UNIVALENCY OF ANALYTIC MAPPINGS OF A RIEMANN SURFACE INTO ITSELF

BY MAKOTO SAKAI

1. In the present paper we shall study a Riemann surface whose every non-constant analytic mapping into itself is univalent.

Let S be the class of Riemann surfaces whose every non-constant analytic mapping into itself is univalent, and let K be the class of Riemann surfaces whose every non-constant analytic mapping into itself is univalent and onto. It is easy to see that $\phi^K \subseteq S \subseteq O_{AB} \cap H$ where H is the class of Riemann surfaces whose universal covering are conformally equivalent to the unit disk. Heins [5] showed $O_{AB} \cap H \subseteq S$ and $K_A \subseteq K$ where K_A denotes the class of Riemann surfaces with a finite positive genus or with a finite number of planar boundary elements belonging to $O_{AB} \cap H$. Kubota [8] introduced a class of Riemann surfaces and showed that the class is a subclass of K. In §2 we construct an example of Riemann surface of class $O_{AB} \cap H$ on which there exists a non-univalent analytic mapping into itself. Namely we show $S \supseteq O_{AB} \cap H$. In §3 we introduce a class K_{HD} of Riemann surfaces and show $K_{HD} \subseteq K_H$, where K_H denotes the class of Riemann surfaces introduced by Kubota. Heins [5] showed that if W is of class K_A and of finite genus, then the number of non-constant analytic mappings of W into itself is finite. In §4 we show the same result with respect to a Riemann surface of class K_{HD}.

2. We construct an example of a Riemann surface W of class $O_{AB} \cap H$ on which there exists a non-univalent analytic mapping into itself. It will be given as a covering surface of the z-plane. We introduce E, F and D as follows:

$$E = \{0 < |z| < \infty\} - \bigcup_{n=-\infty}^{\infty} [4^n, 2 \cdot 4^n],$$

$$F = E - \{ |z+1| \leq 1 \} - [-6, -4],$$

$$D = \{ |z+5| < 2 \} - [-6, -4],$$

where $[a, b] = \{ z | a \leq \text{Re} z \leq b, \text{Im} z = 0 \}$. We joint copies of E and F along their common slits identifying the upper edges of the slits of E with the corresponding lower edges of the slits of F and vice versa. The edges of the remained free slit of F are identified with the opposite edges of the corresponding slit of a copy of D. Thereby a Riemann surface W is constructed as a covering surface (W, π) of the z-plane (cf. Ahlfors-Sario [1], pp. 119-120).

Received September 26, 1970.
Let G be the covering of $\{|z+4|^4\}$ lying in the joining of F and D. Then, by using the same arguments in Myrberg's paper [9], we see that $W-G$ is of class O_{AB}. Hence W is of class $O_{AB} \cap H$. Let φ be a mapping of W into itself which satisfies $\pi \circ \varphi \circ \pi^{-1}(z) = 4z$ and carries the points of E, F and D onto the points of E, F and F respectively. Then φ is analytic and non-univalent.

3. In this section we introduce the class K_{HD} of Riemann surfaces such that $K_{HD} \subset K$. We show first the following lemma.

Lemma 1. Let W be a Riemann surface whose fundamental group is non-abelian, and let φ be an analytic mapping of W into itself whose valence function ν_{φ} is a constant $n_\varphi (\leq \infty)$ except a set of zero area. If there exists a non-constant harmonic function u with finite Dirichlet integral which satisfies

$$(1) \quad u \circ \varphi = cu,$$

where c is a real constant, then c is equal to ± 1 and φ has a finite period p (i.e. the p-th iterate φ_p of φ is the identity mapping of W onto itself).

Remark 1. If the fundamental group of W is abelian then there is an example such that φ has no period: $W=\{r<|z|<l\}$ ($r>0$), $\varphi(z)=e^{2\pi i \theta} z$ (θ is an irrational real number), $u=\log |z|$, $c=1$.

Remark 2. If φ does not satisfy the condition on the valence function, then it is easy to construct an example such that φ is not univalent.

Remark 3. If u is a harmonic function with infinite Dirichlet integral, then there is an example such that the valence function is a constant $n(\geq 2)$ except one point: $W=\{0<|z|<l\}$ ($r>0$), $\varphi(z)=e^{2\pi i \theta} z$ (θ is an irrational real number), $u=\log |z|$, $c=n$.

Remark 4. If $u(\equiv \text{const})$ is a bounded harmonic function with finite Dirichlet integral, then we are able to replace the condition on φ in lemma 1 by a weaker condition that W is covered by the image $\varphi(W)$ of φ except a set of zero area. In fact, we may assume without loss of generality that $\sup_u u$ is positive. For the 2nd iterate φ_2 of φ we have

$$\sup_{\varphi_2(W)} u = \sup_{W} (u \circ \varphi_2) = \sup_{W} (c^2u) = c^2 \sup_{W} u,$$

Hence $c^2 \leq 1$. Therefore we have

$$D_{\varphi_2(W)}(u) = D_{\varphi_2(W)}(u) = D_{\varphi_2(W)}(cu) = c^2 D_{\varphi_2(W)}(u) \leq D_{\varphi_2(W)}(u),$$

where

$$D_{\varphi_2(W)}(u) = \int_{W} \nu_{\varphi_2} \cdot du^*.$$
On the other hand, by the above condition we have

$$D_\psi(W(u)) \geq D_W(u).$$

Hence the valence function ν_ψ is equal to 1 except a set of zero area.

Proof of lemma 1. We use the following result due to Heins [5]:

Let W denote a non-compact Riemann surface whose fundamental group is non-abelian, and let φ denote an analytic mapping of W into itself. If φ neither

i) possesses a fixed point ζ, nor

ii) has a finite period p, then

iii) for every given compact subsets K_1, K_2 of W there exists a natural number N such that $\varphi^N(K_1) \subset W - K_2$.

We show first $n_\varphi = c^2 < \infty$. This follows from the following formulae.

$$D_W(u \circ \varphi) = D_\varphi(W(u)) = n_\varphi D_W(u),$$

$$D_W(cu) = c^2 D_W(u).$$

We show next that iii) leads to a contradiction. Let $(W_n)_{n=1}^\infty$ be a canonical exhaustion of W. Since $D_W(u)$ is finite, for any given positive number ε there is a natural number n such that $D_W(W_n(u)) < \varepsilon$. Setting $K_1 = K_2 = \overline{W_n}$, we find a natural number $N = N(n)$ such that $\varphi^N(W_n) \subset W - \overline{W_n}$. Hence we have

$$D_{W_n}(u \circ \varphi^N) = D_{\varphi^N(W_n)}(u) \leq n_\varphi^N D_{W-n}(u).$$

By formula (1) we have

$$D_{W_n}(c^N u) = c^{2N} D_{W_n}(u) = n_\varphi^N D_{W_n}(u),$$

and hence

$$D_W(u) = D_{W_n}(u) + D_{W-n}(u)$$

$$\leq 2D_{W-n}(u) < 2\varepsilon.$$

Therefore u must reduce to a constant. This is a contradiction.

Finally we show that i) implies ii). Let $(|z|<1), \pi)$ be the universal covering surface of W such that π is analytic and satisfies $\pi(0) = \zeta$. We consider π^{-1} in the neighborhood of ζ satisfying $\pi^{-1}(\zeta) = 0$ and set $f = \pi^{-1} \circ \varphi \circ \pi$ around 0. We continue analytically the function element of f onto $|z|<1$. Then f satisfies $f(0) = 0$, $|f(z)| < 1$ and $\varphi_k \circ \pi = \pi \circ f_k$ ($k = 1, 2, \cdots$). Setting $v = u \circ \pi$, we have $v \circ f = cv$. Let h be an analytic function on $|z|<1$ having v as its real part and set $q = h - h(0)$. Then we have

$$g \circ f = cq$$

and $g(0) = 0$. If f and g have the expansions around the origin
ANALYTIC MAPPINGS OF A RIEMANN SURFACE

\[f(z) = az^2 + a_1z^{j+1} + \cdots, \quad a \neq 0, \quad j \geq 1, \]
\[g(z) = bz^k + b_1z^{k+1} + \cdots, \quad b \neq 0, \quad k \geq 1, \]

then from (2) we have \(j = 1 \), \(a^k = c \) and \(|a^k| = |c| = \sqrt{n_2} \geq 1\). Using Schwarz's lemma we have \(a^k = c^k = 1 \), \(f(z) = az \) and \(\varphi_{2k} \circ \pi = \pi \circ f_{2k} = \pi \). Hence we have \(\varphi_{2k} = \iota \). Therefore \(\varphi \) has a finite period \(p \). It follows immediately that \(u = u \circ \varphi_p = c^p u \), and hence we have \(c = \pm 1 \).

We consider next a problem whether there exists a harmonic function \(u(= \text{const}) \) satisfying (1) for a given analytic mapping \(\varphi \) of \(W \) into itself. This is an eigenvalue problem in the following sense. For every harmonic function \(u \) on \(W \) the composition \(u \circ \varphi \) is also harmonic on \(W \). We denote by \(H(W) \) the class of harmonic functions on \(W \) and set \(\varphi^*(u) = u \circ \varphi \). Then \(\varphi^* \) is a linear operator of \(H(W) \) into itself and (1) is represented using \(\varphi^* \) as follows:

\[\varphi^*(u) = cu \]

where \(c \) is an eigenvalue of \(\varphi^* \) and \(u \) is its eigenelement. From this point of view we consider an eigenvalue problem of the restriction \(\varphi^*|X \) of \(\varphi^* \) to \(X \), where \(X \) is a linear subspace of \(H(W) \) such that \(\varphi^*(X) \subseteq X \). If \(X \) is a finite dimensional lattice-ordered linear space (vector lattice) with respect to the natural order, then \(X \) has a base consisting of \(X \)-minimal functions (cf. Constantinescu-Cornea [3]). From this fact we obtain a matricial representation of \(\varphi^*|X \).

Lemma 2. Let \(\varphi \) be an analytic mapping of a Riemann surface \(W \) into itself such that \(W \) is covered by \(\varphi(W) \) except a set of zero area, and let \(X \subseteq H(W) \) be a finite dimensional lattice-ordered linear space satisfying \(\varphi^*(X) \subseteq X \). Choose a base \(u_1, u_2, \ldots, u_n \) of \(X \) consisting of \(X \)-minimal functions and set

\[
\begin{pmatrix}
\varphi^*(u_1) \\
\varphi^*(u_2) \\
\vdots \\
\varphi^*(u_n)
\end{pmatrix} = \Phi
\begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{pmatrix}
\]

where \(\Phi \) is a square matrix of degree \(n \). Then \(\Phi \) is regular and equal to \((c_i \cdot \delta_{i(j)}) \), where \(c_i \) (\(i=1,2,\ldots,n \)) are positive constants, \(\delta_{ij} \) is Kronecker's symbol and \(\sigma \) is a permutation of degree \(n \). Consequently, if we denote by \(s \) the order of \(\sigma \), then \(\Phi^s \) is a diagonal matrix and all its diagonal elements are positive.

Proof. The regularity of \(\Phi \) follows from the fact that \(\varphi^* \) is injective and \(X \) is of finite dimension. If we set

\[
\begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{pmatrix} = \Phi^{-1}
\begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{pmatrix},
\]

then from (2) we have \(j = 1 \), \(a^k = c \) and \(|a^k| = |c| = \sqrt{n_2} \geq 1\). Using Schwarz's lemma we have \(a^k = c^k = 1 \), \(f(z) = az \) and \(\varphi_{2k} \circ \pi = \pi \circ f_{2k} = \pi \). Hence we have \(\varphi_{2k} = \iota \). Therefore \(\varphi \) has a finite period \(p \). It follows immediately that \(u = u \circ \varphi_p = c^p u \), and hence we have \(c = \pm 1 \).

We consider next a problem whether there exists a harmonic function \(u(= \text{const}) \) satisfying (1) for a given analytic mapping \(\varphi \) of \(W \) into itself. This is an eigenvalue problem in the following sense. For every harmonic function \(u \) on \(W \) the composition \(u \circ \varphi \) is also harmonic on \(W \). We denote by \(H(W) \) the class of harmonic functions on \(W \) and set \(\varphi^*(u) = u \circ \varphi \). Then \(\varphi^* \) is a linear operator of \(H(W) \) into itself and (1) is represented using \(\varphi^* \) as follows:

\[\varphi^*(u) = cu \]

where \(c \) is an eigenvalue of \(\varphi^* \) and \(u \) is its eigenelement. From this point of view we consider an eigenvalue problem of the restriction \(\varphi^*|X \) of \(\varphi^* \) to \(X \), where \(X \) is a linear subspace of \(H(W) \) such that \(\varphi^*(X) \subseteq X \). If \(X \) is a finite dimensional lattice-ordered linear space (vector lattice) with respect to the natural order, then \(X \) has a base consisting of \(X \)-minimal functions (cf. Constantinescu-Cornea [3]). From this fact we obtain a matricial representation of \(\varphi^*|X \).
then we have

\[
\begin{pmatrix}
\varphi^*(v_1) \\
\varphi^*(v_2) \\
\vdots \\
\varphi^*(v_n)
\end{pmatrix}
= \Phi^{-1}
\begin{pmatrix}
\varphi^*(u_1) \\
\varphi^*(u_2) \\
\vdots \\
\varphi^*(u_n)
\end{pmatrix}
= \Phi^{-1} \Phi
\begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{pmatrix}
=
\begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{pmatrix},
\]

and hence \(v_i \circ \varphi = u_i \) \((i=1,2,\ldots,n)\). Since \(W \) is covered by \(\varphi(W) \) except a set of zero area, the functions \(v_i \) are positive. For any \(v \in X \) such that \(v > 0 \), \(v \leq v_i \) it follows that \(v \circ \varphi \in X, v \circ \varphi > 0 \) and \(v \circ \varphi \leq v_i \circ \varphi = u_i \). Hence \(v \circ \varphi = c(v_i \circ \varphi) = (cv_i) \circ \varphi \). This implies that \(v_i \) are also \(X \)-minimal functions. Hence there exists a permutation \(\tau \) of degree \(n \) satisfying \(v_i = k_i u_{\tau(i)} \) \((i=1,2,\ldots,n)\) with positive constants \(k_i \). Setting \(\sigma = \tau^{-1} \) and \(c_i = 1/k_{\tau^{-1}(i)} \), we have the desired result.

From lemma 1 and 2 we have the following lemma.

Lemma 3. Let \(W \) be a Riemann surface whose fundamental group is non-abelian, and let \(\varphi \) be a non-constant analytic mapping of \(W \) into itself whose valence function is finite and constant except a set of zero area. If there exists a lattice-ordered linear space \(X \subset H(W) \) which satisfies (i) \(\varphi^*(X) \subset X \) and that (ii) \(X \cap HD(W) \) is of finite dimension and contains at least one non-constant function, then \(\varphi \) has a finite period.

Proof. Since \(HD = HD(W) \) is a lattice-ordered linear space, \(X \cap HD \) is a finite dimensional lattice-ordered linear space. By the condition on the valence function we have \(\varphi^*(HD) \subset HD \) and hence \(\varphi^*(X \cap HD) \subset X \cap HD \). We apply now lemma 2 to \(X \cap HD \). Then there exists a natural number \(s \) such that every \(X \cap HD \)-minimal function is an eigenelement of \(\varphi^s | X \cap HD \). We apply further lemma 1 to \(X \cap HD \)-minimal functions. Then the matrix \(\Phi^s \) is equal to the unit one and \(\varphi \) has a finite period.

We introduce now the class \(K_{HD} \).

Definition. We denote by \(K_{HD} \) the class of Riemann surfaces \(W \) which satisfy the following conditions:

i) Every non-constant analytic mapping of \(W \) into itself is a Dirichlet mapping and of type \(Bl \), i.e. the valence function is finite and constant except a set of capacity zero.

ii) Let \(M_Y \) be the linear space generated by all \(Y (Y=HP, HB, HD) \)-minimal functions. The space \(M_Y \cap HD \) is of finite dimension and contains at least one non-constant function.

The class \(K_{HD} \) is not empty. In fact, the class \(O_{HB}^n - O_{HD} \) is a subclass of \(K_{HD} \). If \(W \) is of class \(O_{HB}^n - O_{HD} \), then we have \(M_{HB} = HB \supset HD \). This implies that the condition ii) is fulfilled for \(Y = HB \). Since \(W \) is of class \(O_{HB}^n \), each non-constant analytic mapping \(\varphi \) of \(W \) into itself is of type \(Bl \) and satisfies \(\varphi^*(HD) \subset HD \).

Using the same argument in the proof of lemma 3 and remark 4 \(\varphi \) is univalent,
and hence the condition i) is satisfied.

The class K_{HB} which is introduced by Kubota [8] is a proper subclass of K_{HD}. If W is of class K_{HB} then the condition i) is fulfilled (cf. Kubota [8]). In the following we use the notation in [8]. Let B_{t} be a set of positive measure. Then the harmonic measure $\omega_{t}=\lim_{y\to 0}\omega_{y}^{(t)}$ of B_{t} is non-constant and its Dirichlet integral is finite since by the definition of K_{HB} there exists another set B_{t}' of positive measure. We assume that B_{t} consists of HB-indivisible sets and a set of measure zero. Then ω_{t} belongs to M_{HB} and hence the condition ii) is satisfied. To see $K_{HB} \nsubseteq K_{HD}$, we consider a Riemann surface W which is of class $O_{HB}-O_{HD}$ and has one ideal boundary component (cf. Constantinescu-Cornea [2], pp. 230–231). Then from the above argument W is of class K_{HD}, but by the definition of K_{HB}, W is not of class K_{HB}.

Theorem 1. The class K_{HD} is a subclass of K.

Proof. Suppose that W is of class K_{HD}. Then M_{T} is a lattice-ordered linear space and satisfies $\varphi^{*}(M_{T}) \subseteq M_{T}$ for every non-constant analytic mapping φ of W into itself (cf. Constantinescu-Cornea [3], pp. 123–124). Applying lemma 3, we have that W is of class K.

4. In this section we show the following theorem.

Theorem 2. If W is of class K_{HD}, then the number of non-constant analytic mappings of W into itself is finite.

Proof. Let $\{\varphi_{t}^{(k)}\}_{k=1}^{\infty}$ be a sequence of non-constant analytic mappings of W into itself. From theorem 1 we know that each $\varphi_{t}^{(k)}$ is univalent and onto. We apply lemma 2 to $M_{T} \cap HD$ and denote by σ_{k} the permutation of $\varphi_{t}^{(k)}$. Then there exists a permutation σ_{k} and a subsequence $\{\varphi_{t}^{(k)}\}$ of $\{\varphi_{t}^{(k)}\}$ such that $\sigma_{k} = \sigma_{k}$ ($l=1,2,\ldots$). For the sake of simplicity we write $\{\varphi_{t}^{(k)}\}$ for $\{\varphi_{l}^{(k)}\}$.

From lemma 1 all the matrices $\varphi_{t}^{(k)}$ of $\varphi_{t}^{(k)} = \varphi_{l}^{(k)} \circ \varphi_{l}^{(k)}$, where $\varphi_{l}^{(k)}$ is the inverse mapping of $\varphi_{l}^{(k)}$, are equal to the unit one. Hence there exists at least one non-constant harmonic function u with finite Dirichlet integral such that $u \circ \varphi_{t}^{(k)} = u$ ($k=1,2,\ldots$). If $\{\varphi_{t}^{(k)}\}_{k=1}^{\infty}$ is a sequence of mutually distinct mappings, then for every two compact sets K_{1}, K_{2} there exists a natural number N such that $\varphi_{t}^{(k)}(K_{1}) \subseteq W-K_{2}$ (cf. Heins [4], Komatu-Mori [6] and Kubota [7]). Let $\{W_{n}\}_{n=1}^{\infty}$ be a canonical exhaustion of W. Since $D_{w}(u)$ is finite, for any given positive number there exists a natural number n such that $D_{w-W_{n}}(u) < \varepsilon$. Setting $K_{1}=K_{2}=W_{n}$, we find a natural number $N=N(n)$ such that $\varphi_{t}^{(N)}(W_{n}) \subseteq W-W_{n}$. Hence we have

$$D_{w-n}(u) = D_{w-n}(u \circ \varphi_{t}^{(N)}) = D_{\varphi_{t}^{(N)}(w-n)}(u) \leq D_{w-W_{n}}(u),$$

and

$$D_{w}(u) = D_{w-n}(u) + D_{w-W_{n}}(u) \leq 2D_{w-W_{n}}(u) < 2\varepsilon.$$

Therefore u must reduce to a constant. This is a contradiction.
References

Department of Mathematics
Tokyo Institute of Technology.