傘歯車の動力損失

永村 和照*, 池条 清隆*1
吉良 賢二*, 菅一 尊弘*3

Power Loss of Bevel Gear Drives

Kazuteru NAGAMURA*, Kiyotaka IKEJO,
Kenji KIRA and Takahiro SHOICHI

**Department of Mechanical System Engineering, Hiroshima University,
1-4-1 Kagamiyama, Higashi-Hiroshima-shi, Hiroshima, 739-8527 Japan

This paper describes the power loss of bevel gear drives. We measured the friction loss and the churning loss of a straight bevel gear and a spiral bevel gear using a power circulating-type bevel gear testing machine, with the oil immersion method which is based on the oil temperature rise caused by the power loss in the gear drives. It was found that the friction loss of the straight bevel gear is larger than that of the spiral bevel gear, and the gear friction loss ratio of the bevel gears decreases with the increase in the gear torque. Furthermore, we calculated the gear friction loss and the churning loss of the bevel gear drives. The calculated value agreed approximately with the experimental data.

Key Words: Bevel Gear, Efficiency, Power Loss, Friction Loss, Churning Loss

1. 緒 言

歯車の効率は、動力を伝達する機械要素の中でも高く、平歯車では100％近い。しかし、傘歯車の効率は円筒歯車に比べて低く、90％以下になる場合もある。傘歯車の動力損失に関する研究はあまりなく、加えて傘歯車の動力損失の計算方法は、傘歯車を相当平歯車に置き換えて行われてきた。この計算方法は、傘歯車のような歯すじ方向では速度が異なるものの妥当性を欠くものと考えられる。そこで、本研究では直歯傘歯車と曲がり歯傘歯車の動力損失を油浸法により測定するとともに、Anderson-Lowenthallによる平歯車の動力損失計算方法をもとに、傘歯車の動力損失計算法を開発した。そして、測定結果と計算結果を比較し、傘歯車の動力損失について検討を行った。

2. 実験方法

2-1 油浸法の原理：歯車が油中で回転し、動力を伝達するとき、歯車の動力損失は、そのほとんどが油に変換される。そこで、油槽中の中の取支えをも考慮し、時刻 から のときの油温を とするとき、その油温上昇は とおき、次式で与えられる。

\[h = R \left(\exp(-t/R) - \exp(-t_i/R) \right) \] ……(1)

ただし、C：油槽の熱容量 [J/C], R：油槽の放热抵抗 [°C/W], w：歯面摩擦損失 (熱源の発熱量) [W], w：かくはん損失 (無荷時の損失) [W], である。

式(1)より、温度上昇 は、歯面摩擦損失 w の一次式となることがわかる。したがって、歯車を無荷で定速回転させ、油槽中に置き、ヒータを置き、時刻 から 適当に選び、その熱源の発熱量 w と油温の上昇 との比較図 (以下D-w図と呼ぶ) を求めているが、負荷時の油温の上昇 から歯面摩擦損失 w のみを抽出測定できる。

また、油浸法では、かくはん損失 w はD-w図におけるヒータ加熱電力 w=0 のときの温度上昇のエネ
ルギー（電力）に相当する。そこで、$D\cdot w$ 線図において、直線の延長線が w 軸（横軸）と交わる点の電力を求めればかくはん損失 w' を得ることができる。

歯面摩耗損失率 η は伝達動力に対する歯面摩耗損失 w の比で、次式のように定義する。

$$\eta = \frac{w}{2 \pi n T} \times 100 \ [\%] \quad \cdots \cd - 251 -
ために、油槽内部に取付けられたヒータにより加熱しながら、所定の回転数で無負荷運転を行った。その後、試験歯車にトルクをかけず油温の上昇を測定し、動力損失を調べた。なお、試験歯車対の油槽にはギヤ油 SAE 90 の油を試験歯車対が 50 mm だけかかる量（6 L）だけ給油した。図 2 に、歯車を無負荷で運転し、ヒータで潤滑油を加熱したときの直歯歯車の温度上昇曲線を示し、図 3 は、図 2 により求められた D-w 線図を示す。これらの D-w 線図より求められる歯面摩擦損失と損失率の誤差は、2 種類の歯車対のすべての実験条件に対して 7.1～25.4 W および 0.02～0.20% であった。

また、歯車のかみあい状態を検討するために、図 4 に示すように駆動歯車歯の連続した 3 枚の歯の歯元にひずみゲージを貼付け歯元応力を測定した。

3. 実験結果

3・1 歯当たりと歯元応力 図 5 に試験歯車対の歯当たりのスケッチを示す。図 5 からわかるように、直歯歯車歯の歯当たりはほぼ全面当たりとなり、トルクの増加とともに歯先から歯元に向かってわずかではあるが増加している。しかし、曲がり歯車歯では歯元ではかみあわず、歯当たりはだ円状となっている。また、トルクの増加とともにその面積は大きく増加している。これは曲がり歯車歯には最大トルク（T=342 N-m）でほぼ全面当たりになるように歯形修整が施されているためである。

図 6 に T=342 N-m のときの駆動歯車歯の歯元応力波形を示す。図 6 (a) の直歯歯車歯の歯元応力波形では、測定位置（ひずみゲージ貼付け位置）による歯元応力波形の違いはほとんどなく、歯幅方向にほぼ全面当たりとなっている。このことは図 5 の歀当たりの状態と一致している。一方、図 6 (b) の曲がり歯車歯では、歯元応力波形は歯幅方向の測定位置によって異なり、最大応力を示す位置（時刻）も異なり、外端部での歯元応力の最大値が最も早く現れている。これは、曲がり歯車歯では歯がねじられているため、同時接触線が歯面上で傾斜しており、かみあいが外端部から始まり、内端部で終わるためである。

図 7 は、測定した歯元応力波形より算出した歯車対の運転中のかみあい率を示したものである。直歯歯車のかみあい率はトルクの変化に対してあまり変化しないが、曲がり歯車歯のかみあい率はトルクの増加とともに大きく増加している。これは、歯当たりの場合と同様に、曲がり歯車歯に歯形修整が施されて
3-2 歯面摩損損失 図8に歯面摩損損失に及ぼす負荷トルクの影響を示す。歯面摩損損失はトルクの増加とともに増加するが、その増加の割合は徐々に小さくなっている。また、直歯直歯車と曲がり歯直歯車の歯面摩損損失を比較すると、直歯直歯車の歯面摩損損失のほうが曲がり歯直歯車の歯面摩損損失よりも大きくなっている。これは、図5の歯当たりが示すように、直歯歯車はほぼ全面当たりとなっているのに対し、曲がり歯歯車ではすべり速度の比較的大きい歯先部分でのかみあいが行われないため摩損損失が小さいものと考えられる。

図9は歯面摩損損失率に及ぼす荷重トルクの影響を示す。歯面摩損損失率は図8に示す歯面摩損損失の値を使って式(2)により算出したものである。図9に示すように、歯車の歯面摩損損失率はトルクの増加とともに減少している。これは、次のように考えられる。平歯車（歯形修整がない場合）では歯面摩損損失率はトルクの影響をほとんど受けず、トルクが増加してもあまり変化しないが、また、歯面の摩損損失はトルク（歯面圧縮荷重）が増加してもほとんど変化していない。曲歯車のようにトルクが増加しても摩損損失はほとんど変わらないとみなすことができる。しかし、図5, 7に示すように、曲歯車のかみあい範囲（歯当たりおよびかみあい率）はトルクの増加とともに増加している。かみあい率が増加すると、すべり速度の高い部分は増加するが、すべり速度の増加に比べてそのすべり速度の高い部分での荷重分担が減少する割合は著しいため、結果的には図9の摩損損失率が減少するものと思われる。なお、平歯車の場合も負荷により歯当たりやかみあい率が変化することが、歯形修整のない歯車ではその影響は小さいと考えられ、一方、曲歯車（グリーン式）では、図5, 7のように負荷により歯当たりやかみあい率が変化しやすく、この影響が図9の歯面摩損損失率に現れたと考えている。

図10は回転数と歯面摩損損失の関係を示す。
図11 速度と歯面摩擦損失率の関係を示す。歯面摩擦損失は速度とともに増加すると、トルクの大きい \(T = 342 \text{ N-m} \) では、歯面摩擦損失率は速度の増加とともに減少している。これは、\(T = 342 \text{ N-m} \) のとき、混合潤滑状態にあり、歯面の摩擦係数が速度の増加とともに減少するためであると考えられる。しかし、トルクの小さい \(T = 185 \text{ N-m} \) では歯面摩擦損失率は速度の増加とともに増加し、\(n = 40 \text{ rps} \) 付近で最大となり、それ以降では減少している。これは、回転速度の低いところではかくはん損失が小さく、図2に示すように潤滑油の温度上昇も非常に小さいため、低速・低荷重の領域（\(T = 185 \text{ N-m} \), \(n = 10, 20 \text{ rps} \) ）では潤滑油の粘度が高く、流体潤滑状態のため速度の増加とともに摩擦係数が増加するが、速度領域（\(n = 40, 60 \text{ rps} \) ）では混合潤滑状態となって、摩耗係数が速度の増加とともに減少するためであると考えられる。

3-3 かくはん損失と全損失　図12に\(D-w \)線図

![Fig.11 Effect of gear speed on gear friction loss ratio](image)

![Fig.12 Overall loss](image)

![Fig.13 Overall loss ratio](image)

図3より求めたかくはん損失のかくはん損失と、かくはん損失に歯面摩擦損失を加えた全損失を示す。かくはん損失は、歯車速度の増加に伴い著しく増加し、低速領域ではかくはん損失と歯面摩擦損失の比率はほぼ同程度であるが、高速度領域ではかくはん損失の割合が大きくなっている。また、直歯ねり歯車でかくはん损歯車のかくはん損失を比較すると、直歯ねり歯車のほうが大きい。今回は、直歯ねり歯車の歯だけ、歯面円直径に曲がり歯歯車より大きいためである。さらに前述したように、直歯ねり歯車の歯面摩擦損失はかくはん損歯車より大きいため、全損失も直歯ねり歯車のほうが曲がり歯歯車より大きくなっている。

図13はかくはん損失率と全損失率を示したもので、歯面摩擦損失率と同様、この場合もかくはん損失と全損失を歯車の伝達能力に対する割合で示している（かくはん損失は負荷にパラメーターが影響しない損失であるが、損失率が表し示した場合には伝達能力の大きさに関係するため、図13のように、かくはん損失率は各負荷トルクごとのプロット点で示されることになる）、図13より、かくはん損失率は速度の増加とともにほとんど直線状に増加している。そして、かくはん損失の全損失に占める割合が大きいため、全損失率も速度の増加とともに直線状に増加している。また、かくはん損失は負荷の大きさには無関係な損失であるため、かくはん損失率はトルク（伝達能力）が大きいかほど小さくなり、したがって全損失率もトルクが大きいほど小さくなっている。

4. 傘歯車の動力損失計算方法

4-1 歯面摩擦損失の計算方法　傘歯車の歯形形状は複雑であるため、一般には傘歯車を相当平歯車に
傘歯車の動力損失

置き換えて解析されることが多いため、実際にには傘歯車の歯の大きさは歯幅方向で変わり、歯幅方向ですべり速度やかみあい長さなどに変化が生じる。そこで本研究ではAnderson-Loewenthalの方法(23)を発展させ、図14のように歯面上に微少面積dxdyをとり、それをかみあい面積全体で積分し、その平均をとることにより歯面摩擦損失を求めることにする。歯面上での瞬間的すべき摩擦損失Psは次式で表される。

\[P_s(x, y) = f(x, y)w_s(x, y)V_s(x, y) \quad (3) \]

ここで\(x, y \)：歯面上の座標点、\(f(x, y) \)：摩擦係数、\(w_s(x, y) \)：歯面法線荷重、\(V_s(x, y) \)：すべり速度である。

したがって、一歯のかみあいにおける平均のすべき摩擦損失\(\bar{P}_s \)は、かみあい領域にわたって式(3)を積分し、その平均をとる方法で、次式によって求めることができる。

\[
\bar{P}_s = \frac{1}{A_1 + A_2 + A_3} \left[\int_{A_1} P_s(x, y)dx dy + \int_{A_2} P_s(x, y)dx dy + 2 \int_{A_3} P_s(x, y)dx dy \right]
\quad (4)
\]

ただし、\(A_1 \)：かみあい始めでの二対かみあいの歯面上の面積、\(A_2 \)：一対かみあいの面積、\(A_3 \)：かみあい終わりでの二対かみあいの面積である。

本研究では、歯面法線荷重\(w_s(x, y) \)は二対かみあい領域では荷重は二つの歯対で等分に分配されるものとし、同時かみあい線上では一定とした。摩擦係数の値はBenedict-Kelleyの式(19)から求めた。すべり速度の値は、直歯傘歯車では射流式(26)、曲がり歯傘歯車ではColemanの式(27)を用いた。なお、直歯傘歯車では、かみあい領域は歯の幾何学的形状から算出されるものを用いた。曲がり歯傘歯車では、図15に示すように歯当たり面のスケッチ(図5)よりかみあい領域を決定し、同時かみあい歯数は図7に示す運転中のかみあい率を参考にして決定した。また、歯面上の分割数は歯先方向に200、歯幅方向に100とした。

4.2 かくはん損失の計算方法
傘歯車のかくはん損失は、平歯車のかくはん損失の実験式(39)を以下に示すように傘歯車に拡張して求めた。

図16(a)は平歯車のかくはん損失を表したもので、平歯車のかくはん損失は円板損失トルク\(M_a \)を潤滑油により出すための損失トルク\(M_b \)に分けられる。

Fig. 14 Calculation of sliding loss

Fig. 15 Tooth bearing and contact path of spiral bevel gear

(a) Spur gear

(b) Bevel gear

Fig. 16 Calculation of churning loss
円板損失トルク M_0 [N·m] は次式で表示される。

$$M_0 = C_0 \rho \omega r^2 h b$$ ……………………………(5)

ここで、C_0：係数, ρ：潤滑油の密度 [kg/m³], ω：
歯車の角速度 [rad/s], r_s：歯先円径 [m], b：歯
幅 [m]，である。

係数 C_0 は以下の式によって与えられる。

$Re^{-0.6} Fr^{-0.25} < 8.7 \times 10^{-3}$ のとき

$$C_0 = 2.63 Re^{-0.6} Fr^{-0.25} \left(\frac{h}{r_s} \right)^{1.5} \left(\frac{b}{r_s} \right)^{0.17} \left(\frac{V_s}{V_M} \right)^{-0.53}$$

$Re^{-0.6} Fr^{-0.25} \geq 8.7 \times 10^{-3}$ のとき

$$C_0 = 4.57 Re^{-0.6} Fr^{-0.25} \left(\frac{h}{r_s} \right)^{1.5} \left(\frac{b}{r_s} \right)^{0.14} \left(\frac{V_s}{V_M} \right)^{-0.3}$$

$Re^{-0.6} Fr^{-0.25} \geq 12$ のとき

$$C_0 = 0.376 Re^{-0.6} Fr^{-0.25} \left(\frac{h}{r_s} \right)^{1.5} \left(\frac{b}{r_s} \right)^{-0.24}$$

$$\times \left(\frac{V_s}{V_M} \right)^{-0.375} \left(\frac{\sum V_s}{V_M} \right)^{-0.2}$$

ただし, Re：レイノルズ数 (= $\omega r_s h \nu$), Fr：フルー
ド数 (= $\omega r_s h^2/gh$), h：歯車の厚さ [m], r_s：歯
先円径 [m], V_s：歯車の体積 [m³], V_M：潤滑油の容積 [m³], $\sum V_s$：潤滑油に浸
かっている各歯車の体積の合計 [m³]，である。

また、潤滑油を押しつけたための損失トルク M_b は次
のように表される(11)。

$$M_b = C_b \rho \omega r^2 \sum h$$

ここで、C_b：係数, h_i：全歯だけ [m] である。

また、係数 C_b は次式で与えられる。

$Re^{-0.52} Fr^{-0.23} < 12$ のとき

$$C_b = 616.6 Re^{-0.48} Fr^{-0.54} \left(\frac{h_i}{h} \right)^{1.5} \left(\frac{b}{h} \right)^{-0.64}$$

$Re^{-0.52} Fr^{-0.23} \geq 12$ のとき

$$C_b = 5623 Re^{-0.48} Fr^{-0.26} \left(\frac{h_i}{h} \right)^{1.6} \left(\frac{b}{h} \right)^{-0.36}$$

ただし, Re：レイノルズ数 (= $\omega r_s h \nu$), Fr：フルー
ド数 (= $\omega r_s h^2/gh$), h_i：歯根長 [m]，である。

図 16(b) は本研究での傘歯車の圧力損失の計算
方法を示したものである。傘歯車の圧力損失は,
円板損失トルクを内端部の円板損失トルク M_{b1} と外
端部の円板損失トルク M_{b2} に分け、潤滑油を押し出し
す損失トルク (ポッシング損失) M_b は、傘歯車を軸方
向に n 個の歯の異なる歯車で置き換えて以下の
ように求めた。

傘歯車の円板損失トルク M_b は,

$$M_b = \frac{1}{2} \left(C_{01} r_1 + C_{02} r_2 \right) \rho \omega r^2 b$$ ……………………………(7)

ここで、C_{01}, C_{02}：係数 (5) で説明した係数 C_0
と同様の式で求める), r_s：歯先円径 [m] であり,
添字 1, 2 はそれぞれ内端部, 外端部を表す。

また、潤滑油を押し出しす損失トルク M_b は,

$$M_b = \rho \omega r^2 \sum_1^n C_{b1} r_i h_i$$ ……………………………(8)

ただし、添字 i は、n 個に分割した i 番めの歯車を表
しており、係数 C_{bi} は式 (6) の係数 C_b と同様にして
求めめる。

Fig. 17 Comparison between experimental value and calculated value of gear friction loss

Fig. 18 Churning loss
したがって、発射の半分損失 \(w' \) は式 (7) と式 (8) より次のように与えられる。

\[
w' = \frac{1}{2} C_{ar} r_1^2 + C_{ar} r_2^2 + \frac{1}{2} \sum_{n=1}^{N} C_{nr} r_2^2 h_n \rho \omega \bar{b}
\]

本研究では、発射を軸方向に 40 個の平歯車に置き換えて、かくはん損失を計算した。

5. 計算結果

図 17 は、速度と歯面摩擦損失の関係について、実験値と計算値を比較して示したものである。ここで、計算値は式 (4) により計算された平均摩擦損失 \(P \) を表す。図 17 より、歯面摩擦損失の計算値と実験値は、トルクの大きい \(T = 342 \) N-m ではよく一致している。しかし、トルクの小さい \(T = 185 \) N-m では、実験値のほうが計算値よりも大きくなっている。これは、トルクの小さいときにすぺリ速度の高い二対からみあい領域での荷重分担が大きいが、計算では二対からみあい領域では、荷重が各歯に等分に分配されるものとして求めたため、計算値のほうが実験値より小さくなったものと考えられる。

図 18 は、かくはん損失の値を横軸に速度をとって示したものをある。かくはん損失の実験値は \(D - \omega \) 線図より求めたものであり、計算値は式 (9) により求めたものである。図 18 に示すように、計算値と実験値はほぼ一致している。また、計算値、実験値ともに発射歯車のかくはん損失のほうが発射歯車よりも大きい。これは、前述したように発射歯車の全歯だけが歯ごと歯車の全歯だけよりも大きかったためと考えられる。

6. 結言

直接歯車と曲がり歯車歯車の歯面摩擦損失もかくはん損失を油浸法により測定した。そして、これら 2 種類の直接歯車の歯面摩擦損失とかくはん損失を計算する方法を示し、計算結果と実験結果を比較した。その結果をまとめると以下のようになる。

(1) 直接歯車の歯面摩擦損失は曲がり歯車歯車の歯面摩擦損失よりも大きい。

(2) 直接歯車と曲がり歯車歯車の歯面摩擦損失率は、トルクの増加とともに減少する。

(3) 直接歯車、曲がり歯車歯車の歯面摩擦損失とかくはん損失の計算結果は実験値とほぼ一致した。

文献

(2) 矢田恒二, 低速法による歯車軸荷損失の測定, 機論, 38-313 (1972), 2388-2395.

(4) 末廣之男・細井賢三, 自動車用変速機の摩擦損失の測定, 自動車技術会報特集, No. 822 (1982), 373-380.

(5) 矢田恒二, 歯車の摩擦損失と速度および負荷トルクの関係, 機論, 38-313 (1972), 2392-2402.

(6) 寺内喜男・永村和昭・池田隆, 内歯車の歯面摩擦損失に関する研究 (小歯車の歯面摩擦損失, 速度およびトルクの影響), 機論, 55-519, C (1989), 2840-2848.

(7) 寺内喜男・熊本光男・木本光男・木本輝雄, 平歯車の歯面摩擦について, 機論, 32-242 (1966), 1571-1579.

(9) 仙波正造, 直接歯車歯車の面形に関する研究 (第 7 報) - 滑りと摩擦について, 精密機械, 13-8, 9 (1947), 12-17.

(11) 仙波正造, 車軸, 第 4 巻新版, (1983), 337-341, 日刊工業新聞社。