Fundamental Study on Shaving Mechanism

Masahiro SASADA*3, Kentaro SHINADA and Isamu AOKI

*3 Department of Mechanical Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686 Japan

Shaving is a type of precision shearing method to eliminate fractured surfaces. Its mechanism is known to consist of shearing and cutting, but the conditions for why shaving occurs are still unclear. In this study, we investigated the conditions in which shaving occurs for three cases; only cutting, only shearing, and in the case of cutting followed by shearing. We also studied the conditions for the shaving mechanism to change when cutting and shearing are mixed. First we compared the cutting force and shaving force, and established the hypothesis of mechanism that lead to smaller force necessary for continuing the work has priority. We also compared the cutting force through experiments, and the shaving force by Maeda's thin layer shearing theory, and studied the hypothesis from the magnitude relation of the two. To confirm the legitimacy of the hypothesis, we also studied the working mechanism by observing the direction of strain hardening around the shaved surface and material deformation. The conditions for which shaving occurs by this working mechanism predicted from the machining force agreed relatively well with the observation results of strain hardening and material deformation.

Key Words: Shaving Mechanism, Shearing, Cutting force, Shearing Force, Shaved Surface

1. 緒言

プレスを用いる板材のせん断加工は、高い生産性と加工安定性により、様々な分野で部品製造手段として広く用いられている。しかし、一般的なせん断法（以降慣用せん断とよぶ）を採用する限り、製品切断面に生じるべき、破断面、パリ等の欠陥を避けることができない。シェービング加工はこれらの欠陥を抑制する精密せん断法の一つであり、その主たる目的は、破断面の抑制にある。本加工法は慣用せん断製品の切口面を僅かに再せん断する方法である。通常のプレスを用いることが可能であり、切口面改善目的に広く採用されている。

シェービング加工については以前より詳細な研究が行われている。加工条件等については前田∥や、Timmerbeit∥らによって調べられている。また、加工機構については益田∥、中村∥等により調べられている。さらにシェービング工法の応用として振動

シェービングや重ねシェービング等の工夫がある。村川∥は厚板から歯車を製作する巧妙な間隔シェービング法を提案している。FEMによるシェービング解析がSuasa∥によって行われており、機構解明と条件設定等に有益な情報が得られている。

以上の研究はシェービング加工に大きく寄与するものであり、加工機構に注目すれば次の事項が共通認識として知られている。すなわち、シェービング加工は図1のように切削機構とせん断機構が混在するものであり、加工初期は切断、その後はせん断で加工が終了する。従来から、シェービング取扱（以降取扱）が僅少であれば全面が切削機構、十分大きければせん断機構、中間取扱ではこの両者が混在することが知られている。この機構の発現条件の検討は学術的観点のみならず実務的にも重要である。例えば製品として加工が返まれる場合やその逆の場合など、切口面の機能に注目し用いる場合も多い。さらにシェービング加工の経程末端をせん断加工による破断すればパリは小さく抑えられると考えられる。
シェービングの加工機構に関する基礎的研究

3. 加工力の算定及び計測

2章で述べた考え方に基づき機構を検討するにはせん断力と切削力を計測する必要がある。せん断力は実験的に容易に求まるが、切削力の解釈として前田の薄層せん断理論を用いた。切削力については切り込みから求める初等の手法がある。これによれば切削主分力 \(F_t \) は次式で表される。

\[
F_t = \frac{\tau_0 \cos(\phi + \beta - \alpha)}{\sin \phi \cos(\phi + \beta - \alpha)}
\]

ここで、\(\alpha \): すくい角，\(\beta \): 摩擦角，\(\phi \): せん断角，\(\tau_0 \): 材料のせん断抵抗，\(t \): 切り込み，\(h \): 軸切削幅

しかししながら、切り込みの変化に伴い仮断面が変化することが考えられる。そこで、切削力が切り込み \(t \) に比例することを念頭に置きつつ、実験的に求めることとした。

4. 実験装置及び方法

シェービング加工は前工程である慣用せん断の影響を受ける。前加工によりシェービングすべき切口面の材料特性は変化しており複雑である。そこで本研究をシェービングの基礎研究に位置付け、実験結果を示した面をせん断し、取り代の影響を主に検討した。基礎的な考え方を確立すれば前加工の影響を論じることが可能になると考えた。

用いた装置は図4に示すように片刃せん断型装置である。パンチ・ダイは直動ガイドを介してロードセル

--- 250 ---
シェービングの加工機構に関する基礎的研究

Figure 3 Three kinds of shearing process

に取り付けられており、垂直力、側方力が測定できる。両者の干渉は2%以下と小さいことを予め検定実験で確認した。取り代はマイクロメータにより設定を行い、ダイとダイホルダーの間に設置する調整ブロックの交換によりクリアランスの設定を行った。板押さえはねじ式である。

用いた材料は板厚1.2mmのA1100-P-O, A1100-P-H24で主に1mmを用いている。材料の幅は10mmである。なお、板厚の違いに伴う機械的性質（引張強さ、伸び）の差は小さい。様々なクリアランスで実験を行ったが以下は主に9%の場合を述べる。せん断力及び切削力は本装置（図4）を用いて測定した。

せん断力は、取り代を500μmに設定しせん断加工を行い計測した。一方、切削力は、取り代を10～400μmにそれぞれ設定し10mm厚の板材を加工することで計測した。また、定常領域の加工力を切削力とした。

機構を検討するにはせん断力と切削力の計測、さらに別の方法で切削・せん断機構を検証する必要がある。そこで、樹脂に埋め込まれた製品を切断し、せん断加工による切り口面の硬さをマイクロビッカース硬さ計（荷重25gf）で計測した。また、加工時の材料の変形状態をCCD型顕微鏡で観察した。

5. 予測結果と検証

5-1 加工力からの予測結果 図5は切り込み量（シェービング加工において相当）と主偏力および主分力の関係を示す。式（1）に示すように概ね切り込み量と主分力は線形関係にある。また図6は実験と薄素せん断理論から求められたせん断線図である。これらの関係から図3に示す機構の発現を予測した。

Figure 4 Experimental apparatus

Figure 5 Stationary cutting force as a function of depth of cut. (Cutting force is per unit width, A1100-P-O, 10mm thick)
図7は，各シューピング取引代における切削機構により形成された切口面の割合を予測した結果である。

以上の工場別の予測法について，他の方法で妥当性を検証する必要がある。そこで，硬さと切り
屑観察，材料変形から検証を試みた。

5-2 予測結果の検証

5-2-1 硬さ変化による検証方法

硬さの測定結果を図9に示す。取引代がある10μm，(b) 150μm，(c) 400μmである。図より明らかによ
り，外周の硬度においては低く，内部の硬度は高い傾向が見られる。特に，十分な切削代での硬度の
ばらつきを示す。切り込み深さによる硬度の変化は大きく，上記の傾向が確認できる。

行を示唆している。これらの硬度測定の結果から切削・せん断の機構を推定できると考えられる。

図10は，1mm厚の材料に対して，X=40μm一定位置でのYに対する硬度の変化を調べたものであ
る。これより機構変化を推定した。
図11はシェーピング取り代に対して材料変形の状況を示したものである。図11の各結果における切り込み深さが10μm、50μm、100μmの各ケースでの材料変形の傾向が示されている。これより、シェーピング加工における材料変形の傾向が把握できると考えられる。

5.2.3 予測結果の検証

以下のように硬さ及び材料の変形状態から、加工機構の移行を識別できることが分かった、「シェーピング加工は機構的にせん断力による切削である」と従来の結果が確認された。またこれらの結果より、各機構で生成される切削面が求められた。

5.2.2 せん断角観察・材料変形観察による検証方法

切削においては車削から加工し、それに伴い変形がみられる。このため、せん断角観察と材料変形観察を併用して、シェーピング加工の機構を把握するための検証を行った。結果をまとめると以下のとおりである。

各機構の発現条件を様々な観点から検討した。実験より求められた切削力とせん断力の大小関係から機構の選択を予測した。予測の妥当性を確認するため、切削面の形状と加工方法の変化を観察し、加工機構を決める。加工条件が予想される機構の発現条件は、加工方法及び材料の変形観察から求められる結果と比較して合理的な条件が得られる。このことからシェーピング加工における加工機構の選択変更を予測することは可能であり、最適な加工条件の設定に有効であると考えられる。

参考文献

(1) 前田 晋: 塑性加工.(1972), 講談社新社, 243-244.

--- 253 ---
(2) Timmerbeil.F. Werkstatttechnik, 47-7(1957), 350-356.
(3) 益田盛治・神戸敏・山内信也：機論,31-225(1965), 855-863.
(4) 中村茂一・窪見昌幸：塑性と加工, 4-29(1963), 387-395.
(5) 村川正夫・大川陽康・古関伸裕・鈴木清・中川威雄：塑性と加工, 26-288(1980), 81-86.
(6) Sutset,T.・神崎彦・村川正夫：塑性と加工, 26-288(1980), 81-86.