プラネタリ・ボール・ローリング（PBR）加工による
円管内外表面同仕上げ*

森 敏彦*, 広田 健治*, 千田 進幸*

Simultaneous Finishing of Inner and Outer Surfaces of Tube
by Planetary Ball Rolling Process

Toshihiko MORI**, Kenji HIROTA and Shinko SENDA

* Department of Mechanical Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464-8603 Japan

Previously proposed “Planetary Conical Rolling” (PCR) is a new ironing process carried on
between a cylinder die and rollers supported by inner race. Excellent features of PCR such as
extremely high thickness reduction, mirror finishing of outer tube surface, no sliding between tool and
material, supplement of high pressure in the radial direction were demonstrated. It was also reported
that this process could be applied to pressure welding and thread forming. However, inner surface
of tube after PCR was considerably rough because of indentation of roller edge on the material.
In order to overcome this defect, “Planetary ball rolling”, in which rollers in PCR tools were replaced
with balls, is proposed. Performance of PBR was compared with PCR by the use of aluminum alloy
tubes. As a result, roughness of inner surface of the tube was extremely improved by PBR. Influence
of ball diameter on forming limit and surface finishing was investigated. It was found that forming
limit was assumed with maximum contact angle and large ball diameter was advantageous.
Additionally, large ball was also effective to reduce surface roughness of both the inner and outer
sides of tube. This was due to enlargement of deformation zone, which caused sufficient deformation
on outer tube surface and reduced pilling up on the inner tube surface. Obtained tube had good
quality and simultaneous finishing of inner and outer surfaces of a tube by PBR was demonstrated.

Key Words: Plastic Forming, Formability, Bearing, Planetary Ball Rolling, Planetary Conical
Rolling, High Reduction Tube Forming

1. 緒 論

塑性加工のみによって高機能表面を形成する方法
としてしごき加工があり、複写機ドラム感光面への適
用が試みられている。しかし、工具材料間はすり接
触となるため、加工度が著しく短絡や破断といった
欠陥が生じやすく、これまでに様々な検討がなされて
きた。こうした課題に対して、既報9-10ではテープロ
ーラ列により逐次的にパイプの減肉を行う PCR 加工
（プラネタリ・コンピュール・ローリング）を開発し報告
してきた。その中で、極めて高い壁厚減少率、良好な
寸法精度および管外表面への転写性能を示すことを実
証しており、また、この特長を生かして異種材質内管
の重ね圧接や管外表面への形状制御など、減肉加工
以外への可能性を実証してきた。一方で、PCR 加工
では管内表面側にローラによる圧下痕が残留状態の
ことが課題として残されている。二層円管など管の内
外両面に良好な表面性状が求められる場合もあり、そ
の克服は本加工法の適用範囲拡大のためにも不可欠で
ある。

この問題に対して、本報では PCR 加工におけるロ
ーラをボールに変えた PBR 加工（プラネタリ・ポー
ル・ローリング）を新たに提案し、PCR 加工との性
能比較を行った。その結果、加工限界はやや低下する
ものの、内表面性状は大幅に改善できることが分かり
PBR 加工の有効性が確認された。また、両加工法の
違いを幾何学モデルから考察し、ボール径の拡大よ
りさらなる性能向上を期待できることが見いだされた。
アルミニウム合金の押出し内管を試料として検証を行
った結果、加工限界および外表面性状に関しても
PCR 加工に匹敵する程度まで向上させることができ

* 原稿受付 2002年2月21日。
** 正員、名古屋大学工学部 (464-8603 名古屋市千種区不老町)。
E-mail: mori@mech.nagoya-u.ac.jp
判明し、提案した PBR 加工により円筒内外表面の同時仕上げ加工の可能性が示された。

2. 加工原理

2.1 加工原理 図1にPCR加工の原理を示す。加工素材を組み込んだダイスを回転させ、その中にバックアップレースで支持された多数のテーパローラを軸方向に送り込むことで行われる。ローラは自転しつつ管内壁を公転し、ダイスとローラとの間で管肉厚を圧下していく。PCR加工ではこれまでに以下の特徴が明らかにされている。
(1) 転がり接触のため接合性が強く結びが生じにくい。
(2) 軸向力が小さいこと、逐次加工であることから、板厚方向に局所的に変面を負荷することができる。
(3) ①②より破断することなく極めて大きな壁厚減少を与えることができる。
(4) ②より管内外表面への転写性が良好となり、鏡面化や形状付与が可能である。

Fig.1 Outline of "Planetary Conical Rolling" (termed PCR)

![Fig.1 Outline of "Planetary Conical Rolling" (termed PCR) image]

Fig.2 Schematics of tools for PBR

![Fig.2 Schematics of tools for PBR image]

Table 1 Mechanical properties of tested material

<table>
<thead>
<tr>
<th>Material</th>
<th>σ0 (MPa)</th>
<th>δ0 (%)</th>
<th>n</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5052-H14</td>
<td>251</td>
<td>5.2</td>
<td>0.09</td>
<td>114</td>
</tr>
</tbody>
</table>

σ0: Tensile strength  δ0: Uniform elongation  n: Strain hardening exponent  HV: Vickers hardness

2.2 実験装置 加工機械には汎用旋盤を用い、主軸のチャックにダイスを、芯押し台に回転するテーパローラ工具またはボール工具を固定した。芯押し台にモータで駆動され、送り速度は任意に調整できるようになっている。ダイスは内径60.0mmの円筒で、製品断面を容易にするため端面角は45°である。

PCR加工用のボールローラ工具は既報⑬と同じでNTN製の円錐ころ軸受け（ローラ径 D = 12mm，最外被外径 B = 66mm）を使用した。また、PCR加工用工具は図2に示す2種類の工具（最外被外径 B = 65mm）を用いた。なお、品質の基準をPCR加工のテーパローラ工具と同一にし、(a)はボールの径と個数をPCR加工のテーパローラ工具と同一にし、(b)はボール径を(a)の2倍にした。

3. 実験方法および実験条件

3.1 加工素材 既報⑬と同じで高強度の固溶強化形アルミニウム合金A5052-H14の押出しパイプを用いた。表1に機械的性質を示す。引張強さは251MPaと高く、延性指数のn値は0.088と比較的低い。

3.2 ダイス回転数、工具送り速度、潤滑条件 PCR加工において良好な結果を得られた条件を比較し、ダイス回転数を350rpm（角度速度ω=36.7rads）,工具送り速度 Vcを160mm/minに選定した。また、潤滑は2-1(1)の特徴により無潤滑とした。

3.3 素材寸法および壁厚減少率 素材寸法図3に示す。管端の部分が加工形となる。加工率は既報と同様に壁厚減少率Rで定義し、硬い壁厚をt₀、製品壁厚をtとすればR式で与えられる。

\[ R = \frac{t_0 - t}{t_0} \]  \hspace{1cm} (1)

製品外径はダイス内径D₀に等しく60.0mmである。

4. まとめ 本報ではPCR加工により円筒内外表面の同時仕上げ加工の可能性が示され、加工素材の選定と加工条件の設定が重要であることが明らかになった。今後は、加工条件の最適化や加工ローカルの精度向上を含めた実用化への道筋を示すことが必要である。
ある。わずかに \( D_R > D_P \) としたのは、PCR 加工後の内表面を PBR 加工で後処理する可能性を想定して設計したためである。この差により製品板厚 \( t \) は PCR 加工で 22mm, PBR 加工で 20mm となる。したがって、加工度の壁厚減少率 \( \Delta \) は管内壁厚 \( t \) を変えることにより変更した。

4. 実験結果および考察

4-1 加工機構

4-1-1 PCR 加工 各ローラは管素材内壁に対して周方向に \( V_O \) で公転し、軸方向には工具送り速度 \( V_s \) で進むため軸向運動をする。この様子を図 4 に模式的に示す。ローラ 2 がローラ 1 の位置に達する時には図示の \( dv \) だけ軸方向に前進しているため、ローラ 1 により形成された面をさらに A2CB だけ圧下する。ここで、\( dv \) はローラの管内壁に対する公転周期を \( T \)、ローラ数を \( N \) として \( \omega \) 式で得られる。また、\( T \) は図 3 に示した記号を用いて \( \omega \) 式で与えられる。ローラ後端部と素材との接触状態に注目すると、図 4のように \( \Delta ABC \) の部分は圧下されずに残留する。このため、後続ローラが次々とピッチ \( dv \) で通過すると、図の点線のような粗さ形状が管内表面に残る。高さ \( h_s \) は個々のローラによる板厚方向の圧下量 \( \delta _s \) とほぼ等しい \( dv \) とローラ角 \( \theta \) により \( \omega \) 式で計算できる。また、PCR 加工ではローラの包絡円錐中心と素材の回転中心が一致しているため（図 3 の点 \( O' \) ）、ローラと素材の接触部において両者の回転半径比は一定となり、相対すべきはほとんど生じない。

\[
\begin{align*}
\delta _s &= \frac{V_O \cdot T}{N} \\
T &= \frac{2D_R - 4r_c}{D_c - 4r_c} \cdot \frac{2\pi}{\omega} \\
h_s &= \delta _s = dv \cdot \tan \theta
\end{align*}
\]

4-1-2 PBR 加工 PBR 加工は PCR 加工のローラをボールに変えたもので、工具の動きは同じである。\( dv \) は \( \omega \) 式でボール加工寸法をボール加工寸法に置き換えた \( \omega \) 式で計算できる。圧下の様子を図 4 に示す。なお灰色の領域が後続のボールによって圧下される部分である。図から 1 つのボールによる板厚方向の圧下量 \( \delta _b \) は接触位置によって変化し、壁厚減少率 \( R \) の影響も受けることが分かる。また、ボールと素材の接触部において、両者の回転半径比は接触位置により異なるため相対すべきが生じる。

圧下厚は点線のような形で残り、その高さ \( h_s \) は幾何学的に \( \omega \) 式で得られる。

\[
h_s = r_s - \sqrt{r_s^2 - \left( \frac{dv}{\omega} \right)^2}
\]

4-2 加工限界

4-2-1 PCR 加工との比較 ボール半径と個数を PCR 加工工具と同一にした図 2 の工具を用いて PCR 加工との比較を行った。なお、3-3 で述べた工具包絡円錐の違いは素材外径寸法に対して非常に小さな加工力や加工限界に対して両加工法の本質的な差とはならないと考えられる。

\[
\begin{align*}
\delta _s &= \frac{V_O \cdot T}{N} \\
T &= \frac{2D_R - 4r_c}{D_c - 4r_c} \cdot \frac{2\pi}{\omega} \\
h_s &= \delta _s = dv \cdot \tan \theta
\end{align*}
\]

4-2-2 PBR 加工と PCR 加工の比較 PBR 加工は PCR 加工のボールをボールに変えたもので、工具の動きは同じである。\( dv \) は \( \omega \) 式でボール加工寸法をボール加工寸法に置き換えた \( \omega \) 式で計算できる。圧下の様子を図 4 に示す。なお粒度の領域が後続のボールによって圧下される部分である。図から 1 つのボールによる板厚方向の圧下量 \( \delta _b \) は接触位置によって変化し、壁厚減少率 \( R \) の影響も受けることが分かる。また、ボールと素材の接触部において、両者の回転半径比は接触位置により異なるため相対すべきが生じる。

圧下厚は点線のような形で残り、その高さ \( h_s \) は幾何学的に \( \omega \) 式で得られる。

\[
h_s = r_s - \sqrt{r_s^2 - \left( \frac{dv}{\omega} \right)^2}
\]

4-2 加工限界

4-2-1 PCR 加工との比較 ボール半径と個数を PCR 加工工具と同一にした図 2 の工具を用いて PCR 加工との比較を行った。なお、3-3 で述べた工具包絡円錐の違いは素材外径寸法に対して十分小さく、加工力や加工限界に対して両加工法の本質的な差とはならないと考えられる。

\[
\begin{align*}
\delta _s &= \frac{V_O \cdot T}{N} \\
T &= \frac{2D_R - 4r_c}{D_c - 4r_c} \cdot \frac{2\pi}{\omega} \\
h_s &= \delta _s = dv \cdot \tan \theta
\end{align*}
\]
図6 に示すように工具の加工力R2を示す。加工法とは加工法も加工法を含む加工法の一部である。加工法はRに対するFを増加させることで、R=0.45で工具の破損が見られた。また、この時の試料を回転することにより、ポール前後での変形が観察された。一方、PCR加工では純アルミニウムを用いた実験でR=0.09まで加工可能であることが示されており、本実験においてもR=0.45で問題なく加工が可能である。

このような結果について以下に考察する。両方法ともケージによる外周摩擦により、圧下された材料は軸方向へ流動しようとする。材料と工具の接触角度をδとして、PCR加工では図4aよりδはローラの中央に等しく、これは接触位置が壁厚減少率を変化させ、また、本実験ではこの値も125°±10°以内に収まった。

ゆえに材料は軸方向へ流動しやすく、圧下により壁厚減少が円弧に行われた。これに対し、PBR加工では工具はポールの円弧で材料を選択するため、δは接触位置により変化し、図4のA点で最大となる。その最大値ωmaxは壁厚減少率とともに大きくなり、ポールの転動による壁厚下が困難になる。この条件では、ポール前後で盛り上がり発生し、盛り上がりに対する壁厚減少率Rが増えてωmaxはさらに大きくなる。このようにして、盛り上がり生成が加速的に増し、加工限界に至ると推察される。

4.2.2 ポール径拡大の効果 PBR加工において図2bの工具を用いて加工を行った。図8にポール径の減少によるRの変化を示す。図中の縦線は各ポール径に対する限界の壁厚減少率を示すが、r₉=10mmではR=0.05で増加が抑えられ、加工限界もR=0.05まで向上している。

PBR加工ではRの増加にともにωmaxが増加し、この限界を越えるとポールの転動による壁厚下が困難に、前節で述べた様子により加工限界に至ると考えられる。そこでωmaxに注目して結果を整理してみる。ωmaxは図5より幾何学的に(6)式で計算でき、Rに対する変化を求めると図9のようになる。

\[ \psi_{max} = \cos^{-1}\left( \frac{1 - R \cdot I}{I - R \cdot r_9} \right) \]  \hspace{1cm} (6)

同一のRに対してはr₉が大きいほどωmaxが小さくなる。図9には図8における加工限界をXでプロットしているが、ほぼR=0.5で限界に至っている。これにより、加工限界に至るωmaxが一定であるとすれば、この線図から所望の下限に対して必要なポール径をある程度予測できると考えられる。
4-3 内表面性状
4-3-1 PBR加工との比較 図10および図11に加工内部表面の外観と軸方向の組み曲線を示す。両加工法とも内壁の表面状態が良いが、その凹凸はPBR加工の方がはるかに小さい。ここで①～③の実験において、表面積の変化を示す曲线を示す。この場合、(a)式で計算した圧下長さと考えられる(注1)压下長さを求めると、h=5.3μm, h_{FB}=0.015μmとなる。しかし、測定された圧下長さはPBR加工で27μm, PBR加工で23μmとなり計算値よりもかなり大きい。PBR加工に関しては相当大きさの切削加工と公算間期Tが長くなり、(a)式のdvが増加し、h_{FB}が大きくなったことが考えられる。また、両加工法で共通の原因として、圧下された材料の圧入への盛上がりが認められる。両加工法とも圧下により材料は軸方向へ流動するが、隣接工具間の未加工領域がその伸びを拘束する。このことは本加工法が板厚方向に局所的に高密度を形成できるというのであるが、一方で工具近傍の自由表面に変形が及ぼすとされると、特にPBR加工ではローラーパッタの角の角が小さめなため局所的な押込み変形となり、大きな盛上がりが生じて鮮明な表面状態が形成されたと考えられる。一方、PBR加工では小さな曲率の球面で接するため、PBR加工において盛上がりは分散されてならなかった凹凸面になる。

4-3-2 ボール径拡大の効果 PBR加工においてボール径による内表面性状の差違を図12に示す。倍率は図11よりも拡大している。r_{FB}=10mmの方が光沢のある平滑面が得られ、最大温度、平均温度ともにr_{FB}=5mmの場合の約1/4にまで低減される。ただし、この場合も①式で計算した圧下長さよりも大きくなり、4-3-1で述べたような要因が考えられる。盛上がりに関しては、ボール径が大きいほど圧延長さが管壁面を貫通し易く、軸伸びも生じやすくなるため低減される。また、接面積が大きくなるため盛上がり領域はさらに分散されて目立たくなり、広がって、広がった領域の盛上がりを後続のボールが修正しやすい。ボール径が大きくなると含油しがるボール数が少なくなり圧延長さのビッチdvが大きくなるが、それよりも上記のボール径が大きくなった効果の方が大きいと考えられる。

4-4 外表面性状 PBR加工で管外表面の鏡面化を達成できることは実証されている。ここではPBR加工においても同等の効果が得られるかを検証した。図13にボール径による外表面表面の拡大と軸方向の組み曲線を示す。比較のために加工前の切断面を示す。切削による組みはPBR加工を施すことではほぼ除去されている。また、同一圧下率でボール径が大きい方が外表面組みは向上している。この理由は4-3-2で述べたようにボール径が大きいほど塑性変形域が広くなり、管壁面まで十分に圧縮応力が及び、ダイス面の転写性が向上したためと考えられる。

4-5 内外表面同時仕上げ 図14にPBR加工においてr_{FB}=10mmで壁厚減少率を変化させた場合の内外表面組みを示す。壁厚減少率を大きくしても組みの顕著な変化は認められない。また、内外表面の組みにはばらつきがあるもののほぼ等しくになっている。工具
5. 結論

PBR 加工による円管内外表面同時仕上げについてアルミニウム合金管を用いて検討を行い、以下の結論を得た。

(1) ポールとローラーの径を同一した場合、PBR 加工では P C R 加工に比べて加工限界は劣るもの、内表面性は大幅に改善できる。

(2) PBR 加工における加工限界および内外表面性状はポール径を拡大することで向上させることができる。前者についてはに内表面とポールとの最大接触角の増加により、後者については塑性変形域の拡大から外表面側を非線形が向上し、内表面側は周辺への材料盛り上がり低減されたことによる。

(3) 使用できる最大ポール径は加工する管内径で決まり、それにより上記効果も制約を受ける。

文献


(2) 森敏彦・齊藤雄二, プラネタリ・コンキタル・ローリング (PCR) の加工機構, 機論, 61-589C (1995), 3734-3741.

(3) 森敏彦・中島邦彦, PCR 加工におけるねじり形成, 機論, 63-612C (1997), 2802-2808.

(4) 森敏彦, PCR 加工による円管の重ね圧接, 機論, 64-625C (1998), 3600-3606.

(5) 金山公三・吉岡紘二・藤本孝・高倉幸雄・福田正成, 遊星ボールダイスによる縮管加工における軸力とトルク、塑性と加工, 28-319, (1987), 825-832.