Injection Molding of Polystyrene Matrix Composites

Kazuki ENOMOTO*, Toshiyuki YASUHARA, Kazunori KATO and Naoto OHTAKE

*Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, Graduate School of Science and Engineering, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552 Japan

Vapor grown carbon fiber (VGCF) is a kind of carbon nanotube, which has outstanding properties such as high mechanical strength and high electrical conductivity. In this study, injection molding properties of polystyrene (PS) filled with VGCF and evaluation of mechanical and electrical properties are discussed in comparison with composites in which conventional carbon fillers were filled. As a result, volume resistivity of VGCF/PS composites dropped significantly between VGCF concentration of 3 and 4 vol.%. Resistivity of the composites filled with VGCF was 1.2 x 10^7 Ω cm when VGCF concentration was 11.6 vol.%. The resistivity was significantly lower than that of composites which were filled with conventional carbon fillers. The conductivity change due to volume fraction of VGCF was discussed using the thermodynamic percolation model. The elastic modulus slightly increases with increasing VGCF concentration, whereas the tensile strength slightly decreases in the VGCF concentration in the range from 0 to 12 vol.%

Key Words: Vapor Grown Carbon Fiber (VGCF), Carbon Nanotube (CNT), Polystyrene, Injection Molding, Polymer Matrix Composite, Electrical Resistivity, Thermodynamic Percolation Model

1. はじめに

気相成長炭素繊維(Vapor Grown Carbon Fiber: VGCF)は直径が100nm程度、長さが数十μm〜数mmの超多層カーボンナノチューブであり、ダイヤモンドやグラファイトといった従来の炭素素材とは異なるチューブ状の層状構造を有することからリチウムイオン二次電池の負極電極に用いられる電極材料として非常に注目を集めている機能性材料である。また、優れた機械的強度と高い電気伝導性を有しており、導電性複合材料のフィラーとしても期待できる材料である。VGCFの直径は現在プラスチック導電性を付与するために充填されているカーボンナノチューブや炭素繊維などのフィラーに比べると、10分の1から100分の1と非常に微細である。したがって、VGCFを樹脂系複合材料のフィラーとして利用することで、従来よりも少ない充填量で優れた電気的特性を製品に効率良く付与することができると言えられ、静電防止材や電磁波シールド材料としての利用が考えられることから、VGCFをフィラーとした導電性複合材料に関する研究がわずかながら行われている(1)-(6)。これらの研究ではマトリックス樹脂としてポリプロピレンやポリカーボネートが用いられている。一方、ポリスチレンは射出成形の汎用材料であるとともに電気絶縁性に優れた樹脂であることから、導電性に方向性を持たせる場合に有利になると考えられるが、これまでにVGCFをポリスチレンに混合した複合材料についての報告はされていない。

射出成形は成形精度が高く仕上げ加工不要、複雑な形状の成形が可能であるなどの特徴を有するとともに、成形サイクルが短く自動化しやすいことから高産性に優れた成形法である。また、材料に短繊維有樹脂を使用すると、繊維が材料の流動状態に依存した配向構造を形成し、表面近傍に繊維濃度の高い層を形成する(7)-(8)。この配向構造を制御することで、射出成形の成形特性を能動的に制御することで、部分的に機能的・電気的特性を変化させたり、機能に方向性を持たせる製品設計が可能になると考えられる。

そこで本研究は、直径が150mm程度と従来の炭素繊維に比べて極めて微細なVGCFをフィラーとして、ポリスチレンに混合した高分子基複合材料を射出成形により成形し、その成形性と成形品の機械的・電気的特性について従来の炭素繊維を充填した場合と比較するとともに、特に成形品の導電性に着目して VGCF濃度と電気的
特性との関係について検討するものである。

2. 試料の作製および実験方法

2.1 使用した試料

フィラーとして熱分解炭素繊維（VGCF：昭和電工（株）、以下VGCF）の黒鉛化品を使用した。また、比較のために従来から用いられているピッチ系炭素繊維（ダイアリードK223HG、以下PitchCF）と導電性カーボンブラック（チェックラックEC、以下CB）を使用した。さらに、VGCFよりも直径の小さい多層カーボンナノチューブ（フロンティアカーボンテック・プロジェクト、以下MWCNT）も充填材として一部の実験に使用した。表1に使用した各フィラーの物性値を示す。また、図1に使用したVGCFおよびMWCNTのSEM写真を示す。写真からVGCFは長さが長く、長さと幅に大きくそろっていることがわかる。それに対して、MWCNTはVGCFと比較して長さが不揃いであり、大きく曲がっているものも見受けられる。マトリクス樹脂としては透明ポリスチレン（スタイロール679：A&Mステレン（株）、以下PS）を使用した。スタイロール679は超高流動性の樹脂であり、VGCFのような微細な繊維状フィラーの充填による成形性の低下を抑えることができると考えられる。表2にスタイロール679の物性値を示す。

2.2 試料の作製

一般に射出成形では、プレートがスクリューの回転により溶融しながら排出されるため、この過程で材料同士が混ざり合う効果が発現する。しかし、VGCFのような微細繊維を添加する場合、この工程だけで樹脂中にフィラーが均一に分散することは難しいと考えられる。そこで本研究では、二軸混練機（可塑化容量50cm³）を用いてフィラーとPSとの混練を行った。まず、混練条件を決定するためにVGCF充填率を0.4wt%として180℃と220℃で予備混練を行った。混練時間と混練トルクとの関係を図2に示す。どちらの場合にも混練時間が10分を経過すると混練トルクがほぼ一定になった。そこで、混練の途中でミキサーから取り出した試料を厚さ200μm程度のシート状にプレスし、透過光を用いて光学顕微鏡で観察した。その結果を図3および図4に示す。樹脂温度180℃で混練した場合、混練開始から20分の時点でも直径が5－20μmのクラスターが観察される。これらのクラスターは、VGCFの凝集体もしくはVGCF製造時に混入した不純物であると考えられる。画像の二値化処理を行い、視野全体に占めるVGCFおよび不純物の存在面積を算出したところ54.8%であった。一方、樹脂温度220℃で混練した場合、混練開始から2分の時点（図4-a）では、クラスターの存在面積は5.45%であり、180℃で20分間混練した場合と同
Fig.3 Optical microscope image of VGCF/PS composites at the kneading time of 20 min. (VGCF concentration: 0.4wt%, Polymer temperature: 180°C)

(a) Kneading time: 2 min.

(b) Kneading time: 5 min.

(c) Kneading time: 20 min.

Fig.4 Optical microscope images of VGCF/PS composites at different kneading time. (VGCF concentration: 0.4wt%, Polymer temperature: 220°C)

程度である。しかし、5分の時点ではクラスターの数とその直径が減少し、存在面積も3.47%まで減少する（図4-b）。これは、混練中に樹脂から受けるせん断力によってVGCFの凝集体が分解されたことによると考えられる。さらに20分まで混練を続けてもクラスターの存在面積は3.48%と5分の時点から変化しなかった（図4-c）。

これからのことから、220°Cで混練を行うことにより混練開始から5分にはほぼすべてのVGCFがほぼ一様に分散し、分散の困難なVGCFクラスターおよび不純物がわずかに残る状態になると判断される。これらの結果から、本実験における混練条件を樹脂温度220°C、混練時間5分とした。この混練条件でフィラーの充填量の異なる試料をそれぞれ200gずつ作製し、それらを粉砕してベレット化したものを射出成形実験の試料とした。また、各フィラーの充填量は、0.4〜20wt%とした。

作製したベレットのラマン分光分析結果を図5に示す。VGCFとMWCNTを充填した材料では1590cm⁻¹付近にグラファイトのピークと思われるブリードピーク、また1360cm⁻¹付近にD-bandのブリードピークが観察された。このことからVGCFおよびMWCNTの原子間の結合はわずかに乱れたグラファイトであると考えられ、VGCFとMWCNTはグラファイトからなる基本構造を有する類似した構造であると考えることができる。

2・3 試験片の成形 試験片の成形は汎用のたて型射出成形機を使用して行った。型金は2プレート式で、キャビティフレームの厚さを変えることで、成形品厚さを変化させることができる。成形条件を表3に示す。成形品厚さおよび射出圧力を変化させて、これらの条件が成形品の特性にどのような影響を及ぼすかを検討した。図6に成形品の外観を示す。成形品は長さ85mm、幅10mmの引張試験片形（JIS K7113準拠、図6(a)；以下試験片A)および長さ75mm、幅10mmの短冊形（図6(b)；以下試験片B)であり、どちらの成形品も一回の成形で2個得られる。また、比較のために成形時にせん断ひずみが加わらない加熱プレス成形で、幅15mm、長さ40mm、板厚1.5mmの短冊状試験片（以下試験片C）を作製した。

2・4 実験方法 フィラーの配向状態は成形品中央のX線回折により評価した。分析は、金型面に垂直な方向を2θ=0°とし、2θの増加方向を流動方向に一致させて行った。成形品の機械的特性は流動方向についての引張試験を行うことで評価した。試験には材料試験機（INSTRON 4444、定格荷重2.0kN）を使用し、試験速度は5mm/minとした。成形品の電気的特性は体積抵抗率と静電気散逸性の測定により評価した。体積抵抗率はデジタル超低抵抗計（測定可能範囲：10⁻¹〜10⁶Ω）を使用して、試験片中央部の抵抗を2箇所法で測定することにより算出した。印加電圧は0.1V〜1kVとした。静電気散逸性については、温度15°C、湿度25%の条件で10kVの電圧を30秒間印加した時の帯電電圧を静電気散逸性
Table 3 Molding conditions.

<table>
<thead>
<tr>
<th></th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of workpiece [mm]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mold temperature [°C]</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melt temperature [°C]</td>
<td></td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Injection pressure [MPa]</td>
<td>7.2, 72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection rate [mm/s]</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection time [s]</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling time [s]</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.6 Molded specimens.
(a) Specimen A (Tension test specimen shape)
(b) Specimen B (Tetragonal shape)

Fig.7 X-ray diffraction patterns of the composites.

Fig.8 \(I_{110}/I_{002} \) ratio of the VGCf/PS composites.
(VGCF fraction: 11.6 vol.%, thickness: 2 mm)

界面におけるせん断強さが弱いために補強強さが現れなかったと考えられる。一般に、構造材料として使用される射出成形品の場合、機械的特性を改善するためには充てん繊維を20～30wt%程度充填する必要がある。図9においてPitchCFを充填したものに比べてVGCFを充填したものの方がヤング率、引張強さともに小さくなっている。PitchCFの長さは成形中の折損により平均長さが約100μmと短くなっているが、それでもVGCF平成約30%に比べるとおよそ10倍である。さらにKelly-Tysonによる不連続短繊維を有する複合材においても、本実験で用いた実験条件においてもVGCF充填量の増加とともに改善され、11.6vol.%のVGCF充填量の場合にポリスチレンのヤング率に比べて60%程度向上した。しかし、引張強さは今回実験した12vol.%以下の充填量ではVGCF充填量の増加とともに低下し、11.6vol.%の充填量の場合にポリスチレンのヤング率に比べて22%程度低下した。破断面のSEM写真を図10に示す。VGCFそのもの破断面は基板から抜け落ちていることがわかる。今回使用したVGCFには表面処理を施しておらず、樹脂との

\[
i_t = \frac{\sigma_{\sigma_t}}{2 \tau_{\sigma_t}}
\]
3.3 電気的特性評価

図11に試験片Bの中央部の抵抗値から算出した体積抵抗率のフィラーによる違いを示す。粒子状の充填材であるCBを充填した場合、体積抵抗率が対数曲線でほぼ直線的に減少するのに対して、繊維状の充填材であるVGCFやPitchCFを充填した場合には、ある一定のしきい値濃度を超えると急激に体積抵抗率が減少し、その後はほぼ直線的に減少する。VGCFをPSに充填した場合のしきい値濃度は3.3vol.%であった。VGCFをポリプロピレン（PP）に充填した場合のしきい値濃度は4〜5vol.%と報告されており、PSをマトリックス樹脂としても、PPの場合と同程度の少ない充填量で成形品の抵抗率を低下させることができることがわかった。そして、VGCFを充填した場合、11.6vol.%で1.2×10^7Ω・cmと従来のフィラーを充填した場合に比べて少ない充填量で体積抵抗率が低い成形品が得られた。なお、図中の一点鎖線はパーコレーション理論による体積抵抗率とフィラー濃度との関係を示したものであり、後述する。次に、図12に

![Fig.10 SEM image of fractured cross section of the specimen. (VGCF fraction: 11.6vol.%)](image)

Fig.10 SEM image of fractured cross section of the specimen. (VGCF fraction: 11.6vol.%)

を算出すると、VGCFの限界繊維長さはおよそ1.9mmになる。成形品中のVGCFはおよそ10μmと限界繊維長さに比べて極めて短いために補強効果がほとんど現れなかったと考えられる。したがってVGCFを補強用のフィラーとして使用するには、表面処理を施して界面におけるせん断強さを向上させるとともに長さ2mm以上のものを使用する必要があると考えられる。

![Fig.11 Volume resistivity of PS matrix composites filled with various carbon fillers as a function of filler fraction. (P=72MPa, r=2mm)](image)

Fig.11 Volume resistivity of PS matrix composites filled with various carbon fillers as a function of filler fraction. (P=72MPa, r=2mm)
VGCFを充填した試験片の成形条件を変化させたときの体積抵抗率を示す。板厚が薄く、射出圧力が72MPaと高い試験片で抵抗率が低いのに対して、板厚が厚く、射出圧力が7.2MPaと低い試験片で抵抗率が低くなっている。これは成形時に大きなせん断力が加わると繊維の配向が強くなるためであると考えられる。さらに、MWCNTを充填した材料ではVGCFやCBよりも少ないと考えられる。すなわち、超微粒子の充填が成形品の電気的特性を決定する要素であると考えられる。

以上より機械的特性を満たすに導電性を付与することができたことから、ポリスチレンにVGCFを充填することはポリスチレンの電気的特性を決定する要素であるフィラーの充填量で制御する可能性があることが示唆される。

成形品中のVGCFがどのような配置状態にあるか調査するために、走査型電子顕微鏡（SEM）により、図13に示す流動方向に平行な断面を観察した。図14に成形条件の異なる試料の断面SEM写真を示す。どちらの成形品においてもVGCFが流動方向に配向しているのがわかる。板厚が0.5mmと小さい成形品(a)の抵抗率は10Ωcmであり、板厚が2.0mmと大きい成形品(b)の抵抗率は10Ωcmである。ここで、成形品(a)，(b)のそれぞれ約100本のVGCFについて図13のyz平面内で流動方向からの各角度(配向角θ)を観察により求めた結果を示した。その結果、板厚の小さい(a)ではθ=21°、板厚の大きい(b)ではθ=18°であり、両者の間に差はほとんど見られなかった。次に、配向角の分布を図15に示す。どちらの成形品においても流動方向から10°から30°の領域に高い抵抗率を持つVGCFが多いことがわかる。また、このグラフから平均値を求めると、t=0.5mmの場合に5.48、t=2.0mmの場合に7.29となることから、板厚が大きいほど配向角のばらつきが大きくなくなることが予想される。したがって、繊維配向のばらつきの大きい(b)では、他の繊維との干渉が生じやすいために(a)と比較して抵抗率が小さくなったものと考えられる。

ここで、VGCF含有樹脂複合材料の導電機構について微視的に考察する。一般に、絶縁体と導電体からなる複合材料の電導現象はパラコルレーション理論によって説明される。これは一般に導電体の体積含有率があるしきい値（臨界体積含有率）を越えたときに導電体の連鎖が形成され、導電率が急激に増加し、絶縁体から導電体へと移動するもので、複合材料の抵抗率ρとフィラーの体積含有率φの関係は、

\[\rho = \rho_0 (1 - \phi) \]

と表される。ただし、\(\rho_0 \)はフィラーの抵抗率、\(\phi \)は体積含有率、\(r \)は導電率の臨界指数である。球状粒子のように導電率の臨界指数が成立する場合には臨界指数\(r \)は2に近い値をとる。また、VGCFをPPに充填し

![Fig.13 SEM observation direction.](image)

(a):t=0.5mm, \(\rho_c = 10^{10} \Omega \cdot \text{cm} \)

(b):t=2.0mm, \(\rho_c = 10^{14} \Omega \cdot \text{cm} \)

![Fig.14 SEM images of the cross section perpendicular to the flow direction. (Core layer, VGCF fraction: 5.5vol.%, Injection pressure:72MPa)](image)

![Fig.15 Distribution of orientation angles of VGCF in the core layer of a cross section parallel to the flow direction.](image)
た場合には $r=3.2$ の値が報告されているが、本実験の場
合には図1.1に示すように $r=3.7$ と大きい値となった。こ
れは、VGCFが極めて細くアスペクト比が大きい形状で
あるために導電率の普通値が成り立たないためである
とされる。

そこで、フィラーの形状に依らずに表面エネルギー
密度によってパーコレーションを扱うことのできる熱
力学的パーコレーションモデル(1)をVGCF含有ポリスチ
レンに適用して樹脂中の臨界体積含有率についてよ
り詳しく考察する。熱力学的パーコレーションモデル
は、極性を有する高分子には適用しにくいが、本研究で
用いている無極性のPSに纖維が混入している場合には
有利な考え方であり、まず以下の仮定をおく。

仮定1: CNTを混入することにより生ずる樹脂と
CNTとの界面エネルギーチップの増加を Δg とし、CNT
量が増加して Δg が Δg^* に至ったときにCNTはパーコレーションを生ずると考える。この時に電気抵抗が急
激に減少する。

仮定2: Δg^* は樹脂に依らない。すなわち、CNTは樹
脂の種類に依らない一定の界面エネルギーチップの含有
率を含めて以下のよう表現される。

$$ V_r = \frac{N V_o}{1 + N V_o} $$

と表すことができる。1本のCNTの表面積を S_o 、界面
エネルギー密度を K 、分散指数を P （ $P = 0 \sim 1$ のの
ときは完全に分散）とすれば、 $\Delta g < \Delta g^*$ では、 $\Delta g = KNPS_o$
であるから、パーコレーションを生ずるCNTの臨界含
有率 V_{c1} 以下のように表される。

$$ V_{c1} = \left[1 - \frac{KP}{\Delta g^*} \right] $$

無極性樹脂の界面エネルギーに関するFowkesモデル

$$ K = \gamma_r + \gamma_k - 2 \sqrt{\gamma_k \gamma_r} $$

（γ_k:CNTの界面エネルギーチップ、
γ_k:樹脂の界面エネルギーチップ）を用いて V_{c1} を表せば、

$$ V_{c1} = \left[1 - \frac{2 \sqrt{\gamma_r \gamma_k} - 2 \sqrt{\gamma_k \gamma_r}}{R + L} \right] $$

となる（R:CNTの半径、L:CNTの長さ）。簡単にため
にフィラーのCNTが完全にランダムな方向に分散して
いる ($P = 1$) として、さらに表面エネルギー密度はCNT
の種類にかかわらず一定と仮定し、著者らの実験結果
を含めてこれまでに報告されているCNTの臨界含有率
の測定結果を基に計算すると、$\Delta g^* = 6.4 \times 10^3$ J/m3、
$\gamma_k = 7.9 \times 10^3$ N/m とすることにより実験結果を樹脂に依
らずに表すことができる。この解析結果をPS基および
ポリプロピレン（PP）基の場合について図16に示す。
ここで、長さ L は15μmで一定とした。CNTの直径が

![Fig.16 Calculation results of critical volume fraction of CNT: V_{c1} in PS and PP matrix as a function of diameter of CNT. (Length of CNT: $L=15\mu m$)

100nm程度の場には実験結果に必ず見られる臨界体積
含有率は数%だが、CNTの直径が小さくなるにした
がって臨界体積含有率は減少し、直径20nmのMWCNT
ではPP基の場合には0.2%、PS基の場合には0.5%で導
電性が得られと予測される。さらに、直径2nmの
SWCNTをフィラーとすれば、PP基の場合にはわずかに
0.02%、PS基の場合には0.05%の臨界体積含有率となる
ことが予測される。極めてわずかな添加に導電性が
得られることから、透明導電性材料への適用に大き
い期待が持たれる。ただし、CNTの場合には繊維の絡
み合いや凝集が生じやすく、P値が1より小さい値をと
ると、臨界体積含有率はこの予測より大きくなる。
MWCNTをフィラーとした場合の V_{c1} の実験結果が計算
結果よりも大きいのは繊維の絡み合いによるものであ
ら考えられる。

図17に静電気散逸性の測定結果を示す。約10kVに帯
電させた後30秒間そのまま大気中に放置した場合、
VGCFの充電量の増加に伴ってどの成形品も帯電電圧が
減少することがわかる（図17-a）。また、帯電させた直
後に成形品をアースした場合には、VGCFを充電した成
形品はわずか0.2vol.％の充電量でも帯電電圧が0になる
ことがわかる（図17-b）。これらのことから、VGCFを
充電することで帯電気特性が大きく改善されることが
確認できた。一般に帯電防止として機能する抵抗率
は107 ~ 109Ωで、静電気散逸材として機能する抵抗率
は102 ~ 104Ωである（10）。今回試作した長さ75mm×幅
10mm×厚さ2mmのVGCF含有樹脂射出成形品はVGCF
充電量が11.6vol.％のときに約10Ω・cmの抵抗率を示し
た。このような成形品の抵抗値は104 ~ 105Ωと同様に
4. まとめ

VGCFを充填した超高流動性ポリスチレンを射出成形により成形し、成形品の基本的な機械的・電気的特性を評価することにより以下のことを明らかにした。

1. VGCFと高流動ポリスチレンを二軸混練機で混練してから射出成形することで、凝集を抑制してVGCFを成形品中に均一に分散させることができる。

2. 粒子状の導電性カーボンプラックを充填した場合には0〜12vol.%の範囲において体積抵抗率がほぼ直線的に減少するのに対し、繊維状のVGCFを充填した場合には充填量が3.3vol.%を超えると急激に体積抵抗率が減少する。この導電現象を熱力学的パーコレーションモデルを用いて考察し、臨界体積含有率とカーボンナノチュープの直径との関係を予測した。

3. VGCFを充填すると、従来の充填材を用いた場合に比べて抵抗率が小さくなり、11.6vol.%の充填で約10^{12}Ω・cmの成形品を実現できる。さらに多層カーボンナノチュープを充填すると、VGCFを充填した場合よりもさらに少ない充填量で低抵抗率の成形品（3.3vol.%の充填で約10^{8}Ω・cm）を実現できる。

4. 成形時に材料に加わるせん断ひずみを小さくして配向を抑制することにより、体積抵抗率が低く、静電気特性に優れた成形品が得られる。

5. VGCFを充填した場合、12vol.%以下の充填量ではヤング率はわずかに向上するが、引張強さはわずかに低下する。

謝辞

本研究を遂行するに際して、VGCFおよびMWCNTを提供していただいたフロンティアカーボンテクノロジープロジェクトならびに昭和電工株式会社に感謝の意を表します。また、有益な議論をいただいた東京工業大学の住田雅夫教授に感謝します。

文献

(1) 小山恒夫・遠藤守信，応用物理，42-7，(1973)，690-696。
(2) 遠藤守信・中村順一・雀部豊，高橋市雄・稲垣道夫，電気学会論文誌A，115-4，(1995)，349-356。
(3) 勝並信・山梨秀則・牛島均・遠藤守信，電気学会論文誌A，113-6，(1993)，473-479。
(4) 勝並信・山梨秀則・牛島均・遠藤守信，電気学会論文誌A，113-9，(1993)，632-637。
(7) 竹田啓・情野康男，成形加工，1-2，(1989)，197-204。
(8) 加藤和典・張佑新・大竹登俊，成形加工，11-10，(1999)，847-855。
(9) 高橋博文・見原康彦・松田聡・村上淳，成形加工，14-2，(2002)，126-131。
(10) 宮入裕夫，複合材料入門—基礎と応用—，裳華房，(1997)。
(11) 中村修平・齋藤一彦・深見聡・北川憲一・Snarskii, A., 電気学会論文誌A，117-4，(1997)，371-380。
(12)Kirkpatrick,S., Reviews of Modern Physics, 45-4, (1973), 574-588.
(15) 加藤英樹，プラスチックス，52，9 (2001)，74-77。
(16) 石橋壮一，成形加工，12-5，(2000)，242-245。