DISTRIBUTION AND CRITICAL CURVES
IN A RIEMANNIAN MANIFOLD

By Yosio Mutō

Let \mathcal{D} be a C^∞ distribution in a C^∞ Riemannian manifold M. In the present paper a curve of M where every tangent vector lies in \mathcal{D} is called a \mathcal{D}-curve. Let P and Q be two points of M such that there exist \mathcal{D}-curves joining P and Q. We call a \mathcal{D}-curve C a critical \mathcal{D}-curve with the fixed end points P, Q if the length l of C takes a critical value in the set of \mathcal{D}-curves joining P and Q. The purpose of the present paper is to find differential equations of critical \mathcal{D}-curves when $n-m=\dim \mathcal{D}$ satisfies $n<2(n-m)$, where $n=\dim M$, and to study properties of such critical \mathcal{D}-curves in some special cases.

§ 1. The differential equations of a critical \mathcal{D}-curve.

Let M be an n-dimensional Riemannian manifold and \mathcal{D} (or \mathcal{D}^{n-m}) an $(n-m)$-dimensional distribution given locally by $n-m$ linearly independent C^∞ vector fields $X_\lambda (\lambda = m+1, \ldots, n)$.\(^1\) Their components with respect to a local coordinate system will be denoted by X^h. The distribution \mathcal{D} will also be represented by m linearly independent covector fields $\varphi (\alpha = 1, \ldots, m)$ whose components φ^a_λ satisfy

$$\varphi^a_\lambda X^\lambda = 0.$$

A \mathcal{D}-curve C is by definition a curve $x^h = x^h(t)$ such that

$$\frac{\varphi^a_\lambda}{\varphi^a_\lambda} \frac{dx^\lambda}{dt} = 0$$

holds throughout the curve.

We assume that $2m$ covectors

$$\varphi_1, \ldots, \varphi_m, \psi_1, \ldots, \psi_m$$

Received November 5, 1970.

1) We let the indices h, i, j, \ldots run over the range $\{1, \ldots, n\}$, $\alpha, \beta, \gamma, \ldots$ over the range $\{1, \ldots, m\}$ and $\kappa, \lambda, \mu, \ldots$ over the range $\{m+1, \ldots, n\}$. The summation convention is used for all such indices.
are linearly independent at every point of \(C \), where \(\phi_i \) are defined by

\[
\phi_i = \left(\partial_j \phi_i - \partial_i \phi_j \right) \frac{dx^j}{dt}.
\]

Let \(P \) and \(Q \) be the end points of \(C \) and the parameter \(t \) be such that \(t=0 \) and \(t=1 \) correspond respectively to \(P \) and \(Q \). Then the length \(l \) of \(C \) is given by the integral

\[
J(C) = \int_C ds = \int_0^1 \sqrt{g_{ij} \left(\frac{dx^i}{dt} \frac{dx^j}{dt} \right)} \ dt.
\]

Let us consider an infinitesimal deformation of the curve \(C \) with the points \(P \) and \(Q \) fixed assuming that any curve obtained is also a \(\mathcal{D} \)-curve. Then the vector of deformation \(\xi^h(t) \) must satisfy

\[
\xi^h \frac{dx^i}{dt} \partial_j \phi_i + \phi_i \frac{d\xi^h}{dt} = 0.
\]

As the points \(P \) and \(Q \) are fixed, \(\xi^h \) must also satisfy

\[
\xi^h(0) = \xi^h(1) = 0.
\]

Then it is a consequence of an ordinary argument in the calculus of variations that \(C \) is a critical \(\mathcal{D} \)-curve if and only if

\[
\int_0^1 \left[\frac{d^2 x^\alpha}{ds^2} + \sum_{i,j} \frac{dx^i}{ds} \frac{dx^j}{ds} g_{ij} \xi^h(s) ds \right] dt = 0
\]

is satisfied by every set of functions \(\xi^h(t) \) satisfying (1.5) and (1.6). Notice that the arc length \(s \) is used in (1.7) as the parameter and that \(l \) is the length of \(C \).

Now let \(f(t) (\alpha = 1, \ldots, m) \) be a set of arbitrary \(C^\infty \) functions. Then we find that

\[
\int_0^1 \left[\left(\frac{d}{dt} f \right) \phi_i + f(t) (\partial_j \phi_i - \partial_i \phi_j) \frac{dx^j}{dt} \right] \xi^h(t) dt = 0
\]

is equivalent to (1.5). (1.8) is also equivalent to

\[
\int_0^1 \left[\left(\frac{d}{ds} f \right) \phi_i + f(s) (\partial_j \phi_i - \partial_i \phi_j) \frac{dx^j}{ds} \right] \xi^h(s) ds = 0.
\]

and again to

\[
\int_0^1 \left[\left(\frac{d}{ds} f \right) \phi_i + f(s) (\partial_j \phi_i - \partial_i \phi_j) \frac{dx^j}{ds} \right] \xi^s(s) ds = 0.
\]

If we put
we can write (1.9) in the form

\[
\psi_i = \frac{dx^i}{ds} (\partial_i \psi_i - \partial_j \psi_j),
\]

We prove in §2 the following lemma.

Lemma 1.1. In an \(n\)-dimensional Euclidean space let there be given \(2m+1\) \(C^\infty\) vector functions \(A_i(t), \varphi_i(t), \psi_i(t) (a=1, \ldots, m)\) where \(2m\) vectors \(\varphi_i(t), \ldots, \varphi_i(t), \psi_i(t), \ldots, \psi_i(t)\) are linearly independent at each value of \(t, 0 \leq t \leq a\). If, for every functions \(\xi(t)\) which satisfy

\[
\xi(0) = \xi(a) = 0
\]

and

\[
\int_0^a \left[\left(\frac{d}{dt} f \right) \varphi_i(t) + f(t) \psi_i(t) \right] \xi(t) dt = 0
\]

for every choice of \(C^\infty\) functions \(f(t)\), we have

\[
\int_0^a A_i(t) \xi(t) dt = 0,
\]

then there exist functions \(\chi(t), \ldots, \chi(t)\) such that

\[
A_i(t) = \left(\frac{d}{dt} \chi \right) \varphi_i(t) + \chi(t) \psi_i(t).
\]

Remark. It is easily found that (1.13) is a consequence of (1.12) and (1.14).

Applying Lemma 1.1 to the case of \(D\)-curves, we easily obtain the following lemma.

Lemma 1.2. Let \(M\) be an \(n\)-dimensional Riemannian manifold equipped with an \((n-m)\)-dimensional distribution \(D\) determined locally by \(m\) covector fields \(\varphi_i\). Let \(C\) be a \(D\)-curve \(x^b = x^b(s), 0 \leq s \leq 1\), such that \(2m\) covectors

\[
\varphi_i, \frac{dx^i}{ds} (\partial_j \varphi_i - \partial_j \varphi_j) (a=1, \ldots, m)
\]

are linearly independent at each point of \(C\). A necessary and sufficient condition
for the curve C to be a critical ∂-curve with fixed end points is that there exist functions $\chi(s)$ satisfying the equations

\begin{equation}
\frac{d^2x^h}{ds^2} + \left[\frac{\lambda}{j} \right] \frac{dx^i}{ds} \frac{dx^a}{ds} = \left[\left(\frac{d}{ds} \phi \right)^a \phi + \chi \frac{dx^i}{ds} (\varphi_{j\phi} - \varphi_{i\phi}) \right] \phi^{ab}.
\end{equation}

Differentiating the equations

\begin{equation}
\frac{\phi^a}{dx^i} \frac{dx^i}{ds} = 0
\end{equation}

covariantly along the curve C, we get

\begin{equation}
(\varphi_{j\phi}) \frac{dx^i}{ds} \frac{dx^a}{ds} + \frac{\phi^a}{ds} + \left[\frac{\lambda}{j} \right] \frac{dx^i}{ds} \frac{dx^a}{ds} = 0.
\end{equation}

Then applying (1.15) we obtain

\begin{equation}
\phi^a \frac{dx^i}{ds} \frac{dx^a}{ds} + \phi^a (\varphi_{j\phi} - \varphi_{i\phi}) \frac{dx^i}{ds} \frac{dx^a}{ds} = 0.
\end{equation}

Let us consider a system of differential equations composed of (1.15) and (1.17) in the unknown functions $x^h(s)$ and $\chi(s)$. As far as only these equations are considered, s may not be the arc length and the curve $x^h = x^h(s)$ may not be a ∂-curve. But, if the initial condition is chosen in such a way that

\begin{equation}
g_{ab} \frac{dx^a}{ds} \frac{dx^b}{ds} = 1, \quad \frac{\phi^a}{dx^i} \frac{dx^a}{ds} = 0
\end{equation}

hold at $s=0$, then we can easily see that s is the arc length of the curve $x^h = x^h(s)$ and (1.6) is satisfied by the curve.

Thus we obtain the

Theorem 1.3. Let M and ∂ be the same as those assumed in Lemma 1.2. A necessary and sufficient condition for a ∂-curve C, for which the same is also assumed as in Lemma 1.2 and parametrized by the arc length s, to be a critical ∂-curve with the fixed end points is that the functions $x^h(s)$ satisfy with some functions $\chi(s)$ the differential equations (1.15), (1.16) and (1.17). If a solution $x^h = x^h(s), \chi = \chi(s)$ of the system of differential equations composed of (1.15) and (1.17) satisfies the initial condition

\begin{equation}
\left(g_{ab} \frac{dx^a}{ds} \frac{dx^b}{ds} \right)_0 = 1, \quad \left(\frac{\phi^a}{dx^i} \frac{dx^a}{ds} \right)_0 = 0
\end{equation}

and the $2m$ covectors

\begin{equation}
\frac{\phi^a}{dx^i} (\varphi_{j\phi} - \varphi_{i\phi})
\end{equation}
are linearly independent at each point $x^h(s) \ (0 \leq s \leq l)$, then the curve $x^h = x^h(s)$ is a critical \mathcal{D}-curve with the fixed end points $x^h(0), x^h(l)$ and s is the arc length.

§ 2. Proof of Lemma 1.1.

Let τ be any number such that $0 < \tau < a$ and put
\begin{equation}
\xi^h(t) = a^h \delta(t - \tau)
\end{equation}
where a^h is a constant vector and δ is the Dirac function. Then (1.12) becomes
\begin{equation}
\frac{d}{dt} f(\tau) \phi^a(\tau) a^i + f(\tau) \psi^a(\tau) a^i = 0.
\end{equation}
As we can take arbitrary C^∞ functions as $f(t)$, we get
\begin{equation}
\phi^a(\tau) a^i = 0, \quad \psi^a(\tau) a^i = 0
\end{equation}
from (2.2).

On the other hand we have
\begin{equation}
A_i(\tau) a^i = 0
\end{equation}
from (1.13). Since any vector a^h satisfying (2.3) must satisfy (2.4) by assumption, there exist $2m$ numbers $\rho(\tau), \sigma(\tau)$ such that
\begin{equation}
A_i(\tau) = \rho^a(\tau) \phi^a(\tau) + \sigma^a(\tau) \psi^a(\tau).
\end{equation}
Thus we obtain
\begin{equation}
A_i(t) = \rho^a(\tau) \phi^a(t) + \sigma^a(\tau) \psi^a(t)
\end{equation}
where $\rho(t)$ and $\sigma(t)$ are C^∞ functions, for $\phi^a(t)$ and $\psi^a(t)$ are linearly independent.

We now proceed to find a relation between $\rho(t)$ and $\sigma(t)$.

From (1.13) and (2.5) we get
\begin{equation}
\int_0^a \left[\rho(t) \phi^a(t) \xi^a(t) + \sigma(t) \psi^a(t) \xi^a(t) \right] dt = 0.
\end{equation}

Let λ be an arbitrary number, $0 < \lambda < a$, and $\epsilon > 0$ a sufficiently small number such that $[\lambda - \epsilon, \lambda + \epsilon] \subset (0, a)$ and such that a determinant of order $2m$ composed of some components of the $2m$ covectors ϕ^a, ψ^a does not vanish at any point of $[\lambda - \epsilon, \lambda + \epsilon]$. Then we can consider for example
In this case, if we take C^∞ functions $\tilde{h}(t)$ such that

\begin{align*}
\tilde{h}(t) &= \cdots = \tilde{h}(t) = 0, \\
\tilde{h}(t) &= 0, \quad 0 \leq t \leq \lambda - \varepsilon, \quad \lambda + \varepsilon \leq t \leq a, \\
\tilde{h}(t) &> 0, \quad \lambda - \varepsilon < t < \lambda + \varepsilon
\end{align*}

and determine $\xi^h(t)$ by

\begin{align*}
\xi^{\tilde{h}}(t) &= \cdots = \xi^{\tilde{h}}(t) = 0, \\
\xi^a(t) &= \cdots = \xi^a(t) = 0, \quad 0 \leq t \leq \lambda - \varepsilon, \quad \lambda + \varepsilon \leq t \leq a, \\
\frac{\tilde{h}}{\varphi_1(t)} \xi^a(t) &= \tilde{h}(t), \\
\frac{\tilde{h}}{\varphi_2(t)} \xi^a(t) &= \frac{d}{dt} \tilde{h}(t)
\end{align*}

then $\xi^h(t)$ satisfy $\xi^h(0) = \xi^h(a) = 0$ and (1.12). On the other hand we get from (2.6)

\begin{align*}
\int_0^a \left[\rho(t) \xi^a(t) + \rho(t) \frac{d}{dt} \tilde{h}(t) \right] dt = 0,
\end{align*}

and consequently,

\begin{align*}
\int_0^a \left[\rho(t) - \frac{d}{dt} \sigma(t) \right] \tilde{h}(t) dt = 0.
\end{align*}

As we can take the positive valued function $\frac{1}{\tilde{h}}(t)$ arbitrarily, and, as we can take the number $\lambda (0 < \lambda < a)$ arbitrarily, we have

\begin{align*}
\rho(t) = \frac{d}{dt} \sigma(t).
\end{align*}

Similarly we have

\begin{align*}
\rho(t) = \frac{d}{dt} \sigma(t).
\end{align*}

Hence we get (1.14) and the lemma is proved.
§ 3. Some examples.

In § 3 some examples are given. Another example which is concerned with the normal contact metric structure of S^{n-1} is studied in § 4.

1° A distribution which is orthogonal to a Killing vector field of constant magnitude.

Let X be a Killing vector field in an odd dimensional Riemannian manifold such that

$$g_{ij}X^iX^j=1$$

and such that the rank of the matrix (F, JX) is $n-1$. X satisfies

$$(F, X_i-X_j)X^i=2X^iF_{ij}X_j=0$$

and, since the rank of (F, X_i) is $n-1$, $Y^jF_{ij}X_j$ does not vanish if $Y^iX_i=0$ and $Y \neq 0$. Hence the covectors X_i and $Y^i(F, X_i-X_j)X_j$ are linearly independent. Consider the $(n-1)$-dimensional distribution \mathcal{D} determined by the covector field X. Then from the above argument, for any \mathcal{D}-curve C: $x^h=x^h(s)$, the covectors

$$X_i, \quad \frac{dx^j}{ds} (F, X_i-X_j)$$

are linearly independent on C.

The differential equations of the a critical \mathcal{D}-curve are

$$\frac{d^2x^h}{ds^2} X^i + \left| \begin{array}{c} h \\ j \\ i \end{array} \right| \frac{dx^j}{ds} \frac{dx^i}{ds} = \left(\frac{d}{ds} \chi \right) X^h + 2\chi \frac{dx^j}{ds} F_{ij} X^h,$$

but it is easily seen from (1.17) that χ is a constant. Hence we have

$$\frac{d^2x^h}{ds^2} + \left| \begin{array}{c} h \\ j \\ i \end{array} \right| \frac{dx^j}{ds} \frac{dx^i}{ds} = c \frac{dx^j}{ds} F_{ij} X^h.$$

2° A distribution in the Euclidean 3-space.

Let \mathcal{D} be a distribution orthogonal to a Killing vector field defined by

$$\varphi_1 = -y, \quad \varphi_2 = x, \quad \varphi_3 = 1.$$

Then we have

$$\frac{d^2x}{ds^2} = \frac{dx}{ds} (-y) - 2\chi \frac{dy}{ds},$$

$$\frac{d^2y}{ds^2} = \frac{dx}{ds} (x + 2\chi \frac{dx}{ds},$$

$$\frac{d^2z}{ds^2} = \frac{dx}{ds}.$$
for (1.15),

\[-y \frac{dx}{ds} + x \frac{dy}{ds} + \frac{dz}{ds} = 0\]

for (1.16) and

\[(x^2+y^2+1) \frac{d\chi}{ds} + 2\left(x \frac{dx}{ds} + y \frac{dy}{ds}\right) \chi = 0\]

for (1.17). Then we get

\[\chi = \frac{c}{x^2+y^2+1}\]

and \(\chi\) is not a constant in general, although there exist some critical \(\mathcal{D}\)-curves where \(\chi\) is constant.

Suppose

\[a\phi_i + b \frac{dx^j}{ds} (\partial_i \phi_k - \partial_k \phi_i) = 0\]

for some \(a\) and \(b\). Then we have

\[-ay - 2b \frac{dy}{ds} = 0, \quad ax + 2b \frac{dx}{ds} = 0, \quad a = 0,\]

and consequently

\[b = 0 \quad \text{or} \quad \frac{dx}{ds} = \frac{dy}{ds} = 0.\]

But the latter contradicts

\[\frac{dz}{ds} = \frac{y}{ds} \frac{dx}{ds} - x \frac{dy}{ds} \cdot \left(\frac{dx}{ds}\right)^2 + \left(\frac{dy}{ds}\right)^2 + \left(\frac{dz}{ds}\right)^2 = 1.\]

Thus we see that

\[\phi_i \frac{dx^j}{ds} (\partial_j \phi_k - \partial_k \phi_j)\]

are linearly independent for all \(\mathcal{D}\)-curves.

3° A distribution in a contact metric manifold.

A contact metric manifold \(M\) is a Riemannian manifold of odd dimension endowed with a vector field \(\phi^a\) satisfying the following conditions,

(i) \(\phi^a \phi_a = 1\) where \(\phi_i = \partial_i \phi_a\),

(ii) \((V_{\phi_i} - \phi_i) \phi^i = 0\),
DISTRIBUTION AND CRITICAL CURVES

(iii) \[\frac{1}{4} (F_{ij} \varphi^i - F_{kj} \varphi^j)(F_{jkl} \varphi^k - F_{pl} \varphi^l) = -\partial_j \varphi + \varphi \varphi^h. \]

Let \(\mathcal{D} \) be a distribution which is orthogonal to the vector field \(\varphi^h \). Let \(x^h = x^h(s) \) be a \(\mathcal{D} \)-curve.

Suppose

\[a \varphi^h + b \frac{dx^k}{ds} (F_{klm} \varphi^l - F_{mnp} \varphi^p) = 0. \]

Transvecting \(\varphi_h \) we get

\[a = 0. \]

Transvecting with \(F_{ik} \varphi^i - F_{kj} \varphi^j \) we get

\[b \left(-\frac{dx^k}{ds} + \frac{dx^l}{ds} \varphi_{kl} \right) = 0. \]

But, as we have

\[\varphi^f \frac{dx^f}{ds} = 0 \]

for a \(\mathcal{D} \)-curve, we get \(b = 0 \). Hence

\[\varphi_i, \frac{dx^i}{ds} (F_{ij} \varphi^j - F_{jk} \varphi^k) \]

are linearly independent for all \(\mathcal{D} \)-curves.

§ 4. A \((2n-2)\)-dimensional distribution on \(S^{2n-1} \) and the critical \(\mathcal{D} \)-curves of this distribution.

In their study of normal contact metric structure Sasaki and Hatakeyama [1] showed that \(S^{2n-1} \) is an example of normal contact metric manifolds. A normal contact metric structure of \(S^{2n-1} \) induces a \((2n-2)\)-dimensional distribution \(\mathcal{D} \) and it is the purpose of § 4 to study critical \(\mathcal{D} \)-curves of this distribution. On the other hand Yano and Ishihara [3] showed that \(S^{2n-1} \) is a fibred space with invariant Riemannian metric with a base space \(M^* \) which is a \((2n-2)\)-dimensional Kähler manifold of constant holomorphic sectional curvature.\(^2\) A \(\mathcal{D} \)-curve is a horizontal curve with respect to this fibre structure and a critical \(\mathcal{D} \)-curve \(C \) has a projection curve \(C^* \) on \(M^* \). We shall study some properties of \(C^* \).

1° When we regard \(S^{2n-1} \) as a hypersphere

\(^2\) See also Steenrod [2] where it is shown on page 108 that \(S^{2n-1} \) is a 1-sphere bundle over the projective space of \(n \) homogeneous complex variables.
in a $2n$-dimensional Euclidean space E^{2n} where a rectangular coordinate system (x^1, \ldots, x^{2n}) is fixed, x^1, \ldots, x^{2n} can be considered as local coordinates of S^{2n-1} in domains $x^{2n} > 0$ and $x^{2n} < 0$.

There exists on E^{2n} a complex structure induced canonically from the given rectangular coordinate system, and this complex structure and the metric of E^{2n} induce on S^{2n-1} a normal contact metric structure. The contravariant vector field φ of this structure has components

\begin{align*}
\varphi^1 &= -x^3, \quad \varphi^3 = x^1, \quad \varphi^8 = -x^4, \quad \varphi^4 = x^3, \\
\varphi^8 &= -x^2, \quad \varphi^{2n-1} = -x^{2n}
\end{align*}

in the local coordinates (x^κ). We consider again the distribution \mathcal{D} which is orthogonal to the vector field φ.

As the metric tensor of S^{2n-1} has components

\begin{equation}
\gamma_{\mu\nu} = \delta_{\mu\nu} + \frac{x^\mu x^\nu}{(x^{2n})^2}
\end{equation}

in the local coordinates (x^κ), the components φ_μ of the covector field of the distribution \mathcal{D} are

\begin{equation}
\varphi_\mu = \varphi^\mu + \frac{x^\mu x^1}{(x^{2n})^2} x^\nu,
\end{equation}

hence we have

\begin{equation}
\varphi_\mu \varphi^\mu = 1.
\end{equation}

Let $\{\gamma_{\kappa\lambda}\}$ be the Christoffel constructed from $\gamma_{\mu\nu}$ and let ∇_μ be the operator of covariant differentiation with respect to the Riemannian metric of S^{2n-1}. If indices a, b, c are used in the range $\{1, \ldots, 2n-2\}$, the components

\begin{equation}
\varphi_{a\mu} = \nabla_\mu \varphi_a - \nabla_a \varphi_\mu - \partial_a \varphi_\mu
\end{equation}

have the following values,

\begin{equation}
\varphi_{\kappa\kappa} = 0 \text{ except } \varphi_{12} = \varphi_{22} = \cdots = \varphi_{2n-1,2n-1} = -\varphi_{21} = -\varphi_{43} = \cdots = -\varphi_{2n-2,2n-1} = 2.
\end{equation}

3) In §4 indices $\kappa, \lambda, \mu, \cdots$ run over the range $\{1, \ldots, 2n-1\}$. Summation convention is used in the usual way and also in the following way, $A^1B^1 + \cdots + A^{2n-1}B^{2n-1}$.

4) The summation convention of the following form is also used,

\begin{equation}
A^aB^a = A^1B^1 + \cdots + A^{2n-2}B^{2n-2}.
\end{equation}
The rank of $\langle \varphi, \mu \lambda \rangle$ is $2n-2$.

As we have

\begin{equation}
\kappa \begin{bmatrix} \mu \\ \lambda \end{bmatrix} = \delta_{\mu \lambda} x^r + \frac{x^r x^s x^t}{(x^s)^2} = g_{\mu \lambda} x^r,
\end{equation}

the differential equation of a critical φ-curve is

\begin{equation}
\frac{d^2 x^r}{ds^2} + x^r = C\varphi^r \frac{dx^s}{ds}.
\end{equation}

The study of critical φ-curves is facilitated by the use of local coordinates y^1, \ldots, y^{2n-1} such that

\begin{align}
x^1 &= y^1 \cos z + y^2 \sin z, \\
x^2 &= -y^1 \sin z + y^2 \cos z,
\end{align}

\begin{equation}
x^{2n-3} = y^{2n-3} \cos z + y^{2n-2} \sin z, \\
x^{2n-2} &= -y^{2n-3} \sin z + y^{2n-2} \cos z, \\
x^{2n-1} &= r \sin z, \\
x^{2n} &= r \cos z,
\end{equation}

where $z = y^{2n-1}$ and

\begin{equation}
r^2 = 1 - (x^1)^2 - \cdots - (x^{2n-3})^2 = 1 - (y^1)^2 - \cdots - (y^{2n-3})^2.
\end{equation}

Notice that these coordinates are used only in the range

\[r > 0, \quad -\frac{\pi}{2} < z < \frac{\pi}{2}. \]

Let us define f_{cb} by

\begin{equation}
f_{cb} = 0 \text{ except } f_{12} = f_{34} = \cdots = f_{2n-3,2n-2} = -f_{21} = -f_{43} = \cdots = -f_{2n-2,2n-1} = 1.
\end{equation}

Then the components $h_{\mu \lambda}$ of the metric tensor of S^{2n-1} in local coordinates (y^r) are

\begin{equation}
h_{cb} = \delta_{cb} + \frac{y^c y^b}{r^2},
\end{equation}

\begin{equation}
h_{c.2n-1} = f_{c1} y^1, \quad h_{2n-1.2n-1} = 1.
\end{equation}
If we define $h^{\nu\iota}$ by
\[h_\nu h^{\iota} = \delta_\nu^\iota, \]
we have
\[h^{\kappa\iota} = \delta_{\kappa\iota} - y^\iota y^\kappa + \frac{1}{r^2} f_{0\kappa} y^i f_{a\kappa} y^a, \]
(4.11)
\[h^{b,2n-1} = -\frac{1}{r^2} f_{0\kappa} y^i, \quad h^{\kappa,2n-1} = \frac{1}{r^2}. \]

When we use the coordinate system (y^i), the corresponding contravariant components of the vector φ will be denoted by ψ^i, hence
\[\psi^i = \frac{\partial y^i}{\partial x^1} \varphi^1. \]

Then we have
(4.12) \[\psi^a = 0, \quad \psi^{2n-1} = -1. \]

We have for the corresponding covariant components
(4.13) \[\psi_a = -f_{0\kappa} y^i, \quad \psi^{2n-1} = -1 \]

2° Remember that ψ^i are the components of a Killing vector of unit length to which the distribution \mathcal{D} is orthogonal. (4.12) shows that the y^{2n-1}-curves (curves on which y^a are constant) are fibres of the fibred space S^{2n-1}. This fibred space which has been studied by Yano and Ishihara [3], has a base space M^* of dimension $2n-2$ and, if we use the local coordinates (y^i), namely (y^a, y^{2n-1}), in S^{2n-1}, the projection π: $S^{2n-1} \to M^*$ is given by π: $(y^a, y^{2n-1}) \to (y^a)$.

Let us introduce a metric into M^* by the standard of Yano and Ishihara. If the metric tensor of M^* is written h^*_{cb} in the coordinate system (y^i), h^*_{cb} are obtained from
\[h_{cb} dy^c dy^b = h^*_{cb} dy^c dy^b \]
by putting $\psi_a dy^i = 0$. The explicit formula is
(4.14) \[h^*_{cb} = \delta_{cb} + \frac{y^c y^b}{r^2} f_{0c} y^i f_{a0} y^a. \]

The inverse (h^{ba}) of the matrix (h^*_{cb}) has the elements
(4.15) \[h^{ba} = \delta_{ba} - y^b y^a + \frac{1}{r^2} f_{bc} y^i f_{a0} y^0. \]

The Christoffel $(\gamma^a_b)_c$ is
\[
\begin{bmatrix}
a \\
\varepsilon \\
b
\end{bmatrix}^* = \left(\frac{y^c y^b}{r^2}\right)y^a
\]

(4.16)

\[+ f_{a c} y^i f_{a b} + f_{b c} y^i f_{c a} - 2 f_{a c} y^i f_{b c} y^a \]

\[- (f_{a c} y^i y^b + f_{b c} y^i y^f) \frac{1}{r^2} f_{a i} y^a.\]

On the other hand, if we define \(\psi_\mu^e \) by

\[
\psi_\mu^e = \left(\frac{\partial \psi_\mu}{\partial y^e} - \frac{\partial \psi_\mu}{\partial y^f}\right)h_{i e},
\]

we can write the differential equations of a critical \(\theta \)-curve in the form

(4.17)

\[
\frac{d^2 y^e}{ds^2} + \left[\kappa_\mu \lambda \right] \frac{dy^a}{ds} \frac{dy^i}{ds} = C_{\psi_\mu^e} \frac{dy^a}{ds}.
\]

Calculating the Christoffel \(\{_{a b}^c \} \) of \(h_{\mu i} \), we get from (4.17)

\[
y''^a = \left[-y'^c y'^e - \frac{(y'^c y'^e)^2}{r^2} + 2 \rho^2 - 2C\rho\right]y^a
\]

(4.18)

\[+ \frac{2y'^c y'^e}{r^2} (\rho - C)f_{a i} y^i + 2(\rho - C)f_{a i} y^i y^t\]

where

\[
y''^a = \frac{dy^a}{ds}
\]

and \(\rho \) is defined by

(4.19)

\[
\rho = f_{a i} y^i y^a.
\]

We can regard (4.18) as a curve \(C^* \) in \(M^* \), the projection of a critical \(\theta \)-curve \(C \). In order to find some properties of \(C^* \) we use (4.16) and write (4.18) in the form

\[
y''^a + \left[\begin{bmatrix}
a \\
\varepsilon \\
b
\end{bmatrix}^* \right] y'^c y'^b
\]

(4.20)

\[= -2C\left(\rho y^a + \frac{1}{r^2} y'^c y'^e f_{a i} y^i + f_{a i} y^i y^t\right).
\]

Differentiating (4.20) covariantly along the curve \(C^* \) we get after some straightforward calculation
This shows that C^* is a Riemannian circle of curvature $2|C|$. A Riemannian circle is by definition a curve in a Riemannian space whose development in a tangent space is a circle. Its global properties are quite various according to the enveloping manifold. Thus, for example, we cannot even guess the period of C^*.

But, as for the function $r(s)$ only, we can find its period. As r is given by $y^a y^a = 1 - r^2$, we have

\[y^c y^c = -rr', \]

(4.22)

\[y^c y^c + y^c y'' = -r'r'' - rr''. \]

We also get from $h_{cb} y^c y^c y'' = 1$ and (4.14)

(4.23)

\[y^c y^c + r'r'' = 1 + \rho^2. \]

On the other hand, if we substitute (4.18) into $y^c y''$, the second equation of (4.22) gives

\[rr'' = -r^2(1 - \rho^2 + 2C\rho) = -r^2[1 + C^2 - (\rho - C)^2]. \]

As we assume $r > 0$, we get

(4.24)

\[r'' = -r[1 + C^2 - (\rho - C)^2]. \]

We also obtain from (4.18), (4.19) and (4.22)

\[\rho' = -\frac{2(\rho - C)r'}{r}. \]

Hence we have

(4.25)

\[\rho - C = \frac{k}{r^2} \]

where k is a constant. Substituting this into (4.24) we get

\[r'' = -(1 + C^2)r + \frac{k^2}{r^3}. \]

The general solution of this differential equation is
where

\[k^2 = (1 + C^2)(C_1^2 - C_2^2). \]

Thus we find that \(r(s) \) has period \(\pi / \sqrt{1 + C^2} \) or \(r(s) \) is reduced to a constant. The only exceptional cases will occur if \(k = 0 \). Then we have \(\rho = C \). Such cases will be studied in the appendix.

3° It was shown by Yano and Ishihara [3] that the base space \(M^* \) is a Kähler manifold of constant holomorphic sectional curvature.

Let us turn to the Euclidean space \(E^{2n} \) equipped with a fixed rectangular coordinate system \((x^1, \ldots, x^{2n})\) and introduce a complex coordinate system

\[Z^1 = x^1 + ix^2, \ldots, Z^{n-1} = x^{2n-3} + ix^{2n-2}, \]

\[Z^n = x^{2n-1} + ix^n. \]

Then we have a complex space \(\mathbb{C}^n \). In \(\mathbb{C}^n - \{0\} \) we can regard \((Z^0, Z^1, \ldots, Z^{n-1})\) as a system of homogeneous complex coordinates of the complex projective space \(P^{n-1}(\mathbb{C}) \). If we assume \(Z^0 \neq 0 \), we can introduce an inhomogeneous complex coordinate system by

\[z^1 = \frac{Z^1}{Z^0}, \ldots, z^{n-1} = \frac{Z^{n-1}}{Z^0}, \]

and, if we introduce real local coordinates \(w^1, \ldots, w^{2n-2} \) in \(P^{n-1}(\mathbb{C}) \) by

\[z^1 = w^1 + iw^2, \ldots, z^{n-1} = w^{2n-3} + iw^{2n-2}, \]

then we obtain

\[w^1 = \frac{x^1 x^{2n-1} + x^2 x^{2n}}{(x^{2n-1})^2 + (x^{2n})^2}, \]

\[w^2 = \frac{x^2 x^{2n-1} - x^1 x^{2n}}{(x^{2n-1})^2 + (x^{2n})^2}, \]

\[\ldots \ldots \ldots \ldots \ldots \]

\[w^{2n-3} = \frac{x^3 x^{2n-1} - x^{2n-3} x^{2n}}{(x^{2n-1})^2 + (x^{2n})^2}, \]

\[w^{2n-2} = \frac{x^3 x^{2n-1} + x^{2n-3} x^{2n}}{(x^{2n-1})^2 + (x^{2n})^2}. \]

If the ordinary Kähler metric of \(P^{n-1}(\mathbb{C}) \) is multiplied by a suitable constant, the corresponding metric tensor has following components \(g_{\alpha \beta}^F \) in real coordinates.
\(w^1, \ldots, w^{2n-1} \),

\[
(4.30) \quad g^a_{\alpha\beta} = \frac{\delta_{\alpha\beta}}{1 + w^a w^b} - \frac{w^a w^b + f_{\alpha\gamma} w^\gamma f_{\beta\delta} w^\delta}{(1 + w^a w^b)^2}
\]

which will be easily proved by direct calculation.

The relation between \(w^1, \ldots, w^{2n-1} \) and \(y^1, \ldots, y^{2n-1} \) is obtained from (4.7) and (4.29) to be

\[
(4.31) \quad w^a = \frac{1}{r} f_{a\gamma} y^\gamma, \quad w^a w^b = \frac{1}{r^2} - 1.
\]

Hence we can write (4.30) in the form

\[
(4.32) \quad g^a_{\alpha\beta} = r^2 (\delta_{\alpha\beta} - y^\alpha y^\beta - f_{\alpha\gamma} y^\gamma f_{\beta\delta} y^\delta).
\]

That the metric tensor whose components are \(g^a_{\alpha\beta} \) in local coordinates \((w^a)\) is identical with the metric tensor whose components are \(h^a_{\alpha\beta} \) in local coordinates \((y^a)\) is immediately shown since we have

\[
g^a_{\alpha\beta} y^\alpha w^\beta = h^a_{\alpha\beta} y^\alpha y^\beta
\]

because of (4.14), (4.31) and (4.32).

As \(f_{\alpha\beta} \) satisfies

\[
P^a_{\gamma} f_{\alpha\beta} = \begin{bmatrix} e & \ast \\ c & b \end{bmatrix} f_{\alpha\beta} + \begin{bmatrix} e & \ast \\ c & a \end{bmatrix} f_{\alpha\beta} = 0
\]
on account of (4.16), \((h^a_{\alpha\beta}, f_{\alpha\beta})\) is a Kähler structure of \(P^{n-1}(C) \).

4° Let

\[
(4.33) \quad \alpha^a Z^a + \alpha^1 Z^1 + \cdots + \alpha^{n-1} Z^{n-1} = 0
\]

be the equation of a hyperplane of \(P^{n-1}(C) \). If we use only real numbers, we can write (4.33) in the form

\[
(4.34) \quad A^a y^a = Kr, \quad A^a f_{a\gamma} y^\gamma = Lr
\]

where \(r \) is given by (4.8). Hence, to a complex hyperplane of \(P^{n-1}(C) \) corresponds a subspace \(M' \) of codimension 2 in \(M^* \). The subspace \(M' \) determined by (4.34) will be denoted by \(M'(A^a, K, L) \).

If we define functions \(X(s) \) and \(Y(s) \) by

\[
X(s) = A^a y^a(s) - Kr(s),
\]

\[
(4.35) \quad Y(s) = A^a f_{a\gamma} y^\gamma(s) - Lr(s)
\]

along a curve \(C^* \), these satisfy
DISTRIBUTION AND CRITICAL CURVES

\[X'' = \left[-(1+C^2) + \frac{k^2}{r^4}\right] X - \frac{2kr'}{r^3} Y + \frac{2k}{r^2} Y', \]

\[Y'' = \left[-(1+C^2) + \frac{k^2}{r^4}\right] Y + \frac{2kr'}{r^3} Y - \frac{2k}{r^2} X', \]

for we get

\[y'' = \left[-(1+C^2) + \frac{k^2}{r^4}\right] y' - \frac{2kr'}{r^3} f_{at} y' + \frac{2k}{r^2} f_{at} y'^r, \]

from (4.18), (4.23) and (4.25). Hence we get \(X(s) = Y(s) = 0 \) if \(X(s) \) and \(Y(s) \) satisfy \(X(0) = Y(0) = X'(0) = Y'(0) = 0 \).

This proves the following lemma.

Lemma 4.1. Let \(C^* \) be a curve of \(M^* \) which is the projection of a critical \(\mathcal{Q} \)-curve \(C \) in \(S^{2n-1} \). If, in the corresponding curve in \(P^{n-1}(C) \), which will also be denoted by \(C^* \), a point \(P \) and the tangent of \(C^* \) at \(P \) lie in a complex hyperplane, then \(C^* \) lies completely in this complex hyperplane.

From (4.20) we observe that a curve \(C^* \) where \(C=0 \) is a geodesic of \(M^* \) and that any geodesic of \(M^* \) is a curve \(C^* \). Hence \(M'(A^a, K, L) \) is a totally geodesic subspace. Notice that \(M'(f_{at} A^i, -L, K) \) is the same subspace as \(M'(A^a, K, L) \).

A subspace \(M'(A^a, K, L) \) tangent to a given curve \(C^* \) at the point \(s=0 \) is obtained if we take \(A^a, K, L \) satisfying

\[A^a y^a(0) - Kr(0) = 0, \quad A^a y'^a(0) - Kr'(0) = 0, \]

(4.37)

\[A^a f_{at} y^a(0) - Lr(0) = 0, \quad A^a f_{at} y'^a(0) - Lr'(0) = 0. \]

If we define \(M \) by

\[M = \begin{pmatrix}
 y^1 & y^2 & \ldots & y^{2n-3} & y^{2n-2} & r & 0 \\
 y'^1 & y'^2 & \ldots & y'^{2n-3} & y'^{2n-2} & r' & 0 \\
 y^2 & -y^1 & \ldots & y^{2n-3} & -y^{2n-3} & 0 & r \\
 y'^2 & -y'^1 & \ldots & y'^{2n-3} & -y'^{2n-3} & 0 & r'
\end{pmatrix}, \]

the rank of \(M \) is 4, since we have

\[MM^\tau = \begin{pmatrix}
 1 & 0 & 0 & -\rho \\
 0 & 1 + \rho^2 & \rho & 0 \\
 0 & \rho & 1 & 0 \\
 -\rho & 0 & 0 & 1 + \rho^2
\end{pmatrix}, \quad \det(MM^\tau) = 1 \]
because of (4.22) and (4.23). Hence we have $2n-4$ linearly independent solutions of (4.37). We also observe that, if (A^a, K, L) is a solution of (4.37), $(f_{at} A^t, -L, K)$ is also a solution.

Suppose that (A^a, K, L) $(\xi=1, \ldots, 2p)$ are $2p$ linearly independent solutions of (4.37) where

$$A^a = f_{at} A^t \quad (u=1, \ldots, p).$$

If (A^a, K, L) is a solution of (4.37) such that

$$A^a = k A^a + \cdots + k A^a, \quad (1) \quad (2p) \quad (2p)$$

then we find immediately that

$$K = k K + \cdots + k K, \quad (1) \quad (2p) \quad (2p)$$

$$L = k L + \cdots + k L, \quad (1) \quad (2p) \quad (2p)$$

hence (A^a, K, L) is a linear combination of $(A^a, K, L), \ldots, (A^a, K, L)$. Then we also find that the $2p$ $(2n-2)$-tuples A^a, \ldots, A^a are linearly independent, for a solution (A^a, K, L) must satisfy $K=L=0$ if $A^a=0$.

From the above result we can deduce that there exists a set of $2n-4$ linearly independent solutions (A^a, K, L) $(\xi=1, \ldots, 2n-4)$ of (4.37) where

$$A^a = f_{at} A^t, \quad (\xi=1, \ldots, 2n-4)$$

and such that the $(2n-2)$-tuples A^a, \ldots, A^a are linearly independent.

We can interpret this result geometrically as follows.

Lemma 4.2. For any curve C^* there exists in M^* a totally geodesic subspace of dimension 2 which contains C^* and is determined by a system of equations

$$A^a y^a = K r \quad (\xi=1, \ldots, 2n-4)$$

where

$$A^a = f_{at} A^t \quad (u=1, \ldots, n-2).$$

This subspace is common to all curves C^* passing a point P and having a common tangent vector at the point P.

The contents of §4 can be resumed in the following theorem.

Theorem 4.3. According to Sasaki and Hatakeyama an S^{2n-1} in E^{2n} can be treated as a normal contact metric manifold. According to Yano and Ishihara S^{2n-1}
can also be treated as a fibred space with invariant Riemannian metric. The base space \(M^* \) is a Kähler space of constant holomorphic sectional curvature. By virtue of these structures an \(S^{2n-1} \) becomes a space equipped with a distribution \(\mathcal{D} \) of dimension \(2n-2 \) where the \(\mathcal{D} \)-curves are horizontal curves of the fibred space. If \(C \) is a critical \(\mathcal{D} \)-curve, the projection \(C^* \) on \(M^* \) of \(C \) has following properties.

(I) \(C^* \) is a Riemannian circle of \(M^* \).

(II) Let \(\{M'\} \) be the set of \((2n-4)\)-dimensional totally geodesic subspaces of \(M^* \) such that each subspace \(M' \) is a complex hypersurface if \(M^* \) is regarded as a complex projective space. Then any curve \(C^* \) passing a point \(P \) of a subspace \(M' \) and tangent at \(P \) to this \(M' \) is contained completely in this subspace \(M' \).

(III) For any curve \(C^* \) there exists in \(M^* \) a totally geodesic subspace of dimension 2 which contains \(C^* \) and is obtained as an intersection of \(n-2 \) elements of \(\{M'\} \). This subspace is common to all curves \(C^* \) passing a common point \(P \) and having a common tangent at \(P \).

Appendix. The exceptional cases.

In this appendix we study critical \(\mathcal{D} \)-curves \(C \) of \(S^{2n-1} \) where \(k=0, \rho=C \).

In this case the differential equation of \(r \) is reduced to the form

\[
A.1 \quad r'' = -(1+C^p) \hspace{1pt} r
\]

and the general solution \(r=r_0 \cos(\sqrt{1+C^p} (s-s_0)) \) does not obey the restriction \(r>0 \). Hence, for the study of global properties of such exceptional critical \(\mathcal{D} \)-curves \(C \), we use rectangular coordinates \(x^1, \ldots, x^{2n} \) of \(E^{2n} \).

Since the equations (4.18) of the projection curve \(C^* \) are written in local coordinates \(y^1, \ldots, y^{2n-3} \), we must use (4.7) and (4.8) to return to the coordinates \(x^1, \ldots, x^{2n} \). \(C \) is obtained by the process of lifting in which we use

\[
A.2 \quad \phi_ay''+\phi_{2n-1}z'=0,
\]

which becomes

\[
A.3 \quad z' = -C
\]

because of (4.13) and \(\rho=C \).

Differentiating (4.7) and using (A.3) we obtain

\[
\begin{align*}
\dot{x}^{a} &= \dot{y}^{a} \cos z + y^{a} \sin z \hspace{1pt} C \hspace{1pt} x^{a}, \\
\dot{x}^{2} &= -y^{a} \sin z + y^{a} \cos z \hspace{1pt} C \hspace{1pt} x^{a}, \\
\cdots & \\
\dot{x}^{a} &= \dot{y} \sin z \hspace{1pt} C \hspace{1pt} x^{a}, \\
\dot{x}^{2n} &= \dot{y} \cos z \hspace{1pt} C \hspace{1pt} x^{2n-1},
\end{align*}
\]

and
\[
x''^1 = y''^1 \cos z + y''^2 \sin z + 2C(y'^1 \sin z - y'^2 \cos z) - C^2 x^1,
\]
\[
x''^2 = -y''^1 \sin z + y''^2 \cos z + 2C(y'^1 \cos z + y'^2 \sin z) - C^2 x^2,
\]
(A. 5)
\[
x''^m = r'' \sin z - 2Cr' \cos z - C^2 x^m - 1,
\]
\[
x''^{2n} = r'' \cos z + 2Cr' \sin z - C^2 x^{2n}.
\]

Since \(r \) and \(y'' \) satisfy
\[
 r'' = -(1 + C^2)r, \quad y'' = -(1 + C^2)y''
\]
along \(C \), we obtain
\[
x''^1 + 2C x''^2 + x^1 = 0,
\]
\[
x''^2 - 2C x''^1 + x^3 = 0,
\]
(A. 6)
\[
x''^{2n-1} + 2C x''^{2n} + x^{2n-1} = 0,
\]
\[
x''^{2n} - 2C x''^{2n-1} + x^{2n} = 0.
\]

\(C \) satisfies moreover
\[
(x^1)^2 + \ldots + (x^{2n})^2 = 1,
\]
\[
(x''^1)^2 + \ldots + (x''^{2n})^2 = 1,
\]
(A. 7)
\[
x^1 x''^1 + \ldots + x^{2n} x''^{2n} = 0,
\]
\[
x^1 x''^2 - x^2 x''^1 + \ldots + x^{2n-1} x''^{2n} - x^{2n} x''^{2n-1} = 0.
\]

The fourth equation of (A. 7) is obtained from (A. 4) and \(p = C \).
If \(F_{ji} \) is defined by
\[
F_{ji} = 0 \text{ except } F_{12} = F_{34} = \ldots = F_{2n-1,2n} = -F_{11} = -F_{43} = \ldots = -F_{2n,2n-1} = 1,
\]
then we can write the fourth equation of (A. 7) in the form
(A. 8)
\[
F_{ji} x''^i x^j = 0.
\]

Now we can write (A. 6) in the form
\[
x''^h + 2C F_{hi} x''^i + x^h = 0.
\]
If in \(E^{2n} \) the vector \(x^h \) is denoted by \(X \) and the vector \(F_{hi} x^i \) by \(FX \), (A. 6) is written

Differentiating repeatedly and eliminating FX, FX' we get

\[(A. 10) \quad X^{(6)} + 2(2C^2 + 1)X'' + X = 0.\]

Let us put

\[(A. 11) \quad \alpha = \sqrt{1 + C^2 + |C|}, \quad \beta = \sqrt{1 + C^2 - |C|}.\]

Assuming $C \neq 0$, we have $\alpha > \beta > 0$. $-\alpha^2$ and $-\beta^2$ are the roots of $\lambda^2 + 2(2C^2 + 1)\lambda + 1 = 0$. Hence

\[(A. 12) \quad X = A_1 \cos \alpha s + A_2 \sin \alpha s + B_1 \cos \beta s + B_2 \sin \beta s\]

is the general solution of (A. 10).

Substituting (A. 12) into (A. 7) we can deduce

\[(A_1, A_1) = (A_2, A_2) = \frac{1}{2} - \frac{|C|}{2 \sqrt{1 + C^2}}, \]

\[(B_1, B_1) = (B_2, B_2) = \frac{1}{2} + \frac{|C|}{2 \sqrt{1 + C^2}}\]

and that A_1, A_2, B_1, B_2 are mutually orthogonal.

Substituting (A. 12) into (A. 9) we can deduce

\[FA_1 = -\frac{|C|}{C} A_2, \quad FB_1 = \frac{|C|}{C} B_2.\]

Thus we have

\[(A. 13) \quad X = A \cos \alpha s + \varepsilon F A \sin \alpha s + B \cos \beta s + \varepsilon F B \sin \beta s\]

where $\varepsilon = \pm 1$ and

\[(A, A) = \frac{1 - \beta^2}{\alpha^2 - \beta^2}, \quad (B, B) = \frac{\alpha^2 - 1}{\alpha^2 - \beta^2}, \quad (A, B) = 0.\]

If $C = 0$ we have the simplest case,

\[(A. 14) \quad X = A \cos s + B \sin s\]

where $(A, A) = (B, B) = 1, (A, B) = 0$.

Thus we have the following result.

The equations of the exceptional critical \(\mathcal{C}\)-curves are (A. 13) or (A. 14) according as $C \neq 0$ or $C = 0$.

REFERENCES

DEPARTMENT OF APPLIED MATHEMATICS,
YOKOHAMA NATIONAL UNIVERSITY.