実装し、定格運転4500rpmに達
するターボ分子ポンプ（以下TMP）により、実機で
の浮上・回転実験を行った。またロバスト制御性能を
検証するため、前報で提案した手法と本論文で提案し
た手法を用いて、異なる磁気軸受系の実験試験を行っ
た、その結果、本論文で提案した手法の有効性を実証
したので報告する。

2. モデリング

![Fig. 1 Active magnetic bearing system](image-url)
2.1 5軸制御形磁気軸受
図1は、5軸制御形磁気軸受の基本構造を示している。本研究では、実用性と設計の容易さに重点を置き、設計の段階ではラジアルのフロント及びアーム、そしてアシメトリカルの各軸受をそれぞれ独立した単体の磁気軸受モデルとして考え、それぞれのサブシステムに対して制御系を設計する。

2.2 磁気軸受のファジーモデル
ファジーモデルとは、ファジー制御の推論法で使われたif-then形式で記述するモデルであり、制御対象を動的入力出力関係を差分方程式によって表せば、制御対象のダイナミカルモデルになる。本研究では、各サブシステムに対して、ファジーモデルの構造は、前件部入力変数を入力変数 \(x_k \) と転位変数の1階差分 \(\Delta x_k \) に選び、後件部入力変数を転位変位 \(x_k \)、転位変数の1階差分 \(\Delta x_k \) と操作量 \(u_k \) にする。また、後件部出力としては、1サンプリング後の転位変位 \(x_k \) と1サンプリング後の転位変位の1階差分 \(\Delta x_k \) に決定する。

入力空間のファジー分割の決定には、\(x_k \)、\(\Delta x_k \)の平面で同定に用いるデータ \(x_k \)、\(\Delta x_k \)の分布状況を描き、できるだけ分割する全ての領域にデータが分布するように分割を行う。結果として、入力変数 \(x_k \)、\(\Delta x_k \)に対する前件部メンバーシップ関数はともに\(\text{small} \)と\(\text{big} \)の2種類にファジー分割する。\(\mu \)ロバスト超平面を設計するには、制御対象を正方形の方程式で表す必要があるため、本研究に用いるファジーモデルは式(1)～式(4)に示したものとなる。

\[
L_i: \text{if } x_k \text{ is small}(A_{1i}) \text{ and } \Delta x_k \text{ is small}(A_{2i}) \text{ then } x_{k+1} = a_{1i1} x_k + a_{1i2} \Delta x_k, \Delta x_{k+1} = a_{2i1} x_k + a_{2i2} \Delta x_k + a_{2i3} u_k
\]

\[
L_i: \text{if } x_k \text{ is small}(A_{1i}) \text{ and } \Delta x_k \text{ is big}(A_{2i}) \text{ then } x_{k+1} = a_{1i1} x_k + a_{1i2} \Delta x_k, \Delta x_{k+1} = a_{2i1} x_k + a_{2i2} \Delta x_k + a_{2i3} u_k
\]

\[
L_i: \text{if } x_k \text{ is big}(A_{1i}) \text{ and } \Delta x_k \text{ is small}(A_{2i}) \text{ then } x_{k+1} = a_{1i1} x_k + a_{1i2} \Delta x_k, \Delta x_{k+1} = a_{2i1} x_k + a_{2i2} \Delta x_k + a_{2i3} u_k
\]

\[
L_i: \text{if } x_k \text{ is big}(A_{1i}) \text{ and } \Delta x_k \text{ is big}(A_{2i}) \text{ then } x_{k+1} = a_{1i1} x_k + a_{1i2} \Delta x_k, \Delta x_{k+1} = a_{2i1} x_k + a_{2i2} \Delta x_k + a_{2i3} u_k
\]

ここで、\(L_i \)はi番目のファジーモデルの規則、\(a_{1i1}, a_{1i2}, a_{2i1}, a_{2i2}, a_{2i3} \)はi番目の規則の後件部パラメータである（\(i = 1,2,3,4 \)）。\(A_{1i}, A_{2i} \)は前件部メンバーシップ関数（\(i=1,2 \)）で、\(u_k \)は操作量である。

2.3 ファジーモデルの定義
ファジーモデリングは、制御対象の入出力データを用いて、式(1)～式(4)の規則パラメータを定義することである。このファジーモデリングに最も効果的な手法として、ファジー推論による推論値の計算過程をニューラルネットワークのパックプロパゲーションモデルの構造で実現するFNN技術がある。本研究では、FNN技術を適用し、式(1)～式(4)の規則パラメータを定義するためのFNNを図2に示すように構築する。このFNNは2個の後件部
布状態を見ると、前件部メンバーシップ関数の形状が図3に示したように適切に定める。（E）層において、入力はFの前件部適合度μで、出力μₘはその総和で規格化した値となり、それぞれ式(7)、式(8)のようになる。

$$\mu = \sum_{i} \mu_i \cdot \mu_{i2}(\Delta \mu)$$

$$\mu = \sum_{i} \mu_i$$

また、式(9)で示される各ファジーイモデルの規則の前件部出力xₙᵢₗₚは(Q)層の出力から得られ、式(10)で示される各ファジーイモデルの規則の後件部出力Δxₙᵢₗₚは(j)層の出力から得られる。

$$x_{n_i}(x_i, \Delta x_i) = a_{i1}x_i + a_{i2} \Delta x_i$$

$$\Delta x_{i,n_i}(x_i, \Delta x_i, \Delta x_{j,n_j}) = a_{i1}x_i + a_{i2} \Delta x_i + a_{i3} \Delta x_{j,n_j}$$

ここで、a₁, a₂は結合荷重w₁と結合荷重w₂の値であり、a₃は結合荷重w₃と結合荷重w₄の値である。入力に対するファジー推論値xₙᵢₗₚは(R)層、(S)層にて式(11)のように計算され、ファジー推論値Δxₙᵢₗₚは(K)層、(L)層にて式(12)のように計算される。

$$x_{n_i} = \sum \bar{\mu}_i x_{n_i}(x_i, \Delta x_i)$$

$$\Delta x_{i,n_i} = \sum \bar{\mu}_i \Delta x_{i,n_i}(x_i, \Delta x_i, \Delta x_{j,n_j})$$

結合荷重の更新は学習法で最も多く用いられるバックプロパゲーション法により行われる。出力誤差評価関数として、同定に用いる出力データxₙᵢₗₚとFNNのファジー推論値xₙᵢₗₚの誤差、および同定に用いる出力データΔxₙᵢₗₚとFNNのファジー推論値Δxₙᵢₗₚの誤差を用いて、それぞれ式(13)、式(14)と式(15)、式(16)のように定義する。

$$E_k = \frac{1}{2} (x_k - x_k^*)^2$$

$$E_k = \frac{1}{2} \sum E_k$$

$$E_k = \frac{1}{2} (\Delta x_k - \Delta x_k^*)^2$$

$$E_k = \frac{1}{2} \sum \Delta E_k$$

結合荷重の更新は式(17)または式(18)、そして式(19)により行う。

$$\delta_{i,j}^{(n)} = \frac{\partial E_k}{\partial \theta_{i,j}^{(n)}}$$

$$\delta_{i,j}^{(n)} = \frac{\partial E_k}{\partial \theta_{i,j}^{(n)}}$$

$$w_i^{(n)}(m+1) = w_i^{(n)}(m) + \eta \delta_{i,j}^{(n)}(m) \nabla E_k$$

ここで、δₗ₀(n)はn層 jユニットの出力誤差であり(l=1,2)。

<table>
<thead>
<tr>
<th>IF</th>
<th>THEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>xₙᵢₗₚ</td>
<td>Δxₙᵢₗₚ</td>
</tr>
<tr>
<td>Small</td>
<td>Small</td>
</tr>
<tr>
<td>0.98885xₙᵢₗₚ + 1.9450Δxₙᵢₗₚ</td>
<td></td>
</tr>
<tr>
<td>0.05808xₙᵢₗₚ + 1.21890Δxₙᵢₗₚ</td>
<td></td>
</tr>
<tr>
<td>1.00130xₙᵢₗₚ + 1.02020Δxₙᵢₗₚ</td>
<td></td>
</tr>
<tr>
<td>-0.73805xₙᵢₗₚ + 1.08580Δxₙᵢₗₚ</td>
<td></td>
</tr>
<tr>
<td>0.99724xₙᵢₗₚ + 0.83924Δxₙᵢₗₚ</td>
<td></td>
</tr>
<tr>
<td>-0.20320xₙᵢₗₚ + 0.27896Δxₙᵢₗₚ</td>
<td></td>
</tr>
<tr>
<td>0.99995xₙᵢₗₚ + 0.99794Δxₙᵢₗₚ</td>
<td></td>
</tr>
<tr>
<td>0.55274xₙᵢₗₚ - 0.49697Δxₙᵢₗₚ</td>
<td></td>
</tr>
</tbody>
</table>

3. ロバスト超平面の設計

3.1 状態方程式の導入 本研究では磁気軸受系のファジーイモデルは式(1)式(4)のように、後件部で複数の線形の関係式で制御対象の動作特性を表現するものである。そこで、これらの式の後件部のパラメータから、それぞれ近似的な共通ノミナルパラメータと推定される動変幅を以下のよう求めめる。

$$A_{11} = \max \{ a_{11} + \min a_{11} \}$$

$$A_{12} = \max \{ a_{12} + \min a_{12} \}$$

$$A_{21} = \max \{ a_{21} + \min a_{21} \}$$

$$A_{22} = \max \{ a_{22} + \min a_{22} \}$$

$$A_{11} = \frac{A_{11} + \min a_{11}}{2}$$

$$A_{12} = \frac{A_{12} + \min a_{12}}{2}$$

$$A_{21} = \frac{A_{21} + \min a_{21}}{2}$$

$$A_{22} = \frac{A_{22} + \min a_{22}}{2}$$

— 52 —
ここで、\max_{a_i}, \min_{a_i} はそれぞれ a_i の最大値と最小値を表す（$i=1,2; j=1,2,3; n=1,2,3,4$）。またこれらのパラメータは離散系から得たパラメータであり、連続系制御器設計法を用いる場合には、MATLAB により離散系パラメータを連続系パラメータに変換すれば良い。従って、制御器を設計するための磁気軸受の近似的なノミナル状態方程式は式(25)のように決めることができる。

\[
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} = \begin{bmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} + \begin{bmatrix}
 0 \\
 B_2
\end{bmatrix} u
\]
(25)

3-2 μ設計理論による超平面設計 まず、式(25)のシステムにおいて、ダイナミクスを持つ超平面を式(26)のように定義する。

\[\Psi = S(x_1) + x_2\]
(26)

このとき $S(x_1)$ は式(27)のような線形オペレータとする。

\[S(x_1) = H x_1 + L x_1\]
(27)

超平面上に状態が拘束されているとき $\Psi = 0$ より、式(25)のシステムは式(28)のように低次元化される。

\[\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} = \begin{bmatrix}
 A_1 & A_2 \\
 B_1 & B_2
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} + \begin{bmatrix}
 0 \\
 B_2
\end{bmatrix} u
\]
(28)

このとき

\[x_2 = -S(x_1)
= -H x_1 - L x_1\]
(29)

となる。これは超平面上において x_1 を状態、x_2 を新たな入力をとみなせる。従って、本来式(20)～式(24)で示すシステムにそれぞれ 5 つのパラメータと構造化変動ブロックがあるが、超平面の設計に際して、μ設計理論を用いた場合のブロック線図が図 4 のように簡単なものとなる。ここで、W_1 はモデル化されない特性、特に周波数帯域の不確定さに対応する重み関数である。 $\Delta A_{11}, \Delta A_{12}$ はノミナルパラメータ A_{11}, A_{12} の構造的な不確定さの重み、それぞれ式(20), (21) の構造化変動幅で定量化される。3 つともロバスト安定性を保証するものである。W_2 はノミナルフーマンスを保証する重み関数である。M は低次元ブランチ、P は重み関数を結合した拡大ブランチ、K は超平面上においてシステムを安定化させる補償器である。よって、超平面設計はμ設計法による行列 K の (F, G, H, L) を決定することに帰着する。

またμ設計理論では図 4 のシステムに対して式(30)のような評価関数が導出され、そして式(30)の H_m ノルムを同時に 1 以下にし、かつ式(31)の構造化特異値を 1 以下にする補償器 K を求める問題になる。

\[\begin{bmatrix}
 W_1 (I + KM) & -W_2 (I + KM)^{-1} M \\
 \Delta A_{11} A_{12} (I + KM)^{-1} M & \Delta A_{12} A_{22} (I + KM)^{-1} - W_2 (I + KM)^{-1}
\end{bmatrix} < 1\]
(30)

\[\mu_s (LFT (P, K)) < 1\]
(31)

ここで、まず H_m 制御理論の混合感度問題である式(30)を満たすようなトレードオフ解を見出す。つぎに、式(31)を満たすように D-K イテレーションにより、補償器 K を設計する。上部 X 軸方向を例として、試行錯誤にて設定した重み関数 W_1, W_2 を式(32), 式(33)と図 5 に示す。

\[w_1 = 2x + \frac{5}{s+1000}\]
(32)

\[w_2 = 0.00025s + 25000\]
(33)

得られた補償器 K の動特性は図 6 のようなローパスフィルタとなる。これは、低周波数域を強力な非線形ス
ライディングモード制御入力を発揮しながら高周波数域を制御しないという観点で、スピーカーバやチャタリング、さらに高周波のノイズ対策として、ターボ分子ポップのような高周波回転体を有する磁気軸受制御系に極めて有効であると思われる。

3.3 スライディングモード制御系の設計

スライディングモードが生じるとき、式(25)、式(28)及び式(29)により、超平面上の等価制御入力が式(34)のようになる。

\[u_{eq} = -B_2^2 [HFz + (HG + LA_1 + A_2)x_1 + (LA_2 + A_2)x_2 + B_2u] \] \hspace{1cm} (34)

さらに、超平面上に状態を拘束するための到達条件あるいは可変構造制御則を導く。

切換え関数 \(\psi \) に対して、リアノフ関数の侯補を式(35)に選ぶ。

\[\dot{\psi} = \frac{1}{2} \dot{\psi}^2 \] \hspace{1cm} (35)

\[\dot{\psi} = \frac{1}{2} \psi^2 \]

\[\dot{\psi} = \psi [HFz + (HG + LA_1 + A_2)x_1 + (LA_2 + A_2)x_2 + B_2u] \]

\[= B_2 \psi \left(u - u_{eq} \right) < 0 \] \hspace{1cm} (36)

このとき、可変構造制御則は以下のように定めることができる。

\[u = \begin{cases} u_{eq} - \frac{1}{2} \dot{\psi} \psi, & B_2 \psi > 0 \\ u_{eq} + \frac{1}{2} \dot{\psi} \psi, & B_2 \psi < 0 \end{cases} \] \hspace{1cm} (37)

ここで、\(z \) は正数の切換え幅であり、制御性能と制御入力の大きさから判断して、試行錯誤的に決定する。

また、最終的に構成した \(\mu \) ロバスト超平面を有するスライディングモード制御系のブロック図を図7に示す。

スライディングモード制御器（以下 \(SMC \)）が \(DSP \) に実装され、0.1ミリ秒の周期で制御を行う。

実験には表2に示される3種類の異なる実験機を用いた。実験機1号機は制御系設計に関する制御対象である。実験機2号機と実験機3号機は実験機1号機に比べて、パラメータの変動が大きいことから、制御系のロバスト性能を検証するために使用した。

4.2 実験結果

実験には、まず、制御系設計に使用した実験機1号機を用いて実機用及び回転試験を行った。図9には上下x軸方向の任意初期状態から安定浮上までの時刻応答を示す。図10から判るように軸が0.2秒以内に安定浮上状態となり、良好な制御を実現した。上下y軸方向に関してはx軸と同等な結果が得られたため、ここでは割愛する。またx軸に関してもx、y軸に比べて制御が容易であるため、割愛する。

図10(a,b)は位置浮上時の上下x軸のリサーチ状況図である。左半分は次元リサーチにおいて、右半分はリサーチの平面波形図を示す。図10(c,d)は、それに定格回転(45000rpm)時の上下x軸のリサーチ状況図である。定格回転時においても、リサーチの直径は僅か数\(\mu \)m以内に抑えていることが図から判る。安定浮上状態から定格回転数までの挙動は上側x軸を例とし図11に示す。またロバスト性能を検証するため、実験機1号機に適用した制御器を用いて、実験機2号機（定格回転数35000rpm）と実験機3号機の実機浮上試験を行った。図12(a,b)にはそれそれぞれ実験機2号機と実験機3号機の上下x軸方向の任意初期状態から安定浮上までの時刻応答を示す。軸の安定浮上までの時間は1号機より長くなっているが両機とも0.5秒以内に安定浮上ができる。さらに、実験機2号機を用いて定格回転数までの実機回転試験を行った。その結果は図13(a,b,c,d,e,f)及び
のリサーチ波形である。図14は上側x軸を倒とした安定浮上状態から定格回転数までの挙動を示すものである。これらの図から、パラメータ変動の大きい実験機2号機において、数μm程度のリサーチ波形を維持し、35000rpmまでの高速回転を実現したことが判る。

つぎに、本論文で提案した手法と比較するため、前報で提案した磁気軸受のスライディングモード制御手法（ロバスト超平面なし）で、実験機1号機、2号機、3号機を用いて上記同様の試験を行った。その結果は対照的的に、それぞれ図15(a,b,c)、図16(a,b,c,d)、図17(a,b,c,d)に示している。また、実験機2号機を用いた実験回転数は6000rpm以上を超えると発散してしまったため、図13(e,f)との比較波形はない。

実験機1号機を用いた実験結果である図15(a)、図16(a,b,c,d)から、前報で提案した手法は、強力なスライディングモード非線形制御入力で、優れたパフォーマンスを得ることが判る。しかし、図15(a,b,c)、図17(a,b,c,d)から、パラメータの変動の大きい実験機2号機または3号機に関して、前報での手法は高次モードに対するロバスト安定性を保証せず、かつ、外形寸法及び質感変化というパラメータ変動に対して、安定浮上、安定な回転が実現できないことが判る。本論文で提案した手法は、動特性をもロバスト超平面を有することにより、制御対象のパラメータ変動に対して強いロバスト制御性能を発揮できることが実験結果から判る。ただし、本手法のスライディングモード制御入力は線形な等価制御入力に大きく依存するため、低周波領域の制御パフォーマンスが前報で提案した手法に比べてやや落ちている。

また、本論文では述べなかった従来のアナログ制御器（PID方式）での実験結果を踏まえて、まとめた比較表は表3となる。
Fig. 13 3-D orbit of shaft center with and without rotation (SMC with robust hyperplane)

Fig. 14 Water fall plots (1X of test rig 2)

Fig. 15 Time history response from initial state (SMC without robust hyperplane)

Fig. 16 3-D orbit of shaft center with and without rotation (SMC without robust hyperplane)
磁気軸受のファジモデリングとμ設計理論によるロバスト超平面を有するスライディングモード制御

Fig.17 3-D orbit of shaft center with and without rotation(SMC without robust hyperplane)

Table 3 Comparative table

<table>
<thead>
<tr>
<th>controller term</th>
<th>PID</th>
<th>SMC (without robust hyperplane)</th>
<th>SMC (with robust hyperplane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotation</td>
<td>1</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>levitation</td>
<td>2</td>
<td>×</td>
<td>⊘</td>
</tr>
<tr>
<td>levitation</td>
<td>3</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

5. 結言

本研究では、磁気軸受系をファジモデルで表現し、FNNにより磁気軸受のファジモデリングを行った。そのファジモデル基にμ設計法によりロバスト超平面を有するスライディングモード制御系を構成する手法を提案した。そして超高速回転するTMPを用いて実機実験を行った。またロバスト性能を検証するため、前報で提案した手法と本論文で提案した手法を用いて、異なる磁気軸受系の実機試験による性能比較を行った。その結果、本論文で提案した手法の有効性を実証した。