多目的行動調停に基づく移動ロボットの行動獲得

能島 裕介*, 小島 史男**, 久保田 直行***

Behavior Acquisition of Mobile Robots Based on Multi-Objective Behavior Coordination

Yusuke NOJIMA**, Fumio KOJIMA and Naoyuki KUBOTA

**Graduate School of Science and Technology, Kobe University,
1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo, 657-8501 Japan

This paper is concerned with behavior acquisition of mobile robots based on multi-objective behavior coordination. Based on the concept of structured intelligence, the intelligence of a robot emerges from the interaction among simple functional mechanisms. The multi-objective behavior coordination plays a role in integrating behavioral modules. A behavioral weight is assigned to each behavioral module represented by a fuzzy controller. To situate its action to the facing environment, the robot dynamically updates behavioral weights according to spatio-temporal context of the environment. The purpose of this paper is to discuss the effectiveness of the multi-objective behavior coordination through the behavior acquisition from the viewpoint of the structured intelligence.

Key Words: Multi-Objective Behavior Coordination, Mobile Robot, Structured Intelligence, Behavior Acquisition, Fuzzy Controller

1. はじめに

従来のロボットは、古典的な人工知能（Artificial Intelligent; AI）の考えに基づき設計されてきた。生産現場のように、事前に問題空間を設計できる場合、ロボットの行動は専門的に特化した形で最適化されてきた。しかし、我々の生活環境や極限作業環境は、すべての状況と、起きる事象を事前に考慮することがで

で慢、フレーム問題に陷る。Brooksは、サブシステム・アーキテクチャ（Subsumption Architecture: SSA）を提案し、行動に基づくAI（Behavior-Based AI）を提倡した(1)。SSAは、センサ情報に応じて行動出力を生成する要素行動を並列に持ち、反射的な動

作を行い、フレーム問題を回避した。しかし、入出力

を離散的に扱うため、動作の滑らかさがなく、さらに、

行動獲得の議論がなされていない、それに対して、ファ

ジー推論と進化型計算を用いたロボットの行動獲得

に関する研究が盛んに行われている(4)～(12)。例えば、古

橋は、ファジィクラシファイシスステムをもとに、進

化的アルゴリズムによる制御ルールの発見手法を提案

している(5)。また、渡辺らは、各要素行動の入出力空

間をファジー分割することによって、入出力を連続値

で扱う、あいまい行動型制御を提案している(6)。しか
し、システム全体を遺伝的アルゴリズムにより獲得し
ているため、要素行動の環境への特化が問題となって
いる(4)。また、壇内らも、環境状態と要素行動をファ

ジー分割し、入出力情報を連続値で扱うことができる
行動選択機構として、ファジー内挿型Q-Learningを
提案しており、行動調停のオンライン学習手法として、
進化型計算によらない手法を提案している(8)。

SSAは、固定化された階層性を持つため、要素間の

包摂関係を予め決定しなければいけないという問題も

ある。事前に優先度固定の行動調停則を与えない手法
として、Kozaは、状況に対する行動を遺伝的プログラ

ミングを用いて、試行錯誤的に調停則を獲得する手

法を提案した(2)。また、近藤らは、免疫ネットワーク

仮説に基づく行動調停手法を提案している(3)。現在の

状況を抗原とし、適切な行動を抗体として、抗原と抗

体の刺戟・抑制の関係と、抗体間の刺戟・抑制の関

係から、行動に対する優先度（重要度）を更新し、どの行

動を選択するか決定する手法である。しかし、これらの

手法は、動作を続けるシステムとしての頑健性は得
られるものの、要素行動を離散的に用いるため、環境

やタスクの複雑さに対しては、要素行動を追加したり、

優先度ネットワークの再構築が必要である。また、福

田らは、基本行動を選択する上位プランナーと、複数

* 原稿受付 2001年8月21日。
** 原稿、神戸大学大学院自然科学研究科(☎ 657-8501 神戸市

東区六甲台町1-1)。
*** 正員、福井大学工学部。
E-mail: nojima@buna.fan.scitec.kobe-u.ac.jp

--- 141 ---
のアクチュエータを制御する基本行動、実際の制御命令に応じてフィードバック制御する下位アクチュエータの3階層による階層型の行動に基づく制御系を提案している(7)。複雑な動作を複数の行動から生成し、いかに学習するか議論しているが、環境との間の時間的な文脈に関しては議論していない。

筆者らはこれまで、人間の認知と行動の関係に着目し、多様かつ動的に変化する環境において、人間がどのように行動を調節し、意思決定を行っているかに基づき、多目的行動調節(Multi-Objective Behavior Coordination)を提案し、その有効性を示した(9)(10)。多目的行動調節は、環境とロボットとの間に生じるであろう時間的な負担を考慮した行動調節のモデル化である。直面する環境に対して各要素行動の重要性を動的に変化し、重み付け平均により、ロボットの複合的な動作を実現させる。従来の行動調節手法であれば、同じ入力情報に対して、同じ反射的動作をとるが、本手法では、過去の入力情報にも依存した動作となる。

本論文では移動ロボットの行動獲得を取り上げ、多目的行動調節に基づく移動ロボット、複数の環境に対して、常識的な行動アリゴリズム(Steady-State Genetic Algorithm; SSGA)(16)とデルタルール(Delta-Rule)により、従来の優先度固定の行動調節に基づいた手法よりも、はるかに柔軟な行動を実現する能力を計算機シミュレーションにより示す。また、未知環境においても、それらを比較することで、多目的行動調節に基づいた行動獲得が、各基本行動の機能を保持しつつ行動調節を行うことを示す。これを構造化知能(Structured Intelligence)(9)~(12)の概念に基づき検討し、多目的行動調節による環境変化への順応と、行動獲得による適応について議論する。

2. 多目的調節に基づく行動獲得

2-1 構造化知能を持つロボットシステム

構造化知能を持つロボットシステムは、主体となるハードウェアとソフトウェアにより実現される基本的な機能において、それらの密接な相乗効果により形成的な振る舞いを実現する(9)~(12)。基に、ロボットシステムは、知覚(Perception)→意思決定(Decision making)→動作(Action)で構成され、各機能が、構造的に相互作用することで、全体として高精度な知能を獲得していくものである(図1)。図中の矢印は、情報の流れやエネルギーの流れを示し、機能をモジュール内の相互作用と、モジュール間の相互作用を表す。また、各機能をモジュールの構成要素と、生理学的なニューラルディナミクスと心理学的なスキルで表現される。本論文で扱う

移動ロボットは、図2のように複数の距離センサ(障害物との距離を計測する)とゴール方向を感知するセンサを保持するものとする。適用環境は、障害物が配置された空間とする。移動ロボットは環境のマップを保持せず、センサ情報からのみ外界を判断し動作する。距離センサに基づく基本行動は、簡略化ファジィ推論(13)を用いたファジィコントローラ(Fuzzy Controller)により構築する(9)。釘結部の入力情報は、距離センサ情報xとし、後続部の出力は、移動ロボットの行動出力yとする。ここで図2に示すセンサの計測距離成分[x]は次式で表すことができる。

\[x = (x_1, x_2, ..., x_n) \]

この入力情報に対して、「危険」と「安全」の2つの言語ラベルを三角形メンバーシップ関数(図3)を用いて表し、各入力 \(x_i \) に対する語彙ラベルの組み合わせと理想的出力値から、次のようなファジィIF-THENルールを構築する。

\[\text{IF } x_1 \text{ is } A_{1,i} \text{ and } x_2 \text{ is } A_{2,j} \text{ and } ... \text{ and } x_n \text{ is } A_{n,i,j} \]

\[\text{THEN } y_1 \text{ is } w_{1,i} \text{ and } ... \text{ and } y_o \text{ is } w_{o,i} \]

ここで、 \(A_{i,j} \) は、 \((i=1,2,\ldots,n)\) 番目の入力と \((j=1,2,\ldots,m)\) 番目のルールに対するメンバーシップ関数を表し、 \(w_{i,j} \) は後続部出力パラメータである。また \(n \) と \(o \) はそれぞれ、入力と出力の数を表す。各入力に対
多目的行動調停に基づく移動ロボットの行動選択

メンバー・シップ関数の適合度と j 番目のルールの適合度は次式により求められる。

\[
\mu_{A_{ij}} = \begin{cases}
1 - \frac{|x_i - a_{ij}|}{b_{ij}} & |x_i - a_{ij}| \leq b_{ij} \\
0 & \text{otherwise}
\end{cases}
\] (3)

\[
\mu_j = \prod_{i=1}^{n} \mu_{A_{ij}} (x_i)
\] (4)

ここで a_{ij} と b_{ij} は、それぞれメンバーシップ関数の中心値と幅を表す。そして、出力 y_r (r = 1, 2, ..., o) は、

\[
y_r = \frac{\sum_{j=1}^{m} \mu_j \cdot w_{jr}}{\sum_{j=1}^{m} \mu_j}
\] (5)

となる。環境解析方法にはセンサリネットワーク（Sensory Network）を用いる。これは、ロボットのセンシング状況と変動時間に従って、各センサの注意レンジ A.rng を動的に変化させる手法である。ここで、注意レンジは、メンバーシップ関数の幅 a_{ij} に相当し、各センサの注目すべき計測情報の範囲を表す（図 3）。注意レンジの拡幅則は、

\[
A.rng(t) = sprs(t) \cdot S.rng
\] (6)

で与える。ここで、S.rng はセンサレンジであり、sprs(t) は、|sprs_{min}|, 1.0 で値をとるセンサレンジの拡幅率を意味する。sprs_{min} は、予め与えておく最小拡幅率である。拡幅率の更新は次式で行う。

\[
sprs(t+1) = \begin{cases}
\gamma^{-1} \cdot sprs(t) & \text{if all } x_i \geq A.rng(t) \\
\gamma \cdot sprs(t) & \text{otherwise}
\end{cases}
\] (7)

\[
\gamma \text{は、減衰係数 (0.0 < \gamma < 1.0) である。センサリネットワークを用いない場合には、センサ情報に対して、多くのメンバーシップ関数を必要とし、多くのファジィルールを記述する必要が生じる。そのため環境が複雑になるほど記述すべきルールが増加する。逆に、センサリネットワークを用いることで、環境の状態に合わせて、注意レンジが動的に拡幅され、メンバーシップ関数の形状の更新を行うことができ、ファジィルールを増加させる必要がない。また、センサリネットワークに依存して、出力値のスケーリングを行うことで、狭い空間では近傍に注意を払いゆっくりと移動し、逆に広い空間では、遠くに注意を払いながら速度を上げて移動できる。}

2.2 多目的行動調停による知覚と行動

一般に、人間は様々な基本的な行動に優先順位をつけ、選択するということはなく、基本的な行動の複合により複雑な動作を行なっていると考えられる。それは我々が環境に対して、常に多目的であるためである。例えば、我々は行動に関して、「人を避けながら目的地に向かう」というような「人を避ける」と「目的地に向かう」という2つの行動を同時に行っている。また、複雑な環境で動作する上で滑らかさは重要である。動作と動作は常に連続であることが望ましい。ロボットは、我々人間と共存する環境において、常に多目的な動作が必要である。筆者らが提案してきた多目的行動調停は、知覚された外界情報と行動を環境の状態（状態）に合わせて、重み付けし、その重みを動的に変更することで、滑らかで動作が実現できる手法である。

基本行動に対し、それぞれ行動重み wgt_k(t) を与え、各出力に重み付けを行う。環境情報 x(t) に対する k 番目の基本行動の出力を y^k(t), 行動の総数を K とすると、行動調停した結果 Action_r(t) は次のようにになる。

\[
Action_r(t) = \frac{\sum_{k=1}^{K} wgt_k(t) \cdot y^k(t)}{\sum_{k=1}^{K} wgt_k(t)}
\] (8)

この重み付け平均された出力に基づき、移動ロボットは動作を行う（図 4）。また、行動重み wgt_k(t) を更新することで、環境の変化に対応した動作を行う。更新則は次式で与えられる。

\[
wgt_k(t + 1) = wgt_k(t) + G_k(x(t))
\] (9)

ここで、G_k(x(t)) は k 番目の行動の環境情報 x(t) に対する重み更新関数であり、時空間的文脈を考慮したプロダクションルールで構成される。例えば、3 つの基本行動 (K = 3) を、目標追従（Target Tracing），障害物回避（Collision Avoiding），壁面付近（Wall Following）と仮定した場合であれば、前方方向のセンサが感知すれば障害物回避行動の重みを増加させ、他の行動重みを減少させるといった簡単なルールが構築できる（図
5). さらに、求めた行動重みに対し正規化を行う。更新ルールの詳細は、3節にて説明する。

2.3 多目的行動調節に基づく最適化と学習 本節では多目的行動調節を用いた移動ロボットの行動獲得を提案する。スタートからゴールまで移動するタスクをシナリオとする。1つのシナリオが終わる度にオフライン的な評価を行い、SSGAを用いてフィジコントローラの構造最適化を行う。ここでオフライン的とは、シナリオ終了時に実行した解候補の評価を次行を行うことをいう。また、1つのシナリオの中で、オンライン学習としてデルタルールを用い、フィジコントローラの後件部出力値の教師あり学習を行う。まず、SSGAによる構造最適化に関して説明する。

比較的小規模のルール集合でフィジコントローラを構築するために、個体表現は最大フィジルール数を固定し、(2)式のフィジルールと、それぞれをバリデティ

r_validの使用、1: 安全、2: 無視を用いて表現する。また、各ルールの合せ入力x_i (i = 1, 2,..., n)に対するメンバーシップ関数の組み合わせを (1: 危険、2: 安全、3: 無視) で表現し、出力を実数で表現する (図6)。遺伝的構築は、r_validに対して突然変異を行い、前件部のフィジルールの組み合わせに、メンバーシップ単位の多点交叉と遺伝子単位突然変異を適用する。後件部出力値は、実数値を用いており、次式に示す各世代間の更新ルールにより適応型突然変異を行う。

\[w^k_{j,r}(s+1) = w^k_{j,r}(s) + \left(\alpha_r - \frac{F - \min F}{\max F - \min F} \right) N(0, 1) \]

ここで、\(\alpha_r \)は重み係数とし、評価値 F は、1シナリオのゴールまでの時間ステップ P_timeと移動した距離 P_lengthにより計算する。

\[F = \omega_1 \cdot P_{time} + \omega_2 \cdot P_{length} \]

\(\omega_h (h = 1, 2) \)は各評価に関する重みとする。

次に、デルタルールによるオンライン学習について説明する。行動 kに対する誤差 E^k(t) は、次式のよう求められる。

\[E^k(t) = \frac{1}{2} \sum_{k=1}^{K} w^k_{g,k}(t) \left(y^k_{e}(t) - y^k_{r}(t) \right)^2 \]

ここで、\(y^k_{e}(t) \)は、k番目の行動に関する教師値であ る。障害物回避行動であれば、教師値は障害物が粗な方向として、壁面挿入行動では、教師値は壁面との距離を一定に保つように与える。後件部出力値は、

\[w^k_{g,l}(t+1) = w^k_{g,l}(t) - \tau \cdot \frac{\partial E^k(t)}{\partial w^k_{g,l}(t)} \]

Fig. 4 A concept of a mobile robot with multi-objective behavior coordination

<table>
<thead>
<tr>
<th>Behavior weight</th>
<th>Target tracing</th>
<th>Increase</th>
<th>Decrease</th>
<th>Decrease</th>
<th>Decrease</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collision avoiding</td>
<td>Decrease</td>
<td>Increase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall following</td>
<td>Decrease</td>
<td>Decrease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5 Production rules of the behavior coordination

Fig. 6 Representation of a candidate fuzzy controller

\[(j = 1, 2,..., m; r = 1, 2,..., o) \]

により更新される。\(\tau \)は、学習率を表す (\(\tau > 0 \)).

3. 計算機シミュレーション

計算機シミュレーションの設定条件について説明する。ロボットのサイズを直径10[pixel]とし、環境を500[pixel]×500[pixel]、距離センサの最大注意レンジ、最小注意レンジ、初期注意レンジはそれぞれ、

\[1 \cdot S_{rng} = 90[pixel], s_{rng} = 30[pixel], A_{rng}(0) = 60[pixel] \]

とする（図7）。距離センサの数は\(n = 8 \)とする。基本行動は目標追従行動（k = 1）、障害物回避行動（k = 2）。
Table 1 Setting parameters of the updaters

\[
\begin{array}{cccccc}
G_0 x & x_s \leq 0.95 & \gamma x \leq 0.95 & x_r x_s \leq 0.95 & x_r x \leq 0.95 & x_r x \leq 0.95 \\
1 & 0 & 0 & 0 & 0 & +0.005 \\
2 & +0.2 & +0.15 & +0.1 & -0.05 & 0 \\
3 & -0.15 & -0.1 & +0.05 & +0.1 & 0 \\
\end{array}
\]

壁面誘導行動 \((k = 3)\) の 3 種類をとる \((K = 3)\)。障害物回避行動と壁面誘導行動は、ファジィ・コントローラで構築する。目標追従行動は、ゴール方向と進行方向との差異により計算する。各基本行動の出力は、移動ロボットの速度 \(v\) と操舵角 \(\phi\) とする \((n = 2)\)。ロボットはスタートからゴールまで障害物に衝突することなくに移動することをタスクとして与える。行動重みの変化量 \(G_0(\mathbf{x}(t))\) は、表 1 の条件を満たす箇所の足し合わせにより計算される。ただし、\(x_s\) は \([0, 1]\) に規格化され、0 は接触、1 は無反応を意味する。

3.1 複数環境下での行動獲得 提案手法の有効性を、従来の優先度固定の行動調停則を用いた移動ロボットの行動獲得と比較し検討する。5 つの異なる環境において、ファジィコントローラの解候補個体を評価する。各環境での評価値の総和を解候補ファジィコントローラの評価値として用いる。SSGA のパラメータ設定は、個体数を 50、評価回数を 2000 回、突然変異率を各遺伝子座に対して 0.01 とし、各行動調停則に対して 10 回シミュレーションを行う。

図 8-10 に、シミュレーション結果を示す。図 8 は、多目的行動調停を用いた行動獲得の最終世代の軌跡である。すべての環境に対してタスクが達成されていることが解る。図 9 に、環境 5 における行動重みの変化を示す。入力情報（環境の状態）に依存して行動重みを動的に変更し、環境の変化に対応しているのが解る。特に、図 8、9 の A の辺において、移動ロボットは経路に沿って進行するため、障害物回避から反対方向へと主行動を遷移させ、デッドロックを回避しているのが解る。図 10 は 5 つの環境の総評価値の 10 回平均である。図中 MOBC、SSA3、SSA2 はそれぞれ多目的行動調停、優先度固定の 3 行動行動切り換え型、2 行動行動切り換え型を表す。多目的行動調停を用いた行動獲得手法が、最もよく最適化が行っていることがわかる。これは、環境の状態変化に対して、多目的行動調停が滑らかに行動を融合し対応しており、常にオンライン学習が行われ、行動切り換え型よりも学習時間が長くなるためと考えられる。

3.2 未知環境における汎化性能評価 獲得した行動が、未知環境においても対応できるかを検証する。行動獲得時（前節）に用いた環境とは異なる環境（Env. 6-10）を用いて、それぞれの行動調停則により実験を行った。ここで、未知環境における性能評価を行うにあたり、行動獲得のための評価関数式 \((11)\) に含めていない評価指標として、総操舵角を導入する。総操舵角は、スタートからゴールまでに移動ロボットが切り換えした操舵角の総和であり、切り換えが少ない程滑らかであるといえる。

表 2 より、すべての未知環境において、行動切り換え型よりも滑らかに移動していることが確認できる。

Fig. 7 An simulation environment

(a) Environment 1 (b) Environment 2 (c) Environment 3 (d) Environment 4 (e) Environment 5

Fig. 8 The trajectories of mobile robot at final generation

実験を行った。ここで、未知環境における性能評価を行うにあたり、行動獲得のための評価関数式 \((11)\) に含めていない評価指標として、総操舵角を導入する。総操舵角は、スタートからゴールまでに移動ロボットが切り換えした操舵角の総和であり、切り換えが少ない程滑らかであるといえる。

表 2 より、すべての未知環境において、行動切り換え型よりも滑らかに移動していることが確認できる。
た。表中の斜線部はゴールに到達できなかったことを表す。行動切り換え型の動作が、ゴールに到達できなかったり、滑らかに続けてはいるのは、直接する環境の状態変化に対し、対応できる動作が群集で少数であるためとすると考えられる。多目的行動調脅を用いた場合、どの環境においても最適な組が少ないが、環境9のように評価値が行動切り換え型よりも悪い場合もある。

そこで、図11と12に、環境7と9における各行動調脅則による移動ロボットの軌跡を示す。環境7に関して、多目的行動調脅を用いた場合は、2行動行動切り換え型よりも、短い軌跡で滑らかに動きしていることが分かる。また、3種の行動切り換えがゴールに到達できなかったのは、行動間の包摂関係が環境7に適していないためと考えられる。また、包摂関係が適していないと同時に、個々の行動が環境1-5に対して特化して獲得されたため、これら未知環境に対応できないためと考えられる。環境9に関して見てみると、多目的行動調脅は、環境の変化に対応できており、狭い空間をも通ることができる（図12(a)）。しかし、センサリセットワークにより速度が減少するので、評価値が、行動切り換え型よりも悪い結果になったと考えられる。逆に、行動切り換え型は、環境の変化に対して3行動ないしは2行動で対応するため、極端な行動切り換えにより、迅速な移動が行われている。

行動切り換え型は、選択された行動の出力のみが動作出力として直接用いられるため、各基本行動の適用範囲が固定され、環境の状態に大きく依存して構造最適化が行われる。一方、多目的行動調脅を用いれば、動作出力はすべての基本行動の融合であるため、基本行動の特性は保持され構造最適化が行われると考えられ、その結果、未知環境においても滑らかな動作が可能となっている。

4. まとめ

本論文では、移動ロボットの行動獲得に関して、環境の時空間的文脈を考慮した多目的行動調脅を用いる手法を提案した。複数の環境において行動獲得を行い、多目的行動調脅を用いることで、従来の行動切り換え型の行動獲得よりもはるかに行動獲得が行えることを示した。そして、獲得した行動が未知環境に対応できるかを実証し、複数未知環境においても、直接する環境の状態変化に、従来手法より対応できることを示した。

本提案手法では、構造化知能の概念に基づき、複数の簡単な機能と環境との相互作用により知能ロボットを構築した。さまざまな環境に対するルール集合を個別に用意したり、状態空間を細かく分割して、詳細なルール集合を構築するのではなく、比較的規模のルール集合を用いて、ロボットと環境との動的な関係をセンサリセットワークの注意レンジの拡縮や、行動重みを時空的文脈により更新し環境に対応している。そして、この順応のプロセスに基づいて、行動のルール集合は、SSGAにより獲得、デルタルールにより洗練され、環境に適応する。

さらに、ロボットの高知能化を目指すにあたり、環境とロボットの関係を記述するパラメータの更新則を洗練し、知覚と行動の相互学習について検討する予定である。
Fig. 11 The trajectories of the mobile robot in the environment 7

Fig. 12 The trajectories of the mobile robot in the environment 9

文献
(3) 近藤, 石黒, 内田, 生体内免疫系を参考にした自律制御機構の創発的生成に関する一手法, 計測自動制御学会論文集, 33-1, (1997), 1-9
(4) 渡辺, 木村, ロボットのためのインテリジェント制御, 第14回ファジィシステムシンポジウム講演論文集, (1998), 557-578
(5) 古橋, 知的制御のための進化的アルゴリズム, 第14回ファジィシステムシンポジウム講演論文集, (1998), 573-576
(6) 渡辺, 木村, あいまい行動型制御（第1報, 制御系実現の提案）, 機論, 64-620, C, (1998), 1278-1286
(7) 福田, 長谷川, 複数のコントローラの学習方法, 機論, 63-610, C, (1997), 2043-2051
(8) 堀内, 藤野, 井手, 森, 連続値入出力を扱うファジィ内報型Q-Learningの提案, 計測自動制御学会論文集, 35-2, (1999), 271-279
(11) 木島, 久保田, 小島, 福田, 構造化知能を持つ移動ロボットの行動獲得, 第9回インテリジェントシステムシンポジウム, (1999), 780-783
(13) 市橋, 渡辺, 高橋ファジイ推論を用いたファジィモデルによる学習型制御, 日本ファジー学会誌, 2-3, (1990), 157-165
(14) 林, 古橋編, ファジー・ニューラルネットワーク, 朝倉書店, (1996)