INVARIANT SUBFIELDS OF RATIONAL FUNCTION FIELDS

By Tsuneo Kanno*

Let K be the rational function field $k(X_1, X_2, \ldots, X_n)$ of variables X_1, X_2, \ldots, X_n over a field k. Let M be the vector space $\sum_{i=1}^{n} k \cdot X_i$ over k. Let g be a finite group operating on K, induced by a representation ρ of g with representation space M. Let L be the subfield of K consisting of elements which are invariant under g. The problem to consider here is whether L is purely transcendental over k. This problem has been answered affirmatively in the following cases: (0) g is the symmetric group permuting X_1, X_2, \ldots, X_n, (1) g is abelian and k is the complex number field, (2) g is a cyclic group of order n, ρ is its regular representation and k contains the primitive n-th roots of unity, provided that the characteristic of k does not divide n (cf. [5]) and (3) k is of characteristic $p>0$, g is a p-group and ρ is its regular representation (cf. [2], [3] and [4]). In this note we shall give a principle, written in language of algebraic groups, which covers the three cases (1), (2) and (3), and which may be applied to other cases where g is soluble.

A connected algebraic group G is called k-soluble if there exists a normal chain $G_0=GDG_1\supseteq GDG_2\supseteq \cdots \supseteq GDG_r=\{e\}$ such that G_i is defined over k and G_i/G_{i+1} is isomorphic to G_a or G_m over k, where G_a and G_m are the additive group of the universal domain Ω and the multiplicative group of non-zero elements of Ω. The following property of k-soluble algebraic groups is used here (cf. [6]): let G be a k-soluble algebraic group; let V be a homogeneous space with respect to G over k, then the function field $k(V)$ over k is purely transcendental over k.

From this we have

(P) Let G be a k-soluble algebraic group such that $k(G)=K$; let g be a finite subgroup of G which is rational over k such that the invariant subfield of K by the left translations of g is L, then L is purely transcendental over k.

In fact, there exists the quotient variety G/g, defined over k, which is a homogeneous space with respect to G over k.

Let us consider the case where g is abelian.

Lemma. Let g be a finite abelian subgroup of $GL(n, k)$ of exponent m. Then, if k contains the primitive m-th roots of unity, there exists $x \in GL(n, k)$ such that $x \cdot g \cdot x^{-1}$ is contained in the set of matrices of the form

Received May 1, 1967.

* This paper was prepared when the author was at University of California, Berkeley, partially supported by NSF GP-1610.
where N_i is upper triangular matrix with only one eigenvalue, and further if the characteristic of k does not divide m, g is a group of semisimple matrices and $x \cdot g \cdot x^{-1}$ is diagonal.

The first part follows, for example, from the proof of the Lemma 6.4 of [1]. To prove the second part, take any element $g \in \mathfrak{g}$ and let $g = g_u g_s$ be the multiplicative Jordan decomposition of g; then the orders of g_u and g_s divide that of g. If the characteristic of k is 0, any non-identity unipotent matrix has the infinite order (cf. Prop. 8.1 of [1]); hence g is semisimple; in the characteristic $p > 0$ case, a matrix is unipotent if and only if its order is a power of p (cf. Prop. 8.1 of [1]); hence g is semisimple.

Now we have a proposition which generalizes (1) and (2).

Proposition 1. Let \mathfrak{g} be a finite abelian group of exponent m. If the characteristic of k does not divide m and if k contains the primitive m-th roots of unity, L is purely transcendental over k.

In fact, we may suppose that ρ is faithful and that g is a subgroup of $GL(M)$. By the Lemma we have a base Y_1, Y_2, \ldots, Y_n of the vector space M such that $Y_1 = z_1(\sigma)Y_1$ for $\sigma \in Q$. Take G the group of diagonal matrices with coordinate functions Y_1, Y_2, \ldots, Y_n, then $k(G) = K$. We can consider that g is the subgroup of G consisting of diagonal matrices $(z_1(\sigma), z_2(\sigma), \ldots, z_n(\sigma))$ for $\sigma \in \mathfrak{g}$. Since $Y_1(g) = z_1(\sigma)Y_1(g) = Y_1(\sigma g)$ for $g \in G$, the proposition follows from (P).

Let us consider the case where ρ is the regular representation of g. Let $Q[\mathfrak{g}]$ be the group ring of g over Q. Then the unit group of $Q[\mathfrak{g}]$ has a structure of a connected algebraic group G defined over the prime field Z_p of k such that $k(G) = K$ and g can be imbedded in G by $\sigma \mapsto 1 \cdot \sigma$. Then, the notation being as above, by (P) we have

Proposition 2. If the algebraic group G is k-soluble, L is transcendental over k.

When g is a p-group, the following Lemma gives the structure of the algebraic group G.

Lemma. If k is of characteristic $p > 0$ and g is a p-group, G is a connected nilpotent algebraic group defined over Z_p and has the direct decomposition $G = G_s \times G_u$ over Z_p, where G_s is central and isomorphic to G_u over Z_p and G_u is the unipotent part of G.
Let N be the radical of the algebra $O[\mathfrak{g}]$; let s be a positive integer such that $N^s = \{0\}$. Let $U_i = \{ a \in O[\mathfrak{g}] \mid a \equiv e \pmod{N^i} \}$. Then we have

(i) $$(G, G) \subseteq U_i,$$

(ii) $$(G, U_i) \subseteq U_{i+1}.$$

In fact, for any $a = \sum_{\sigma \in \mathcal{P}} a\sigma$, let $\text{tr}(a) = \sum_{\sigma \in \mathcal{P}} a\sigma$, then tr is a rational homomorphism of G onto G_m defined over \mathbb{Z}_p; we have $a = \text{tr}(a)e + \sum_{\sigma \in \mathcal{P}} a\sigma (e - e) = \text{tr}(a)e + r(a) = \text{tr}(a)e$, mod N and $a^{-1} = \text{tr}(a)^{-1}(e + \text{tr}(a)^{-1}r(a))^{-1} = \text{tr}(a)^{-1}e$, mod N, where $r(a) \in N$; hence, for $a, b \in G$, $aba^{-1}b^{-1} \equiv \text{tr}(a)\text{tr}(b)\text{tr}(a)^{-1}\text{tr}(b)^{-1}e = e$, mod N; thus we have (i). To show (ii), take $a \in G$ and $b \in U_i$; then $a = \text{tr}(a)e + r(a)$ and $b = e + r(b)$, where $r(a) \in N$ and $r(b) \in N$; then $aba^{-1}b^{-1} = e + (ab - ba)a^{-1}b^{-1} = e + (r(a)r(b) - r(b)r(a))a^{-1}b^{-1} = e$, mod N^{i+1}; thus we have (ii). Since $U_i = \{ e \}$, we have that G is nilpotent. Each element $a \in G$ has a unique expression $a = \text{tr}(a)e + (e + \text{tr}(a)^{-1}r(a))$. It is easily seen that the semisimple part G_s and the unipotent part G_u of G are defined over \mathbb{Z}_p and that we have the Lemma.

Since any connected algebraic group of unipotent matrices defined over a perfect field k is k-soluble, we have the following Corollary of the Proposition 2 which is nothing but (3).

Corollary. If k is of characteristic $p > 0$ and if ρ is the regular representation of a p-group \mathfrak{g}, L is purely transcendental over k.

Bibliography

Department of Mathematics,
Tokyo Institute of Technology.