ビーコンを使った帰還カプセルの搜索システムとその運用

木野貴秀 Takahide Mizuno・川原康介 Kouusuke Kawahara・山田和彦 Kazuhiro Yamada
宇宙航空研究開発機構 宇宙科学研究所

小惑星探査機「はやぶさ」は小惑星イトカワとの従を果たして、2010年6月13日、オーストラリアカメルメ砂漠に帰還し、小惑星表面の質量で無数のサンプルが入った再入カプセルは大気圏突入後、再入カプセルが発するUHFビーコン信号を追跡するビーコン追跡システムによって捕捉追跡され、再入後約1時間で発見された。ビーコン追跡システムは地上の4箇所に設置された電波方向探査局とヘリコプターで構成された柔軟性の高いシステムで、「はやぶさ」プロジェクトで用いた再入カプセルの回収、準用を用いた小型再入カプセルの回収手法として、本システムが有効であることが保証された。本報では、カプセル回収に用いられたビーコン追跡システムを紹介し、電波方向探査局の配置やヘリコプターによる搜索等の運用結果について解説している。

Key Words: Hayabusa, Planetary Re-entry, Return Capsule, Recovery, Beacon

1. はじめに

近年の再入カプセルの例としては、我が国では小惑星探査機「はやぶさ」[1]と無実験機USERS[2]があり、米国ではSTARDUST[3]に加えて太陽風サンプルリターンGENESIS[4]がある。これらの例における帰還時のカプセル搜索手段としては、UHFビーコン、GPSテレメトリ、ARGOS、1次レーダ、赤外線カメラが使用されており、それぞれ以下の特徴を持っている。カプセルに搭載されたUHFビーコンを追跡する手法は単純なシステムであるが、軽量で迅速な判断による追尾が可能である。GPSの正確な位置を知ることができるのが、前述のシステムが計画された段階では、搭載受信機の重量が多く、例えばUSERSでは合計55kgと重く、重量リソースのきびしい惑星再入機のカプセルへの搭載は困難であった。現在では小型衛星INDEXに搭載されたGPS受信機(0.2kg)[5]の例もあり、搭載できると考えられる。ARGOSは軽量であるがNOAA衛星との合同判断に制約があり、その位置決定精度は2km程度である。地上的1次レーダは正確な有効であるが、固定するための着地地点を制約を与えてしまい、赤外線カメラは航路条件に対し、これら追尾手段の特徴を考慮すると、重量リソースに余裕のあるカプセルはGPS受信機搭載して、余裕のあるカプセルはUHFビーコンで回収をめざすという方向性が見えてくる。実際に、カプセル重量900kgのUSERSでは、UHFビーコン、GPSテレメトリ、ARGOSを搭載し、GENESIS(206kg)はGPSテレメトリを搭載している。しかし、軽量な

STARDUST(45kg)[6]と「はやぶさ」(16kg)ではUHFビーコンだけで搭載して、UHFビーコンと1次レーダを主な追尾手段としている。「はやぶさ」は他国の軍事エリアでの回収で十分な1次レーダとヘリコプターを用意できないため、1次レーダをバックアップとして、カプセル搭載のUHFビーコンを4つの電波方向探査局（DFS:Direction Finding Station）によって追尾・位置決定を行い、1機のヘリコプターにより発見するという手法をとった。したがって、この手法は固定の地上レーダを主としないため、カプセルの着陸地点に対する制約が少ない柔軟性を持っている。

本報では、2010年6月に小惑星イトカワとの従を果たし、オーストラリアカメルメ砂漠に帰還した「はやぶさ」の再入カプセルを、UHFビーコンを使って搜索した、DFSとヘリコプターによって構成されたビーコン追跡システムとその実運用結果について紹介する。

2. 再入・降下・着陸シーケンス

カプセル分離から着地および搜索の概要を第1図に示す。帰還カプセルが高度200kmに到達する時間を再入時刻(R)と定義すると、母船はR-3時間にカプセルを分離し、カプセルとともに大気圏に突入して燃え尽き、カプセルは高度80〜40kmの間には空気加熱により発光し、その発光は地上からおよそマイナス6等星程度の極めて明るい流星として見えることができる。高度10〜5kmで、カプセルは前面および背面のヒートシールドを分離し、同時にパラシュートを開催し、8秒後にビーコンの送信を開始。およそ6m/sの速度で降下して着地する。一方、2つのヒートシールドはカプセルからの分離後、自由落下する。

© 2012 日本航空宇宙学会
平成23年8月17日原稿受理 Beacon Tracking System and Operation for Sample Return Capsule
(250)
結

ロシュートを展開して地上風に流されつつ下降すると予測され、その着地点の40分散領域は、パラシュート開傘位置に関わる東西方向（長軸方向）に約150 km、南北方向（短軸方向）に約15 kmと推定された。

再突入前日には、その時点で最新の軌道決定値（6/12 0:00 UT 配信データ）と NCEP の風予報データ（6/12 00:00 UT 配信データ）を用いて軌道計算を実施し、着地点推定を行った。パラシュートの開傘高度は、実際の加速度トリガーとタイマーの設定により最終的には高度55 km と決定された。第2図では、開傘高度を5 km として推定したパラシュート開傘点と IM 着地点の40分散領域を黒色破線と黒色実線で示す。40分散斜円は、長軸方向に40 km、短軸方向に3 kmの領域に予測された。

4. ピーコン追跡システム

4.1 システム概要 パラシュートを追跡するピーコン追跡システムは、パラシュート開傘時のピーコンを追跡する4局の DFS と情報解析システムと、着地後のピーコンを追跡・カプセルを発見するヘリコプター情報からの目視追跡によって構成される。1次レーダービーム追跡システムのパックアップとして、パラシュートの電波反射器を目標にピーコンを追跡する。このシステムでは、42,43に示す電波伝播特性を考慮した上で4局のDFSを配置し、DFSによる位置決定精度がヘリコプターによる目標の位置推定可能な範囲内に納まるようにシステム設計がなされている。機動性の高いヘリコプターと移動状態のDFSの組み合わせで着地予想位置をカバーするため、「はやぶさ」の着地点は機のオペレーション者との seek による対応できる柔軟なシステムとなっている。

DFSが配置される場所は、豪州軍の管理するウメラ制限区画内の砂漠地帯であり、通信や通信をはじめとする社会インフラ設備が整備されている場所ではない。したがって、設営および運用者の安全や生活面での負担の軽減の観点から、DFSは少人数が短期間で移動・設営できるロービルで、設営環境に柔軟に対応できる柔軟なシステムとなっている。情報伝達は衛星電話のみで運用可能なシステムとなっている。

4.2 電波伝播 着地点となったウメラ制限区画の地形は大きな丘陵やダムもなく平坦で、第2図に示すパラシュート開傘斜円（長軸方向で150 km程度）内の低地は最大でも10 m程度である。地形は細かな石が表面に露出した粘土質の乾燥した土壌で、所々に塩水池が点在する。植生は離散状態の雑草が所々に生えている中に数m程度の木が混ざっている場所はほとんどである。

カプセルが発信するピーコンの追跡は、高度10〜5 kmで開傘して降下するカプセルの無指向性アンテナと、カプセルから数km〜百 km程度離れたアンテナ高3 mのDFSとの通信となる。このような環境下での通信であることから、大地での反射が支配的な他の反射波は小さいと考えられ、平滑球面大地における反射干渉波の2波
4.3 電波方向探査局 ビーコンによるカプセル追跡システムの要となる DFS は、主に垂直偏波の八木-宇田アンテナ 2式を水平方向にスタックしたアレイアンテナ、受信機およびコンソールから構成されている。開発にあたっては、社会インフラの乏しい砂漠に展開して運用する必要があるため、軽トラック 1台程度ですべての機材を運搬できること、運搬・設置・運用を 3名で行うこと。これらの作業に専門知識を必要としないことを必須条件としている。DFS の性能および機能を第 1 表に示す。また、露天での使用とコスト削減のため、屋外での使用を前提として作られているアンテナなどアマチュア無線用の市販品を多用している。

DFS は水平方向にスタックした 2式のアンテナに到達したビーコンの位相差を検出することにより、アンテナを追跡対象に正対させて方位角（AZ 角）の検知追跡を行うシステムで、下記 (EL 角) および距離の検出能力はな。アンテナ上下角は DFS とカプセルの距離および開門高度を考慮して 10° に固定している。信号処理には SCAMP（Single Channel Mono-pulse）方式を採用し、受信機 1 台の簡単なシステムで角度の検出感度 0.1° を実現している。カプセルの発信するビーコンは出力 100 mW で、降下中のカプセルのモノボールアンテナの利得はおよそ 0 dB である。

駆動者はモータコントローラを手動操作にて追跡対象にあわせ、エンコーダ出力をコントローラとしてコンソールに出力している。運用者は第 3 図に示すコンソールを用い、手動でアンテナの AZ 回転角を操作する運用となる。この画面の中で中央の 2つのグラフは上段が DFS の受信レベル、下段が角度エラー電圧を表示している。方位角方向のビーム幅は 26° と広く、角度 エラー-電圧が正常に出力されるいわゆる引き込み角度は ±10° 程度確保されている。DFS の一例として、Parakylaia 局の外観写真を第 3 図に示す。運用者は約 15 m 後方のキャラバンからアンテナを操作する。運用者は情報を解読システムのある本部に対して、衛星電話を介して正直なゴセラ方向方位角と受信状況を伝達する。アテナ動態ギアとエンコーダへの伝達ギアの遊びが±0.5° である、これが DFS の角度追跡精度を決定している。

4.4 測量 各 DFS には方位角および受信レベルの校正基準となるべきコリメーション局が設置されている。DFS-コリメーション局間の距離は砂漠での作業性を考慮しておよそ 200 m の間隔としている。DFS の角度分解能 0.1° より十分な精度で校正するためには、コリメーション局位置の誤差はアンテナ設置誤差を含めて 10 cm 以下とす
ビーコンを使った帰還カプセルの探索システムとその運用（水野貴秀・川原康介・山田和彦）

第4図　探索用ヘリコプター S-76と探索用の装備品

第3図　電波方向探査局（DFS）

精度は±0.5°であるため、距離100 kmでの位置決定精度は1.7 kmとなる。これは夜間にヘリコプターが探索可能な範囲としている3 km四方でカバーできる範囲である。このような条件から、DFSのカバレッジは約100 kmと考えて、第2図に示されるバラシュート開く時点の40分間隔域内の任意の点が3局（最低2局）のカバレッジに入るようにDFSを配置する必要がある。

受信感度特性や位置決定精度の観点とは別に、局の設置および運用を支障なく行うためには、1回転で十分である程度の距離があること、雨天にしろは運用が確保されることが、事務所からの距離が遠すぎないこと、地権者の理解が得られる場所であること、という条件が加わる。

本報の観点から設置位置として第2図に示す6カ所、東部に紫iPurple Downs、Parakylia、Vivian、Eba、Cattle Bore、McDouall Peakを選出した。このうちParakylia、Vivian、Eba、Cattle Boreの4カ所にDFSを設置し、Purple DownsとMcDouall Peakは着地点の分散格率が東西にずれた場合の予備地とした。

4.7 本報情報解析システム　DFS各局からの方位角情報は受信状況の評価とともに本報に集約され、本報情報解析システムで各局からの情報を解析して着地点を特定する。

本報では衛星電話で常時接続されており、仮設の各局担当の連絡係（各局1名、計4名）は十分応答（1分以内に1回）に、DFS間連絡係から報告を受ける体制となっている。情報解析システムのモニタ画面を第5図に示す。地図上の黒い点がDFSの位置、実線がDFSから伝達された方位を示している。実線が集まった部分がカプセル位置で、最終的にはサーバ操作者が地図上の一点をクリックすることにより位置を決定する。画面の分解能は100m/pixelである。最後に人の判断の余地を入れることによって、習熟した操作者の判断で様々な状況に柔軟に対応できるシステムとしている。

4.8 一次レーダによる追跡　カプセルのバラシュートには一次レーダによる追跡が可能となるように電波反射材が取り付けられている。事前の内浦宇宙空間観測所
(USC)の精測レーダを用いた実験から、その反射断面積(RCS)はパラシュート開傘前で0.01m²程度、パラシュート開傘後は0.2〜0.5m²であると見積もられている。本プロジェクトでは、パラシュートの離着陸時における、ビーコン追跡システムのバックアップとして、豪州軍の飛行体追跡レーダーMPS-36の1次レーダ機能を使用している。MPS-36は回収プロジェクト本部（HQ）の建屋付近（第2図）に設置されており、RF出力は1MW、ビーム幅1.2°、受信機雑音温度290Kである。パラシュートのRCSを0.2m²として、理論的にレーダ検出確率99%を実現するSNR=13dBを確保すると、最大レンジはおよそ150kmとなる。MPS-36はカプセル開傘予想位置中心および130kmの位置があるため、開傘予想位置の東側半分をカバーできる見える。

5. 帰還カプセルの追跡と探索

5.1 パラシュート降下中の追跡 2010年6月13日

はやしき帰還当日、DFS各局は日没前に配置に着き、再突入時刻Rの2時間前にはコリメーション局を使った事前仮定作業を完了させて待機した。23時22分、ほっど仮定通りの軌道に「はやしき」母船とカプセルの火球が現れた。

約3分後、23時26分25秒に全DFSではほぼ同時にカプセルからのビーコンを受信、MPS-36もほぼ同時にカプセルパラシュートを捕獲した。DFS各局の受信レベル、MPS-36による追跡結果および風情報による推定降下軌道と比較した方位角の追跡エラーを第6図(a)〜(d)に示す。実線がDFSの受信レベル、破線は風情報に基づく推定降下軌道から式(1)を用いて計算した理論追跡レベル、黒色点がMPS-36による追跡結果と比較した方位角エラー、灰色の推定降下軌道と比較した方位角エラーである。第6図(e)〜(f)は、以上を総合的に示している。ここで、DFS測定結果と比較するために用いている推定降下軌道は、高度200kmの初期条件として、6/13 13時00分UT配信の軌道決定値から与えられた値、大気データとして、6/13 12時00分UT配信のNCEPデータを用いて算出した着地点、実際にIMが発見された着地点と一致するように平行移動して得たものである。

各局からカプセルまでの距離は降下中数kmの変化でほぼ一定と見なされるため、第6図(a)〜(d)の結果に見られる受信レベルの時間変化は第6図(e)に示すカプセル高度の変化による影響が支配的である。受信レベルの時間変化の傾向は式(1)の2波モデルによる理論値にほぼ一致している。受信レベルの急激な切り込みがEba局とCattle Bore局では23時27分(UT)付近、Vivian局では23時29分付近に見られるが、これはメインビームで捕獲していることを確認するためのアンテナ掃除による切込みである。

4.2で説明したように、カプセルの降下に伴って、カプセルとDFSの電波伝播の距離の第1フレネルゾーンが大地に接触するポイントを境に、距離による伝搬損失が増加するため、受信レベル曲線の曲線が変化することが予想される。式(1)による理論計算から、Cattle Bore局ではカプセル高度約2600mが境界となる。風情報からの推定降下軌道によれば、23時33分頃に高度2600mを通過しており、同時刻付近でCattle Bore局の受信レベルの減衰傾向が変化していることがわかる。カプセルから约32kmの距離にあるEba局ではカプセル高度3300mで第1フレネルゾーンが大地に接触、23時31分付近にこの変化が見られる。

消光時刻はいずれの局も風予報から推定した予測軌道から式(1)によって算出したものとほぼ一致している。その差異は、空力係数誤差や大気の不確定性による予測の分散で説明できる範囲内である。

MPS-36の追跡結果を正解とした各局の方位角エラーは0°付近を中心に±0.5°以下であり、正確な追跡がでていることがわかる。250秒程度でMPS-36のメインビーム
に大地が入り、カプセルビーノンの追跡を終了している。
情報解析システムによって追跡したカプセル位置をプロットした結果が第7図である。実線で結ばれた▲がDFSの追跡情報をもとに決定したカプセル位置の軌跡、◆がMPS-36による追跡、灰色破線が推定下落軌道である。
DFS 4局による追尾結果をみると、入感直後は比較的誤差が大きいものの、入感 4分後以降はシステム要求の追随精度である ±1 km を越えていることはない。本システムによって推定された着地点は実際の着地点から 1 km 以内であり、システムとして回収に十分な精度を有していることが実証された。南方向にずれている理由は、カプセルとの距離が東方向へ96 km と遠いParakylia局のデータを同じ重みで処理をしていることに原因がある。これは 1 次レーダーMPS-36 と比較したParakylia局による追尾データの方位角データ（第6図（a）中の黑色●）が、ほぼ 0 であることからもわかる。

5.2 ヘリコプターによる捜索 23 時 39 分に全 DFSが消感してカプセル追跡が終わった 23 時 47 分にヘリコプターに離陸許可が出され、カプセル搜索は最終段階に入った。
ヘリコプターはDFSによる着地点推定基準位置に向けて離陸して高度1,800 mで飛行。0時00分にMDF-124にビードが入感した。ビードがMDF-124に入感した距離はカプセルから約 13 km の距離であった。ヘリコプターによるカプセルの捜索軌跡を第 8 図に示す。黒実線がカプセル（IM）を発見するに至る軌跡、灰色実線が発見後のヒートシールド捜索での軌跡である。入感後カプセルに向け直線的に飛行せず、左右の旋回を伴っているのはMDF-124の指示方向を確認するためである。離陸30分後、0時17分にNight Sunによりカプセルを目的確認（第9図）した。着地したカプセルは反射損失が大きい向上の状態であった。
ヒートシールドの捜索が 45 分で述べたように、FLIRの映像を事後処理することによって行った。第 8 図の灰色実線がヒートシールドの捜索を行った軌跡で、パイロットのフリーハンドで予想地点中心付近を飛行した後、01 時 41 分まで約 3 km四方を0.2 NM（370 m）ピッチで飛行し、地上の様子をFLIRの映像に納めている。FLIRの映像には背面ヒートシールドと思われる画像も収録されていた。前面ヒートシールドは加熱面を下に落としていたためか、FLIRの映像にはとらえられていなかった。前面および背面ヒートシールドは、FLIRによる情報と最新の風情報に基づく着地点予想によって、翌日午後の捜索で発見することができた。

6. おわりに
本論文では、カプセルの追跡と発見に主要な役割を果たしたビーノン追跡システム及びその実運用の結果について詳細に述べた。4局のDFSと1機のヘリコプターで構成されるビーノン追跡システムは、再突入カプセルのビーノン発信と同時にDFSによって追跡して着地点を±1 km の精度で特定し、ヘリコプターによるホーミングによって着地後30分でカプセルを発見することに成功した。さらに

（255）
同システムは、発見後1.5時間の搜索によって、同夜のうちに背面ビートシールドに関する情報も収集し、翌日に前面および背面のビートシールドを発見した。これによって、重量リソースの少ない数十kgクラスの小型再突入カプセルの回収手法として、ビーチ空跡システムが有効であることが実証された。

カプセル回収ミッションは、2003年に打ち上げられて以来、数多くの工学的成果をもたらして帰還する「はやぶさ」が臨む最終の工学ミッションであった。このような重要なミッションで、本ビーチ空跡システムがカプセルの空跡および発見という重責を果たし、プロジェクト成功にわずかでも貢献できたことは、著者らおよびカプセル回収チーム一同の幸せとするところである。

パイムテクノロジー社の石丸元氏。故富田秀穂氏は、DFSの受信機の開発を担当されるとともに、システムおよび運用に関するアドバイスもいただいていた。JAXAの白木博文氏、海上保安庁の森公博氏からは、ヘリコプターによる搜索に関して有用なアドバイスをいただいた。

「はやぶさ」カプセル回収チームおよび本プロジェクトにご協力いただいたすべての方に感謝する。

参考文献
5) 森藤宏文、水野貴秀、川原康介、佐伯孝彦、津田隆一、福島洋介、浜田裕介、そして木博幸、藤本幸子、黒木聖司、柳川雅宏：車載用技術を利用した小型宇宙用GPS受信機の開発と軌道上実証。日本航空宇宙学会論文集, 56, 650 (2008), pp.123-130.
10) NCEP (National Centers for Environmental Prediction) HP, http://www.ncep.noaa.gov/
12) 浜谷茂一：電波伝搬基礎図表, コロナ社, 東京, 1976, pp.207-239.