ワイヤ懸垂型マニピュレータの開発

大隅 久*, 越川 昌浩**
宇津木 康*, 萩原 利宣

Development of a Wire Suspended Manipulator

Hisashi OSUMI*, Masahiro KOSHIKAWA,
Yasushi UTSUGI and Toshinobu HAGIWARA

*Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University,
1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan

A wire suspended manipulator in a three dimensional space on a vertical plane is developed. The system consists of a 4 D.O.F. manipulator and a crane with two wires. The base line of the manipulator is suspended by two wires those lengths and upper end positions are controlled respectively. In order to avoid the vibration and displacement of the suspended base link, not only the position and orientation of the end-effector but the position of the gravity center of the suspended part are controlled by using the 4 D.O.F. manipulator. Additionally, two wire directions are used for avoiding the positioning errors under the existence of external forces. Some fundamental experiments show the validity of the proposed control algorithm.

Key Words: Robot, Manipulator, Wire Suspension Mechanism, Position Control, Redundant Manipulator

1. 結言

マニピュレータのベースを移動させることにより,マニピュレータの操作性を保ったまま可動範囲を増大させることができる。これまでに做成積分として車輪機構,個機構等が提案されているが,3次元空間での大きな移動は困難である。筆者らはこれまで移動機構としてワイヤ懸垂機構の利用を提案し,1本のワイヤでマニピュレータを懸垂したシステムを試作し,その制御方法を確立している6。本研究ではマニピュレータを懸垂するワイヤの本数を増やすことにより,マニピュレータ先端での制御性を大幅に向上できることを示し,その設計法を示すとともに,制御法を確立することを目的とする。

一般に,移動機構としてワイヤ懸垂系を利用すると,懸垂されたマニピュレータの動作に伴い発生する姿勢変化,あるいは手先での発生力により,マニピュレータを懸垂するベース自体も釣り合い位置に変位を発生したり,振動を発生する。

一方,ベース部が移動機構に取り付けられた移動マニピュレータに関する研究の多くは,移動機構としで台車を想定している。そして,移動マニピュレータが持つ冗長自由度を利用して移動台車の振動を防止する手法や,マニピュレータの冗長性を向上させる手法などを提案している6,7。しかし台車は,転倒直前の面から大きな何れかの力が受けており,外力で位置ずれの発生するワイヤに懸垂された移動機構には直接適用することができない。

一方,手先を動かすベースも移動してしまったという現象は宇宙用マニピュレータも同様である。これに関する研究では,運動量,角運動量の保存則から導出した拡張ヤコピ行列を定義し,これに基づいてマニピュレータを制御する手法が提案されている。また,吉田らは,ベースが平行板台に支持されているシステムにおいて,ベースを振動させることなくマニピュレータ手先を目標値に動的に移動させるための軌道設計法を提案している6。この研究は,ベース部の機構コンプライアンスを制御対象とするという立場には立っておらず,本研究のアプローチとは異なる。

本論文では,平面内3自由度の簡単な系におけるワイヤ懸垂型マニピュレータの構造の提案を行い,そ
の静力学特性を示すとともに、構造に運動学的な冗長性を持たせることにより、操作に最適な運動学解を比較的簡単に出すことができる。

2. ワイヤ懸垂型マニピュレータの機械

2.1 ワイヤ懸垂型マニピュレータの設計

ワイヤに懸垂されたマニピュレータの最大の問題は、マニピュレータに加わる外力や、マニピュレータ自身の形態変化によって、ベースリンク自体の位置や姿勢が変化してしまうため、逆運動学計算が複雑となったが、振動が発生し、制御が困難となってしまうことである。これらの問題に対処することも可能と思われるが、原理的にこれらの問題を解決できる機構を設計することができれば、制御方法を単純化することができ、制御性能の向上も期待できる。

図1はマニピュレータ端部に外力が作用した図を示す。(a)では外力が水平に働き、マニピュレータ端部が変位するのに対して、外力がワイヤ直下に向かって作用する(c)の場合には、マニピュレータは変位しない。これは、マニピュレータに対するワイヤの拘束がワイヤを含む軸直線上であるため、ワイヤが外力に対する反力を全て発生したためである。この考えを利用すれば、図1のようないわゆるワイヤを2本使用し、手先をその交点にとるように配置することで、ある程度の大きさまでは、手先に水平方向の外力がかからないよう、手先が変位することはない。

今度はワイヤを2本利用した懸垂系を示す。図2(a)はマニピュレータの姿勢変化によって、ベースとアイが変した状態を表す。ベースリンクの傾きが発生するのは、つり合い点において、懸垂部の重心が必ず2本のワイヤ交点を通る軸直線上に存在するためである。よって、マニピュレータの関節に冗長自由度を付加し、重心の水平方向変位を制御対象とすることで、ベースリンクの傾きを発生させることなく手先を任意方向に移動させることができる。

なお、ワイヤ本数を増したり、リンク機構と組み合わせることで、マニピュレータ端先までの発生力を3次元に拡張したり、冗長自由度マニピュレータを用いないとも、ベースを動かさずくことは可能である。ただし、クーロン部が不揃いになったり、力の発生範囲が広くとれない、といった問題もあり、必ずしも有効とは言えない。

2.2 ワイヤ懸垂型マニピュレータ機構の概要

以上の考察より、提案する機構を図3のよう決定した。マニピュレータは4リンクで、ベースの中央から懸垂されている。ベースはその両端からワイヤで吊り下がられている。平面内3自由度の制御のためにワイヤの支点の水平方向位置、ワイヤの長さの4自由度と4リンクマニピュレータの計8自由度が用いられている。よって本機構は自由度の冗長自由度を有している。ただし、ベース姿勢角は大きく変位させない限り、作業性能に大きな影響を持たないパラメータなので、ここでは0とする。ベース部は水平になるようにしておき、これにより冗長自由度は4となる。また、運動学的なパラメータを図4に示す。

\((\alpha_0, \alpha_1)\)はワイヤにより懸垂されている部分全体の重心座標を表している。また目標作業は手先位置・姿勢\((\alpha_0, \alpha_1, \alpha_2)\)とそこでの目標発生力\(f_0\)の実現とする。

![Fig.1 Wire suspended manipulator with external force](image1)

![Fig.2 Wire suspended manipulator with pose change](image2)

![Fig.3 Kinematic model of wire suspended manipulator](image3)
ここで、元長空間の4つの独立変数として、ワイヤ傾き角θ₁、θ₂、ベースの位置座標xₖ、yₖを用いる。
2本のワイヤが平行でない場合には、これら4つの変数を決めるために、まず、2台のクレーンの位置、及びワイヤ長が簡単に出せる。次に、目標の手先位置・姿勢を与えることで、マニューレータ部の4つの関節角が決まる。この際、2本のワイヤ交点の真上に懸垂部の重心が存在しなければならないという条件を用いる。

交点のx座標は、ワイヤ傾き角θ₁、θ₂とベースのx座標x₀により、式(1)のように決定される。

\[x = \frac{L_1 \cos \theta_1 \sin \theta_1}{b} + \frac{L_2}{2} \sin(\theta_2 - \theta_1) \]

一方、懸垂部の重心のx座標x₀は、式(2)のように4つの関節角q₁～q₄で決まる。

\[x_0 = \frac{1}{M} (m_1 \cos q_1 + m_2 \cos q_2 + m_3 \cos q_1 + m_4 \cos q_1) \]

ただし、

\[M = m_1 + m_2 + m_3 + m_4 \]

\[q_1 = q_1 + q_2 + q_3 = q_1 + q_2 + q_3 + q_4 \]

である。そこで、手先目標位置・姿勢の変数は式(3)と与えられる。

\[x = x_0 + l_1 \cos q_1 + l_2 \cos q_{12} + l_3 \cos q_{123} + l_4 \cos q_{1234} \]

\[y = y_0 + l_1 \sin q_1 + l_2 \sin q_{12} + l_3 \sin q_{123} + l_4 \sin q_{1234} \]

\[\phi = \phi_{1234} \]

よって、式(2)と式(3)を連立させることで全ての関節角値が算出できる。

ここで、ヤコピ行列JのR₄₄を

\[\Delta \mathbf{x} = J \Delta \mathbf{q} \]

と定義すると、式(5)を得る。これを解くことで、ベースを動かすΔxₑₑを実現できる。

\[\Delta \mathbf{x} = J^{-1} \Delta \mathbf{q} \]

なお、ワイヤが平行な場合には、2本のワイヤ間の重心が存在する限りどのような動きも可能である。

3. 静力学特性

本機構ではベースを変位させるためにマニューレータ手先で2次元力を発生できる。この発生可能な力ベクトルfの作用線はワイヤ交点を通る。そして、2本のワイヤ張力ベクトルをa₁、a₂とすると、式(6)と表される。

\[f = T_1 a_1 + T_2 a_2 \]

ここでT₁、T₂はそれぞれ張力の大きさを表す。懸垂のためだけに必要な張力をTₚ(i=1,2)とすると、2つの張力はそれぞれ

\[T_i \geq -T_p \quad (i=1,2) \]

の値をもって取れる。Tₚは懸垂部の質量とワイヤ傾き角のみの関数となる。この関係を図5に示す。

図6のように、発生可能なfは、2本のワイヤ交点を通る並進成分である。これを手先に変換すると、並進力はそのまま伝達されると同時に、手先と交点の相対位置に応じて手先にモーメントが発生する。つまり、手先で発生できる力の並進成分はワイヤ傾き角によって決まり、モーメントは相対位置によって決まることがわかる。この関係を利用して、有効な元長自由度利用法が検討できる。
4. マニピュレータの可動範囲

一般に、広い可動領域を持つクレーンの時定量数は大きく、フィードバック制御にはあまり向いていない。なお、位置決め精度も高いとは言い難い。そこで、本機構の制御方法としては、まずワイヤの上部支点及びワイヤ長の制御によりベースを動かし、マニピュレータ手先を作業点近傍まで移動させ、次にマニピュレータ部のみを利用して手先の微小動作を行う、といった方法を取る。この際、マニピュレータがどのような姿勢をとった状態を仮定するかで、初めにベースを移動させる目標位置が変わってしまう。マニピュレータの初期姿勢として、可操作性を最大にする、条件数を利用して最適姿勢を求めることで、といった方法も考えることができる。しかし、ベースを一旦位置決めした後は、できるだけマニピュレータ単体で作業を行わせたいことから、ベースを動かさずにマニピュレータが動作できる範囲をあらかじめ調べしておく、可動領域の中央付近に手先がくる姿勢としておくことが良好である。そこで、手先を水平に保ったままで、水平方向にどれだけの距離を移動できるかについて、シミュレーションを行った。なお、ここではワイヤは左右対称とし、ワイヤ交点がベース中央となるように設定している。利用したパラメータを表1に示す。これは試作機の値となっている。

結果を図7に示す、右と左の曲線がそれぞれ可動領域の限界を示している。左側の線は、途中が大きくくびれている。これはマニピュレータが第3関節で折りたまれ、第1、第2、第3関節がほとんど一直線になった状態である。この姿勢ではワイヤの重心制御と手先制御が両立しない。この時の式(9)のヤコピ行列はランク落ちしている。ただし、実際には構造的な制約から、各関節には可動範囲がある。全ての関節が可動範囲に存在する領域が図7のRの部分である。なお、これらの結果は、ベースリンク質量や長さによって大きく異なる。なお、本論文では最適設計問題を扱っていない。

<table>
<thead>
<tr>
<th>Table 1 Parameters of wire suspended manipulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_i, m</td>
</tr>
<tr>
<td>Base link(0)</td>
</tr>
<tr>
<td>Link 1</td>
</tr>
<tr>
<td>Link 2</td>
</tr>
<tr>
<td>Link 3</td>
</tr>
<tr>
<td>Link 4</td>
</tr>
</tbody>
</table>

Fig. 7 Working space of the suspended manipulator

5. 軌道制御実験

マニピュレータの手先を等速度で移動させる実験を、2通りの条件で行う。一つは、マニピュレータ部のみを最小ノルム解により動作させる場合、もう一つは提案手法を用いる場合、すなわち式(5)に基づいた指令により動作させる場合である。そして、ベースに取付けた傾斜計により、ベースの傾き角を測定することで、提案手法の有効性を検証する。なお、本実験では動力学的影響を無視している。

マニピュレータを図8に、装置のシステム構成を図9に示す。ベースは3本のワイヤで懸垂されている。ただし、マニピュレータの存在する平面内のみを作業空間とすると、本システムを2次元モデルとして扱うことができる。その際、3本のワイヤ取付け点を、作業空間に関して対称とおくことで、ベースと3本のワイヤを、図4のベースリンクと2本のワイヤと同等とみなす。なお、実験ではクレーン部の制御は行っていない。

Fig. 8 Photos of prototype robot
可動範囲の考察を基に、マニュレータ先端がベース下部47cmとなるように初期姿勢を設定した。この高さは、マニュレータの水平方向可動範囲が最も広くなる高さである。

Fig.9 System configuration

実験結果を図10に示す。縦幅はベースの傾き角度、横幅は手先の水平方向変位を表している。グラフのx軸が0の点がマニュレータ初期姿勢で、ベースは水平である。手先には等速度軽トラック7.5[m/s]を与えており、グラフを見ると、重心位置が変化していることがわかる。また、提案手法ではベースがほとんど傾いていないのでに対して、最小ノルム解のみを利用した動作生成方法では、ベースが傾いていくことがわかる。

Fig.10 Experimental results

6. 結論

平面内3自由度を作業空間とするワイヤ懸垂型マニュレータの構造を提案した。マニュレータに機構的な冗長性を与え、手先位置、姿勢のままわずかな水平方向変位を制御対象とすることで、準静的にベースを傾かせずにマニュレータを動作させることができるところを示し、更に試作機を用いた基礎実験により、提案手法の有効性を検証した。動力学的効果を考慮した更なる高速動作の実現、及び3次元空間への拡張が課題である。なお、本研究の一部はファナックFAロボット財団平成11年度研究開発助成により行われた。ここに謝意を表す。

参考文献: