リンゴ腐らん病の粗皮感染について

雪 田 金 助 *

Rough Bark as Related to Infection Site of Valsa Canker on Apple Trees

キヌスケユキタ *

リンゴ腐らん病（病原菌：Valsa ceratopserma）は整枝剪定や徒長枝の整理、摘果、収穫などの栽培管理、あるいは雹害や凍害などの気象災害などによる被害を引き起こす多くの病害である。しかし、その特性があるような病斑がみられない原因は、その主なもののが粗皮から感染・発病である。

本病斑の重要性は多くの実験調査において指摘されている（2, 5, 6, 8）が、その発生状態は不明である。そこで、本研究では粗皮を起因に発病する病斑の発生状態を明らかにするために、粗皮の形成消長を調査するとともに、粗皮の形成消長に合わせて接種試験を行ったので、その結果を報告する。

方法および材料

1. 粗皮の形成消長

試験1：青森県りんご試験場・N2号園（以下、N2号園）に植えられている約20年生の「つがる」ノーマルカイドウを供試し、1997年と1998年のそれぞれ4～12月に、概ね1カ月間隔で9～11回、粗皮の形成状況を調査した。供試数は各年次とも8樹とした。工業は各供試樹の主幹を対象に、地表面から高さ30 cmのところを3点に上部150cmまでの範囲で行った。粗皮は調査開始前の4月上旬に取り除き、それ以後に形成されたものをマーキングしながら、各調査時期ごとに形成されている新しい粗皮のみを数え、8樹合計で集計した。

試験2：1998年7月1日にN2号園の約20年生の「つがる」の主幹に形成された新しい粗皮を20個選んでスケット、その全園と境界部に生じている樹皮亀裂の長さを測定した。さらに7月10日、7月27日、8月9日、9月8日および11月12日のそれぞれの時点までに、新たに広がった樹皮亀裂の長さを測定した。これら樹皮亀裂の長さを粗皮の全長に対する比率で表し、粗皮形成に伴う樹皮亀裂の形成消長とした。

2. 粗皮形成の品種差

1998年に南津軽郡鰺ヶ崎町水沼の一般リンゴ園に植栽されている10～30年生の「つがる」、「スターキングデリシャス」、「北斗」、「王林」とおよび「ふじ」ノーマルカイドウの各3樹を対象に、粗皮の形成消長を調査した。調査部位は前項1と同様に主幹とした。調査は6月1日から10月18日まで、概ね1カ月間隔で6回行った。古い粗皮は4月上旬に取り除き、それ以後に形成された粗皮のみを調査対象にした。

3. 樹皮亀裂部からの感染・発病

試験1：1997年6月30日に、N2号園の約20年生の「つがる」の主幹に形成された新しい粗皮にマーキングし、その境界の樹皮亀裂部に時期を重くして病原菌の柄胞子懸濁液を噴霧接種した。接種時期は粗皮の形成直後（6月30日）、1カ月後（7月30日）、2カ月後（8月26日）および5カ月後（12月5日）とし、それぞれに10～12個の粗皮を供試した。接種には青森県りんご試験保存の
AVC-53菌株をリンゴ切枝添加PDA培地で培養し、形成された柄胞子を用いた。胞子濃度は2～4×10^5個/㎖に調製した。接種後、樹皮亀裂部に蒸留水を満たし、4枚重ねのフランネル（5cm×5cm）を押し当て、さらにピニールフィルムとアルミホイルをより広く押し当てて固定し、湿温状態を保持した。これら被覆物は2週間後に取り除いた。接種当日の9月26日、10月23日、12月5日、接種翌年の4月14日、5月28日および12月4日に発病状況を調査し、累積の発病率を求めた。なお、4月中旬から8月下旬までの薬剤散布時には、各供試樹の主幹全体をポリエチレンフィルムで被覆し、薬液が付着しないように配慮した。

試験2：1998年6月29日に、N2号圃の約20年生「つがる」の主幹に形成された新しい粗皮をマーキングし、試験1と同様に樹皮亀裂部に柄胞子懸濁液を噴霧接種した。接種時期は粗皮の形成直後（6月29日）、1カ月後（7月29日）、3カ月後（9月8日）および5カ月後（12月4日）とし、それぞれに12個の粗皮を供試した。接種当日の9月8日、11月12日、12月4日、接種翌年の1月26日、3月29日および6月17日に発病状況を調査し、累積の発病率を求めた。

試験結果
1．粗皮の形成消長
試験1：1997年の調査では、6月15日に初めての粗皮形成が認められた。粗皮形成数は6月30日以降急激に多くなり、7月16日には最盛期となって、以後急激に減少した（第1図）。

1998年の調査でもほぼ同様の結果が得られた。すなわち、6月29日に初めての粗皮形成が認められ、その形成数は7月10日に最大となり、8月19日以降になると急激に减少した（第1図）。

粗皮形成の推移を第2図に示した。粗皮は始め淡褐色～橙色で、周りの樹皮よりもやや隆起した状態で現れ、その境界部には比較的明瞭な樹皮亀裂が部分的に生じていた。形成1カ月後になると、粗皮の境界部は一層明瞭となり、樹皮亀裂もより広い範囲に及んだ。また、境界部より内側の樹皮は完全に枯死して乾燥し、全体的にやや縮み、紫褐色～暗褐色を呈するようになった。形成5カ月後の調査では、その形状に大きな変化がみられなかった。

試験2：樹皮亀裂の長さは、時間の経過とともに次第に減少する傾向が見られ、特に7月以降に顕著に現れた。
に拡大した。しかし、形成1カ月後の8月9日以降の調査では、樹皮亀裂の新たな拡大はほとんど認められなかった。また、樹皮亀裂が粗皮の全周に及ぶことは皆無であり、粗皮の周囲を100とした場合の樹皮亀裂の比率は、形成4カ月後の11月12日の調査でも最大91%、最小20%、平均56%であった。

2. 粗皮形成の品種間差
「つるの」「スターキングデリシャス」、「北斗」、「王林」および「ふじ」の主幹における粗皮の形成推移を第3図に示した。各品種とも、7月2日の調査で初めての粗皮形成が認められ、その形成数は7月26日に最大となって、8月19日以降には急激に減少した。9月10日およ

【第3図】 各種品種の主幹における粗皮の形成推移
（注）粗皮の形成数は3樹の合計値で示した。

ノ粗皮の形成数

- スターキングデリシャス
- 王林
- ふじ
- 北斗
- つる

調査月日

第1表 粗皮境界の樹皮亀裂部に対する接種時期と感染・発病との関係（1997年）

<table>
<thead>
<tr>
<th>接種時期</th>
<th>供試数</th>
<th>1997年</th>
<th>1998年</th>
<th>累積の発病数</th>
<th>累積の発病数（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>9/26</td>
<td>10/23</td>
<td>12/5</td>
<td>4/14</td>
</tr>
<tr>
<td>形成直後</td>
<td>11</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1カ月後</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2カ月後</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5カ月後</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

注1）供試品種は「つる」とした。
注2）接種時期は6月30日を形成直後として区分した。

第2表 粗皮境界の樹皮亀裂部に対する接種時期と感染・発病との関係（1998年）

<table>
<thead>
<tr>
<th>接種時期</th>
<th>供試数</th>
<th>1998年</th>
<th>1999年</th>
<th>累積の発病数</th>
<th>累積の発病数（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>9/8</td>
<td>11/12</td>
<td>12/4</td>
<td>1/26</td>
</tr>
<tr>
<td>形成直後</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>1カ月後</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3カ月後</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5カ月後</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

注1）第1表と同じ。
注2）接種時期は6月29日を形成直後として区分した。
リンゴの場合、粗皮には様々な糸状菌が寄生し（1）、ハダニ類やクワガタニガラムなど害虫の越冬場所ともなるが、粗皮の形成そのものと検討した報告はみあたらない。そこで、年ごとの「つがる」を対象に粗皮の形成消長を調査したところ、粗皮は6月中旬から形成され始め、その最盛期は7月中旬であることがあるから、「つがる」以外の品種でもほぼ同様の結果が得られ、また年次変動も小さいので、この時期の粗皮形成がリンゴ腐らん病菌の感染と密接な関係にあるものと考えられる。

藤田ら（2）は人為的に粗皮に類似した枯死組織を作成し、その枯死組織に対する接種試験の結果に基づいて、粗皮を起点に発病する病斑の感染時期を冬期であると報告した。また、長内（8）は秋季に発生する病斑の多くは粗皮と密接に関係していることを明らかにし、さらにその感染時期は一般的に長いとされる本病の潜伏期間を考慮して、発病年冬の春からそれ以前であると推定した。これらの結果はいずれも、粗皮を起点に発病する病斑は枯死組織に感染した個原菌に起因するとの仮説に基づいて導き出されたものである。しかし、本病は古い傷よりも新しい傷ほど感染率が高いので（7）、実際の粗皮形成の推移に合わせた接種試験で、その感染部位や感染時期、潜伏期間などを確認する必要がある。

先の調査により、粗皮にはその形成過程において、本病原菌の感染に好適な傷を生じることが明らかになった。その傷は粗皮の形成に伴って、境界部の枝皮亀裂となって現れるので、その形成直後の枝皮亀裂に本病原菌を接種したところ、高い割合で発病した。一方、形成1～5カ月後の枝皮亀裂への接種では全く発病しなかった。したがって、粗皮を起点に発病する病斑は、その粗皮形成に伴う枝皮亀裂に感染した病原菌によって引き起こされ、その主要な感染時期は粗皮の形成が最盛期になると推定される。

なお、本接種試験では接種年当の10～12月に火入れ症状を呈した小型病斑が現れ、その病斑は接種翌年の3～4月に大きく拡大して典型的な腐病状になった。このような病斑の発現移行は、粗皮と密接なかかわりを持つの病斑の多くは秋季に発生して、翌年の秋に大きく拡大するとの報告（8）と一致している。したがって、その潜伏期間は3～5カ月間程度であると考えられる。

青森県では褐斑病対策として、7月下旬または8月上旬にチオフォネートメチル剤あるいはベノミル剤を散布するように指導している。これら2剤は録らん病に対しては有効であり、しかもその散布時期は粗皮の形成時期とほぼ一致している。今後はこの点を考慮しながら、粗皮を起点に発病とする病斑の防除対策を検討する必要がある。

引用文献
1）青森県りんご試験場（1981）青森県りんご試験場50年史（青森県りんご試験場編）pp.747-748。
2）藤田孝二・杉本隆・松中謙次郎・田中弥平（1981）りんご試報19:57-84。
3）篠野俊夫（1954）植物組織学,内田老鶴園,東京,385-386。
4）伊藤重信・須崎浩一・中原健二・町田裕夫・松中謙次郎・吉田幸二（1999）日植病報65：394（講要）。
5）仲谷房治・安藤義一（1992）日植病報58:121-122（講要）。
6）佐久間 勉（1978）果樹試報C5:29-37。
7）佐久間 勉（1983）果樹試報C10:61-79。
8）長内昌彦（1993）北日本病虫研報44:77-81。
9）山崎利彦・新妻辰次・田口辰雄（1970）秋田果試研報3:49-60。

（2002年3月31日受理）