ON CONFORMAL CHANGES OF RIEMANNIAN METRICS

Dedicated to Professor Yūsaku Komatu on his sixtieth birthday

BY KENTARO YANO AND HITOSI HIRAMATU

§ 1. Introduction.

Let M be an n-dimensional connected differentiable manifold and g a Riemannian metric tensor field on M. We denote by (M, g) a Riemannian manifold with the metric tensor field g. Let there be given two metric tensor fields g and g^* on M. If g^* is conformal to g, that is, if there exists a function ρ on M such that $g^* = e^{\rho} g$, then we call such a change of metric tensor field $g \rightarrow g^*$ a conformal change of metric. In particular, if $\rho = \text{constant}$ then the conformal change of metric is said to be homothetic and if $\rho = 0$ then the conformal change of metric is said to be isometric.

Let (M, g) and (M', g') be two Riemannian manifolds and $f: M \rightarrow M'$ a diffeomorphism. Then $g^* = f^* g$ is a Riemannian metric tensor field on M. When g^* is conformal to g, that is, when there exists a function ρ on M such that $g^* = e^{\rho} g$, we call $f: (M, g) \rightarrow (M', g')$ a conformal transformation. In particular, if $\rho = \text{constant}$ then f is called a homothetic transformation or a homothety and if $\rho = 0$ then f is called an isometric transformation or an isometry.

If a vector field v on M satisfies

$$L_v g = 2\phi g,$$

where L_v denotes the Lie derivation with respect to v and ϕ a function on M, then v is called an infinitesimal conformal transformation. The v is said to be homothetic or isometric according as ϕ is a constant or zero.

Given a Riemannian manifold (M, g), we denote by g_{ij}, $\{i^j\}$, ∇_v, K_{ij}^h, K_{ij} and K, respectively, the components of the metric tensor field g, the Christoffel symbols formed with g_{ij}, the operator of covariant differentiation with respect to $\{i^j\}$, the components of the curvature tensor field, the components of the Ricci tensor field and the scalar curvature of (M, g), where and in the sequel, indices i, j, k, \cdots run over the range $\{1, 2, \cdots, n\}$. Hereafter we assume that functions under consideration are always differentiable.

When we consider a conformal change of metric
if Ω is a quantity formed with g then we denote by Ω^* the quantity formed with g^* by the same rule as that Ω is formed with g.

Recently, Goldberg and Yano [2] studied non-homothetic conformal changes of metrics and obtained the following

Theorem A. Let (M, g) be a compact orientable Riemannian manifold of dimension $n>3$ with constant scalar curvature K and admitting a non-homothetic conformal change of metric $g^*=e^{\theta g}$ such that $K^*=K$. Then if

$$\int_M u^{-\frac{n+1}{2}}G_{ji}u^i u^j dV \geq 0,$$

where

$$G_{ji} = K_{ji} - \frac{K}{n}g_{ji},$$

and $u=e^{-\theta}$, $u_i = \nabla_i u$, $u^* = u_g^{th}$ and dV denotes the volume element of (M, g), then (M, g) is isometric to a sphere.

Theorem B. If a compact orientable Riemannian manifold (M, g) of dimension $n>2$ admits a non-homothetic conformal change of metric $g^*=e^{\theta g}$ such that

$$\int_M (\Delta u)K dV = 0,$$

where $\Delta u = g^{ij}\nabla_i \nabla_j u$, then (M, g) is conformal to a sphere.

Theorem C. If a compact orientable Riemannian manifold (M, g) of dimension $n>2$ and with K=constant admits a non-homothetic conformal change of metric $g^*=e^{\theta g}$ such that

$$G^*_{ji}G^*_{ji} = u^*G_{ji}G^*_{ji},$$

then (M, g) is isometric to a sphere.

Theorem D. If a compact orientable Riemannian manifold (M, g) of dimension $n>2$ admits a non-homothetic conformal change of metric $g^*=e^{\theta g}$ such that

$$\int_M (\Delta u)K dV = 0,$$

where

$$Z_{kji} = K_{kji} - \frac{K}{n(n-1)} (\partial g_{ji} - \partial g_{ki}),$$

then (M, g) is conformal to a sphere.

Theorem E. If a compact orientable Riemannian manifold (M, g) of dimension $n>2$ and with K=constant admits a non-homothetic conformal change of metric $g^*=e^{\theta g}$ such that

$$Z_{kji} = u^4 Z_{kji} Z^{kji},$$

then (M, g) is conformal to a sphere.
then \((M, g)\) is isometric to a sphere.

Theorem F. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n>2\) admits a non-homothetic conformal change of metric \(g^*=e^{a+bu}g\) such that
\[
\int_M (du) K dV = 0,
\]
\[
W^{*}_{kjh} W^{*}_{kjish} = u^4 W_{kjh} W^{kjish}, \quad a+(n-2)b \neq 0,
\]
where
\[
W^{*}_{kjh} = a Z^{*}_{kjh} + b (\partial^i G_{ji} - \partial^j G_{ki}) + G^*_k g^*_i - G^*_j g^*_k,
\]
a and \(b\) being constants, then \((M, g)\) is conformal to a sphere.

Theorem G. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n>2\) and with \(K=\)constant admits a non-homothetic conformal change of metric \(g^*=e^{a+bu}g\) such that
\[
W^{*}_{kjh} W^{*}_{kjish} = u^4 W_{kjh} W^{kjish}, \quad a+(n-2)b \neq 0,
\]
then \((M, g)\) is isometric to a sphere.

Theorem H. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n\geq 2\) admits a non-homothetic conformal change of metric \(g^*=e^{a+bu}g\) such that
\[
K^* = K, \quad L_{du} K = 0, \quad \int_M u^{-n+1} G_{ji} u^i u^j dV = 0,
\]
where \(L_{du}\) denotes the Lie derivation with respect to a vector field \(u^h = g^{ih} F_i u\), then \((M, g)\) is isometric to a sphere.

Theorem I. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n>2\) admits a non-homothetic conformal change of metric \(g^*=e^{a+bu}g\) such that
\[
K^* = K, \quad L_{du} K = 0, \quad G^*_{ji} G^*_{kj} = G_{ji} G_{kj},
\]
then \((M, g)\) is isometric to a sphere.

(See also Barbance [1].)

Theorem J. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n>2\) admits a non-homothetic conformal change of metric \(g^*=e^{a+bu}g\) such that
\[
K^* = K, \quad L_{du} K = 0,
\]
then \((M, g)\) is conformal to a sphere.

(See also Hsiung and Liu [3].)

Theorem K. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n>2\) admits a non-homothetic conformal change of metric \(g^*=e^{a+bu}g\) such that
\[
K^* = K, \quad L_{du} K = 0,
\]
\[
W^*_{kjh} W^*_{kjish} = W_{kjh} W^{kjish}, \quad a+(n-2)b \neq 0,
\]
then \((M, g)\) is isometric to a sphere.
Yano and Sawaki [14] proved following theorems.

THEOREM L. If a compact orientable Riemannian manifold \((M, g) \) of dimension \(n > 2 \) admits a non-homothetic conformal change of metric \(g^* = e^{2p} g \) such that

\[
L_{du} K = 0, \quad L_{du} K^* = 0, \quad u^p G_{ij} G^{ij} = (u-1)\varphi + 1 \quad G_{ij} G^{ij},
\]

where \(p \) is a real number such that \(p \leq 4 \) and \(\varphi \) a non-negative function on \(M \), then \((M, g) \) is isometric to a sphere.

THEOREM M. If a compact orientable Riemannian manifold \((M, g) \) of dimension \(n > 2 \) admits a non-homothetic conformal change of metric \(g^* = e^{2p} g \) such that

\[
L_{du} K = 0, \quad L_{du} K^* = 0, \quad u^p Z_{kijh} Z^{kijh} = (u-1)\varphi + 1 \quad Z_{kijh} Z^{kijh},
\]

where \(p \) and \(\varphi \) are the same as in Theorem L, then \((M, g) \) is isometric to a sphere.

THEOREM N. If a compact orientable Riemannian manifold \((M, g) \) of dimension \(n > 2 \) admits a non-homothetic conformal change of metric \(g^* = e^{2p} g \) such that

\[
L_{du} K = 0, \quad L_{du} K^* = 0, \quad u^p W_{kijh} W^{kijh} = (u-1)\varphi + 1 \quad W_{kijh} W^{kijh}, \quad a + (n-2)b \neq 0,
\]

where \(p \) and \(\varphi \) are the same as in Theorem L, then \((M, g) \) is isometric to a sphere.

The purpose of the present paper is to prove generalizations of Theorems L~N.

In the sequel, we need the following two theorems.

THEOREM O (Tashiro [8]). If a compact Riemannian manifold \((M, g) \) of dimension \(n \geq 2 \) admits a non-constant function \(u \) on \(M \) such that

\[
\varphi_f \varphi, u - \frac{1}{n} \Delta u^f = 0,
\]

then \((M, g) \) is conformal to a sphere in an \((n+1) \)-dimensional Euclidean space.

(See also Ishihara [4], Ishihara and Tashiro [5].)

THEOREM P (Yano and Obata [13]). If a complete Riemannian manifold \((M, g) \) of dimension \(n \geq 2 \) admits a non-constant function \(u \) on \(M \) such that

\[
\varphi_f \varphi, u - \frac{1}{n} \Delta u^f = 0, \quad L_{du} K = 0,
\]

then \((M, g) \) is isometric to a sphere in an \((n+1) \)-dimensional Euclidean space.
§ 2. Preliminaries.

We consider a conformal change of metric

\[g_{ji}^* = e^{\rho} g_{ji}. \]

First of all, we have

\[\{ \frac{h}{j} \}_{i} = \{ \frac{h}{j} \}_{i} + \partial_{j}^h \rho_i + \partial_i^h \rho_j - g_{ji} \rho^h, \]

where

\[\rho_i = \nabla_i \rho, \quad \rho^h = g^{ih} \rho_h, \]

from which

\[K^*_{,h} = K_{,h} + \partial_{h} \rho_{j} - \partial_{j} \rho_{h} + \rho^h g_{ji} + \rho^i g_{ji}, \]

where

\[\rho_{ji} = \nabla_j \rho_i + \frac{1}{2} \rho_i \rho_j g_{ji}, \quad \rho^h = \rho_{ji} g^{ih}, \]

and consequently

\[K_{,h}^* = K_{,h} - (n-2) \rho_{ji} - \rho^i g_{ji}, \]

and

\[e^{\rho} K^* = K - (n-1) \rho^i, \]

where

\[\rho^i = \Delta \rho + \frac{n-2}{2} \rho_i \rho^i, \quad \Delta \rho = g^{ij} \nabla_j \rho_i. \]

From (2.3), (2.4) and (2.5) and the definitions of \(G_{ji}, Z_{,h} \) and \(W_{,h} \), we have

\[G_{ji}^* = G_{ji} - (n-2) (\nabla_j \rho_i - \rho_j \rho_i) + \frac{n-2}{n} \left(\Delta \rho - \rho_i \rho_i \right) g_{ji}, \]

\[Z_{,h}^* = Z_{,h} - \partial_{,h} (\nabla_j \rho_i - \rho_j \rho_i) + \partial_{,h} (\nabla_i \rho_j - \rho_i \rho_j) \]

\[- (\nabla_i \rho^h - \rho_i \rho^h) g_{ji} + (\nabla_j \rho^h - \rho_j \rho^h) g_{hi} + \frac{2}{n} (\Delta \rho - \rho_i \rho^i) (\partial_{,h} g_{ji} - \partial_{,h} g_{hi}), \]

and

\[W_{,h}^* = W_{,h} + \{ a + (n-2) b \} \left\{ - \partial_{,h} (\nabla_j \rho_i - \rho_j \rho_i) + \partial_{,h} (\nabla_i \rho_j - \rho_i \rho_j) \]

\[- (\nabla_i \rho^h - \rho_i \rho^h) g_{ji} + (\nabla_j \rho^h - \rho_j \rho^h) g_{hi} \]

\[+ \frac{2}{n} (\Delta \rho - \rho_i \rho^i) (\partial_{,h} g_{ji} - \partial_{,h} g_{hi}) \}. \]

If we put
then we have

\(V_j u_i = -u(V_j \rho_i - \rho_j \rho_i) \)

and

\(\Delta u = -u(\Delta \rho - \rho \rho^t) \),

and consequently

\(K^* = u^* K + 2(n-1)u \Delta u - n(n-1)u \rho \rho^t \),

\(G^*_{ji} = G_{ji} + (n-2)P_{ji} \),

\(Z^*_{kji} = Z_{kji} + Q_{kji} \)

and

\(W^*_{kji} = W_{kji} + \{a + (n-2)b\} Q_{kji} \),

where

\(P_{ji} = u^{-1}(V_j u_i - \frac{1}{n} \Delta u g_{ji}) \),

\(Q_{kji} = \delta_k^j P_{ji} - \delta_k^j P_{kj} + P_{k}^h g_{ji} - P_{j}^h g_{ki} \)

and

\(P_j^h = P_{ji} g_{ih} \).

From (2.16) and (2.17), we obtain

\(P_{ji} P_{ji} = u^{-1} \{(V_j u_i)(V_j u_i) - \frac{1}{n} (\Delta u)^2 \} \)

and

\(Q_{kji} Q_{kji} = 4(n-2)P_{ji} P_{ji} \)

respectively.

We also have, from (2.13), (2.14) and (2.15),

\(G^*_{ji} G^*_{ji} = u^* \{G_{ji} G_{ji} + 2(n-2)G_{ji} P_{ji} + (n-2)^2 P_{ji} P_{ji} \} \),

\(Z^*_{kji} Z^*_{kji} = u^* \{Z_{kji} Z_{kji} + 8G_{ji} P_{ji} + 4(n-2)P_{ji} P_{ji} \} \)

and

\(W^*_{kji} W^*_{kji} = u^* \{W_{kji} W_{kji} + 8 \{a + (n-2)b\} G_{ji} P_{ji} + 4(n-2)\{a + (n-2)b\} G_{ji} P_{ji} \} \)

respectively. For the expression \(G_{ji} P_{ji} \) in (2.20), (2.21) and (2.22), we have, from (2.16),
For a vector field ν^h on a compact orientable Riemannian manifold (M, g), we have

\begin{equation}
\int_M \left(G^{ji} \nabla_j \nu^h + K^i \nu^h + \frac{n-2}{n} \nu^h \nabla_i \nu^j \right) \nu_h dV
\end{equation}

Proof. By a straightforward computation, we have

\begin{align*}
G^{ji} \nabla_j \nu^h + K^i \nu^h + &\frac{n-2}{n} \nu^h \nabla_i \nu^j \\
= &\left(G^{ji} \nabla_j \nu^h + K^i \nu^h + \frac{n-2}{n} \nu^h \nabla_i \nu^j \right) \nu_h \\
+ &\frac{1}{2} \left(\nabla_j \nu^i + \nabla_i \nu^j - \frac{2}{n} \nu^i \nabla_j g_{ij} \right) \\
\times &\left(\nabla_j \nu^i + \nabla_i \nu^j - \frac{2}{n} \nu^i \nabla_j g_{ij} \right),
\end{align*}

and consequently, integrating over M, we have \(\text{(3.1)} \).

Remark. If a vector field ν^h defines an infinitesimal conformal transformation, then we have

\begin{equation}
L_\nu g_{ij} = 2 \rho g_{ij},
\end{equation}

that is,

\begin{equation}
\nabla_j \nu_i + \nabla_i \nu_j - \frac{2}{n} \nu^i \nabla_j g_{ij} = 0.
\end{equation}

From this, we can deduce

\begin{equation}
G^{ji} \nabla_j \nu^h + K^i \nu^h + \frac{n-2}{n} \nu^h \nabla_i \nu^j = 0.
\end{equation}

Formula \(\text{(3.1)} \) shows that this is not only necessary but also sufficient in order that the vector field ν^h defines an infinitesimal conformal transformation in a compact orientable Riemannian manifold.

Lemma 2 (Yano [10]). For a function u on a compact orientable Riemannian manifold (M, g), we have

\begin{equation}
G^{ji} \nabla_j u = u^{-1} G_{ji} \nabla^j u,
\end{equation}

where $\nabla^i = g^{ij} \nabla_j$.
\begin{align}
\int_M (g^{ij} \nabla_i u^j + K_{ij}^+ u_i + \frac{n-2}{n} \nabla^h Au) u_h dV \\
+ 2\int_M (\nabla_i u^i - \frac{1}{n} \Delta u g^{ij}) (\nabla_j u_i - \frac{1}{n} \Delta u g_{ji}) dV = 0
\end{align}

and
\begin{align}
\int_M \left\{ (g^{ij} \nabla_i u^j + K_{ij}^+ u_i) u_h - \frac{n-2}{n} (\Delta u)^2 \right\} dV \\
+ 2\int_M (\nabla_i u^i - \frac{1}{n} \Delta u g^{ij}) (\nabla_j u_i - \frac{1}{n} \Delta u g_{ji}) dV = 0,
\end{align}

where $u_i = \nabla_i u$, $u^h = u_i g^{ih}$ and $\Delta u = g^{ij} \nabla_j \nabla_i u$.

Proof. Putting $v^h = u^h$ in (3.1) and using $\nabla_j u^i = \nabla^i u^j$, we obtain (3.3). (3.4) follows from (3.3) because of
\begin{align}
\int_M (\nabla_i \Delta u) u_i dV = -\int_M (\Delta u)^2 dV.
\end{align}

Lemma 3 (Yano [10]). For a function u on a Riemannian manifold (M, g), we have
\begin{align}
\nabla^h \Delta u = g^{ij} \nabla_j u^i - K_{ij}^+ u^i,
\end{align}
that is,
\begin{align}
g^{ij} \nabla_j \nabla_i u = \nabla^h \Delta u + K_{ij}^+ u^i.
\end{align}

Proof. We have
\begin{align}
\nabla^h (\Delta u) &= \nabla^h (g^{ij} \nabla_j u_i) = g^{ij} \nabla^h \nabla_j u_i \\
&= g^{ij} (\nabla_j u_i - K_{ij}^+ u_i) \\
&= g^{ij} \nabla_j \nabla_i u - K_{ij}^+ u_i,
\end{align}
from which (3.5) follows.

Lemma 4. For a function u on a compact orientable Riemannian manifold (M, g), we have
\begin{align}
\int_M (K_{ij} u^i u^j + \frac{n-1}{n} u^h \nabla_h \Delta u) dV \\
+ \int_M (\nabla_i u^i - \frac{1}{n} \Delta u g^{ij}) (\nabla_j u_i - \frac{1}{n} \Delta u g_{ji}) dV = 0
\end{align}

and
\begin{align}
\int_M \left\{ K_{ij} u^i u^j - \frac{n-1}{n} (\Delta u)^2 \right\} dV \\
+ \int_M (\nabla_i u^i - \frac{1}{n} \Delta u g^{ij}) (\nabla_j u_i - \frac{1}{n} \Delta u g_{ji}) dV = 0.
\end{align}
Proof. Substituting (3.6) into (3.3), we have (3.7), and substituting (3.6) into (3.4), we have (3.8).

Lemma 5. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) admits a conformal change of metric \(g^* = e^{2p}g\), then, for any real number \(p\), we have

\[
\int_M u^{p-1} G_{ji} u^i u^j dV
+ (p+n-2) \int_M u^{p-2}(\nabla_i u_i) u^i u^j dV + \frac{1}{2n} \int_M (u^{p-1} L_{du} K^* - u^p L_{du} K) dV
\]

\[
- \frac{p+n-2}{2} \int_M u^{p-2}(u_i u^i) dV - \frac{p+n-2}{2n(n-1)} \int_M u^{p-2} u_i u_i K dV
\]

\[
+ \frac{p+n-2}{2n(n-1)} \int_M u^{p-1} u_i u_i K dV + \int_M u^{p+1} P_{ji} P^i dV = 0
\]

and

\[
\int_M u^{p-1} K_{ji} u^i u^j dV
+ \frac{p+n-2}{n} \int_M u^{p-1} \langle \nabla_i u_i \rangle dV + \frac{p-1}{n(n-1)} \int_M u^{p-2} u_i u_i K dV
\]

\[
- \frac{p-1}{2n(n-1)} \int_M (u^{p-1} L_{du} K^* - u^p L_{du} K) dV + \int_M u^{p+1} P_{ji} P^i dV = 0
\]

In particular, if \(p = -n+2\) then

\[
\int_M u^{-n+1} G_{ji} u^i u^j dV
+ \frac{1}{2n} \int_M (u^{-n} L_{du} K^* - u^{-n+2} L_{du} K) dV + \int_M u^{-n+3} P_{ji} P^i dV = 0
\]

and if \(p = 1\) then

\[
\int_M K_{ji} u^i u^j dV - \frac{1}{n} \int_M (\Delta u)^2 dV + \int_M u^2 P_{ji} P^i dV = 0
\]

and

\[
\int_M K_{ji} u^i u^j dV + \frac{n-1}{n} \int_M u^i \nabla_i (\Delta u) dV + \int_M u^2 P_{ji} P^i dV = 0
\]
Proof. We first have
\[
\mathcal{F}_j(u^{p-1}u_i\mathcal{F}^{j}u^i) = (p-1)u^{p-2}(\mathcal{F}^i u^i)u_j u_i + u^{p-1}(\mathcal{F}_j u_i)(\mathcal{F}^j u^i) + u^{p-1}u_i \mathcal{F}_j \mathcal{F}^i u^i
\]
\[
= (p-1)u^{p-2}(\mathcal{F}^i u^i)u_j u_i + u^{p-1}(\mathcal{F}_j u_i)(\mathcal{F}^j u^i)
+ u^{p-1}K_{ji}u^j u^i + u^{p-1}u_i \mathcal{F}^i (\Delta u),
\]
where we have used (3.6), that is,
\[
\mathcal{F}_j \mathcal{F}^i u^i = K_{ji}u^i + \mathcal{F}^i \Delta u,
\]
and consequently, integrating over \(M \), we have
\[
\int_M u^{p-1}(\mathcal{F}_j u_i)(\mathcal{F}^j u^i)dV + (p-1)\int_M u^{p-2}(\mathcal{F}^i u^i)u_j u_i dV
+ \int_M u^{p-1}K_{ji}u^j u^i dV
+ \int_M u^{p-1}u_i \mathcal{F}^i (\Delta u)dV = 0.
\]
Similarly, computing \(\mathcal{F}_i(u^{p-1}u^i \Delta u) \) and integrating over \(M \), we have
\[
(p-1)\int_M u^{p-2}u_i u^i \Delta u dV + \int_M u^{p-1}(\Delta u)^2 dV
+ \int_M u^{p-1}u^i \mathcal{F}_i (\Delta u)dV = 0.
\]
By using (2.18), (3.15) and (3.16), we get
\[
\int_M u^{p+1}P_{ji}P^{j}dV = \int_M u^{p-1}(\mathcal{F}_j u_i)(\mathcal{F}^j u^i)dV - \frac{1}{n} \int_M u^{p-1}(\Delta u)^2 dV
- (p-1)\int_M u^{p-2}(\mathcal{F}^i u^i)u_j u_i dV - \int_M u^{p-1}K_{ji}u^j u^i dV
+ \frac{p-1}{n} \int_M u^{p-2}u_i u^i \Delta u dV - \frac{n-1}{n} \int_M u^{p-1}u^i \mathcal{F}_i (\Delta u)dV.
\]
On the other hand, from (2.12), we have
\[
\Delta u = \frac{1}{2(n-1)}(u^{-1}K^* - uK) + \frac{n}{2}u^{-1}u_i u^i,
\]
from which
\[
\mathcal{F}_i(\Delta u) = -\frac{1}{2(n-1)}(u^{-2}u^i K^* + u_i K) + \frac{1}{2(n-1)}(u^{-1}\mathcal{F}_i K^* - u\mathcal{F}_i K)
- \frac{n}{2}u^{-2}u_i u^i u^i + nu^{-1}(\mathcal{F}_i u_i)u^i.
\]
Substituting (3.18) and (3.19) into (3.17) and using
\[
K_{ji} = G_{ji} + \frac{K}{n}g_{ji},
\]
we have (3.9).

Substituting
\[u^{p-2}u_i u^i K^* = 2(n-1)u^{p-2}u_i u^i \Delta u - n(n-1)u^{p-3}(u_i u^i)^2 + u^{p-1}u_i u^i K \]
which can be obtained from (3.18) into
\[
\int_M u^{p-1}u^i \Phi_i(\Delta u) dV = n\int_M u^{p-2}(\Phi_j u_i) u^j u^i dV - \frac{1}{2(n-1)} \int_M u^{p-1}u_i u^i K dV + \frac{1}{2(n-1)} \int_M (u^{p-2}L_{\Delta u} K^* - u^p L_{\Delta u} K) dV - \frac{n}{2} \int_M u^{p-2}(u_i u^i)^2 dV
\]
which follows from (3.19), we have
\[
\int_M u^{p-1}u^i \Phi_i(\Delta u) dV = n\int_M u^{p-2}(\Phi_j u_i) u^j u^i dV - \frac{1}{n-1} \int_M u^{p-1}u_i u^i K dV + \frac{1}{2(n-1)} \int_M (u^{p-2}L_{\Delta u} K^* - u^p L_{\Delta u} K) dV,
\]
and consequently, by using
\[
(3.20) \quad \int_M u^{p-1}u^i \Phi_i(\Delta u) dV = -(p-1)\int_M u^{p-2}u_i u^i \Delta u dV - \int_M u^{p-1}(\Delta u)^2 dV
\]
which is equivalent to (3.16), we obtain
\[
(3.21) \quad \int_M u^{p-2}(\Phi_j u_i) u^j u^i dV = -\frac{p-2}{n} \int_M u^{p-2}u_i u^i \Delta u dV - \frac{1}{n} \int_M u^{p-1}(\Delta u)^2 dV + \frac{1}{n(n-1)} \int_M u^{p-1}u_i u^i K dV
\]
and
\[
\int_M u^{p-2}(\Phi_j u_i) u^j u^i dV = -\frac{p-2}{n} \int_M u^{p-2}u_i u^i \Delta u dV - \frac{1}{n} \int_M u^{p-1}(\Delta u)^2 dV + \frac{1}{n(n-1)} \int_M u^{p-1}u_i u^i K dV - \frac{1}{2n(n-1)} \int_M (u^{p-2}L_{\Delta u} K^* - u^p L_{\Delta u} K) dV.
\]
Substituting (3.20) and (3.21) into (3.17), we get (3.10). From (3.16) and (3.20), we have (3.11) immediately.

Lemma 6. If a compact orientable Riemannian manifold \((M, g)\) admits a conformal change of metric \(g^* = e^{2p}g\), then, for any real number \(p\),
\[
(3.22) \quad \int_M (u^{p-2}G*_{ji}G*_{ji} - u^{p+1}G_{ji}G_{ji}) dV
+ 2(n-2)p \int_M u^{p-1}G_{ji} u^j u^i dV + \frac{(n-2)}{n} \int_M u^p L_{\Delta u} K dV
- (n-2)^2 \int_M u^{p+1}P_{ji} P^{ji} dV = 0.
\]
30 KENTARO YANO AND HITOSI HIRAMATU

In particular, if \(p = -n + 2 \) then

\[
\int_M (u^{-n} G^*_{ij} G^{*ij} - u^{-n+3} G^*_{ij} G^{ij}) dV
- 2(n-2) \int_M u^{-n+3} G^*_{ij} u^i u^j dV + \frac{(n-2)^2}{n} \int_M u^{-n+3} L_{a\kappa} K dV
- (n-2)^2 \int_M u^{-n+3} P_{ij} P^{ij} dV = 0,
\]

and if \(p = 0 \) then

\[
\int_M (u^{-3} G^*_{ij} G^{*ij} - u G^*_{ij} G^{ij}) dV
+ \frac{(n-2)^2}{n} \int_M L_{a\kappa} K dV - (n-2)^2 \int_M u P_{ij} P^{ij} dV = 0.
\]

Proof. Using (2.20) and (2.23), we have

\[
\int_M (u^{-3} G^*_{ij} G^{*ij} - u G^*_{ij} G^{ij}) dV
= 2(n-2) \int_M u^p G^*_{ij} P^i u^j dV + (n-2)^2 \int_M u^{p+i} P^{ij} dV.
\]

On the other hand, calculating \(P^i(u^p G^*_{ij} u^j) \) and using

\[P^i G_{ij} = \frac{n-2}{2n} P_i K, \]

we have

\[P^i(u^p G^*_{ij} u^j) = p u^{p-1} G^*_{ij} u^i u^j + \frac{n-2}{2n} u^p u^i P_i K + u^p G_{ij} P^j u^i, \]

and consequently, integrating over \(M \), we have

\[
\int_M u^p G_{ij} P^i u^j dV = -p \int_M u^{p-1} G_{ij} u^i u^j dV - \frac{n-2}{2n} \int_M u^p u^i P_i K dV.
\]

Substituting this into (3.25), we have (3.22) to be proved.

Lemma 7. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n \geq 2 \) admits a conformal change of metric \(g^* = e^{2\phi} g \), then

\[
\int_M (u^{-n-1} G^*_{ij} G^{*ij} - u^{-n+3} G^*_{ij} G^{ij}) dV
+ \frac{(n-2)^2}{n} \int_M u^{-n} L_{a\kappa} K^* dV + (n-2)^2 \int_M u^{-n+1} P_{ij} P^{ij} dV = 0.
\]

Proof. Adding (3.12) \(\times 2(n-2)^2 \) and (3.23), we have (3.27).

Lemma 8. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n \geq 2 \) admits a conformal change of metric \(g^* = e^{2\phi} g \), then, for any real number \(p \),
\[(3.28) \int_M (u^{p-1} Z^{k_i h}_j - u^{p+1} Z^{k_j h}_i) dV + 8p \int_M u^{p-1} G_{ji} u'^j u^i dV + \frac{4(n-2)}{n} \int_M u^p L_{du} K dV
- 4(n-2) \int_M u^{p+1} P_{ji} P^{ji} dV = 0. \]

In particular, if \(p = -n+2 \) then
\[(3.29) \int_M (u^{-n+1} Z^{k_i h}_j - u^{-n+3} Z^{k_j h}_i) dV - 8(n-2) \int_M u^{-n+1} G_{ji} u'^j u^i dV + \frac{4(n-2)}{n} \int_M u^{-n+2} L_{du} K dV
- 4(n-2) \int_M u^{-n+3} P_{ji} P^{ji} dV = 0, \]

and if \(p = 0 \) then
\[(3.30) \int_M (u^{-n} Z^{k_i h}_j - u Z^{k_j h}_i) dV + \frac{4(n-2)}{n} \int_M L_{du} K dV - 4(n-2) \int_M u P_{ji} P^{ji} dV = 0. \]

Proof. Using (2.21) and (2.23), we have
\[(3.31) \int_M (u^{p-1} Z^{k_i h}_j - u^{p+1} Z^{k_j h}_i) dV
- 8 \int_M u^p G_{ji} u'^j u^i dV - 4(n-2) \int_M u^{p+1} P_{ji} P^{ji} dV = 0. \]
Substituting (3.26) into (3.31), we have (3.28).

Lemma 9. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) admits a conformal change of metric \(g^* = e^{2p} g\), then
\[(3.32) \int_M (u^{-n+1} Z^{k_i h}_j - u^{-n+3} Z^{k_j h}_i) dV + \frac{4(n-2)}{n} \int_M u^{-n} L_{du} K dV + 4(n-2) \int_M u^{-n+3} P_{ji} P^{ji} dV = 0. \]

Proof. (3.32) follows from (3.12) and (3.29).

Lemma 10. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) admits a conformal change of metric \(g^* = e^{2p} g\), then, for any real number \(p\),
\[(3.33) \int_M (u^{p-1} W^{k_i h}_j - u^{p+1} W^{k_j h}_i) dV
+ 8 \{a + (n-2)b\} \int_M u^{p-1} G_{ji} u'^j u^i dV \]
In particular, if $p = -n+2$ then

$$
\int_M \left(u^{-n+1} W_{kjth} W_{kjth} - u^{-n+3} W_{kjth} W_{kjth} \right) dV
- 8(n-2) \{ a + (n-2)b \} \int_M u^{-n+1} G_{ji} u^i u^j dV
+ \frac{4(n-2)}{n} \{ a + (n-2)b \} \int_M u^{-n+2} L du K dV
- 4(n-2) \{ a + (n-2)b \} \int_M u^{-n+1} P_{ji} P_{ji} dV = 0,
$$

and if $p = 0$ then

$$
\int_M \left(u^{-2} W_{kjth} W_{kjth} - u W_{kjth} W_{kjth} \right) dV
+ \frac{4(n-2)}{n} \{ a + (n-2)b \} \int_M L du K dV
- 4(n-2) \{ a + (n-2)b \} \int_M u P_{ji} P_{ji} dV = 0.
$$

Proof. Using (2.22) and (2.23), we have

$$
\int_M \left(u^{p-3} W_{kjth} W_{kjth} - u^{p+1} W_{kjth} W_{kjth} \right) dV
- 8 \{ a + (n-2)b \} \int_M u^p G_{ji} P_{ji} u^i dV
- 4(n-2) \{ a + (n-2)b \} \int_M u^{p+1} P_{ji} P_{ji} dV = 0.
$$

Substituting (3.26) into (3.36), we have (3.33).

Lemma 11. If a compact orientable Riemannian manifold (M, g) of dimension $n \geq 2$ admits a conformal change of metric $g^* = e^{2\phi} g$, then

$$
\int_M \left(u^{-n+1} W_{kjth} W_{kjth} - u^{-n+3} W_{kjth} W_{kjth} \right) dV
+ \frac{4(n-2)}{n} \{ a + (n-2)b \} \int_M u^{-n} L du K^* dV
+ 4(n-2) \{ a + (n-2)b \} \int_M u^{-n+3} P_{ji} P_{ji} dV = 0.
$$

Proof. (3.37) follows from (3.12) and (3.34).
Lemma 12. Suppose that a Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) admits a conformal change of metric \(g^* = e^{2\phi}g\) and \(f\) and \(f^*\) are non-negative functions on \(M\) such that

\[
 u^pf = \{u^q + (u^r - 1)\phi\}f^*,
\]

where \(p\) is a real number such that \(p \leq 4\), and \(q\) and \(r\) non-negative numbers and \(\phi\) a non-negative function on \(M\). Then

\[
 (u^{-n-1}f^* - u^{-n+3}f) - (u^{-p}f^* - uf) \geq 0.
\]

Proof. We have

\[
 (u^{-n-1}f^* - u^{-n+3}f) - (u^{-p}f^* - uf) = u^{-n-1}(1-u^{n-5})(f^* - uf).
\]

We can easily prove that

\[
 (1-u^{n-5})(1-u^p) \geq 0, \quad (1-u^{n-3})(1-u^r) \geq 0, \quad (1-u^{n-5})(1-u^r) \geq 0,
\]

and consequently that (3.39) holds.

§ 4. **Propositions.**

Proposition 1. If a compact Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) admits a non-constant function \(u\) on \(M\), then

\[
 (\nabla_j u_i)(\nabla^j u^i) \geq \frac{1}{n} (Du)^2,
\]

equality holding if and only if \((M, g)\) is conformal to a sphere. If moreover \(L_{du}K = 0\) or \(K = \text{constant}\), then the equality holds if and only if \((M, g)\) is isometric to a sphere.

Proof. (4.1) is equivalent to

\[
 (\nabla_j u_i - \frac{1}{n} Du g_{ji})(\nabla^j u^i - \frac{1}{n} Du g^{ji}) \geq 0,
\]

and consequently equality in (4.1) holds if and only if

\[
 \nabla_j u_i - \frac{1}{n} Du g_{ji} = 0,
\]

that is, by Theorem O, if and only if \((M, g)\) is conformal to a sphere. The latter part of this proposition follows from Theorem P.
PROPOSITION 2. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) admits a non-constant function \(u\) on \(M\) such that
\[
K^i_i u^i + \frac{n-1}{n} F^h \Delta u = 0,
\]
then \((M, g)\) is conformal to a sphere. If moreover \(L_{du}K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.

Proof. From (3.5), we have
\[
g^{ij} P_j u^i - K^i_i u^i - F^h \Delta u = 0.
\]
Adding (4.2) \(\times 2\) and this relation, we have
\[
g^{ij} P_j u^i + K^i_i u^i + \frac{n-2}{n} F^h \Delta u = 0.
\]
Thus, by the Remark to Lemma 1, we see that the vector field \(u^h\) on \(M\) defines an infinitesimal conformal transformation and consequently that
\[
P_j u^i - \frac{1}{n} \Delta u g_{ji} = 0.
\]
Thus, by Theorem O, \((M, g)\) is conformal to a sphere. The latter part of the proposition follows from Theorem P.

PROPOSITION 3. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) admits a non-homothetic conformal change of metric \(g^* = e^{2\varphi} g\) such that
\[
K^i_i u^i + \frac{n-1}{n} F^h \Delta u = 0,
\]
then \((M, g)\) is conformal to a sphere. If moreover \(L_{du}K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.

Proof. This is an immediate consequence of Proposition 2. But, an another proof is as follows. From (3.14) and (4.2), we have \(P_{ji} = 0\), that is,
\[
P_j u^i - \frac{1}{n} \Delta u g_{ji} = 0,
\]
and consequently, by Theorem O, \((M, g)\) is conformal to a sphere. The latter part of the proposition follows from Theorem P.

PROPOSITION 4. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) admits a non-constant function \(u\) on \(M\) such that
\[
\int_M K^j_j u^j u^i dV \geq \frac{n-1}{n} \int_M (\Delta u)^2 dV,
\]
then \((M, g)\) is conformal to a sphere. If moreover \(L_{du}K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.
Proof. From (3.8) and (4.3), we have
\[\nabla_j u_i - \frac{1}{n} \Delta u g_{ji} = 0, \]
and consequently, by Theorem O, \((M, g)\) is conformal to a sphere. The latter part of the proposition follows from Theorem P.

Proposition 5. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) admits a non-homothetic conformal change of metric \(g^* = e^{2\phi} g\) such that
\[\int_M K_{ji} u^i u^j dV \geq \frac{n-1}{n} \int_M (\Delta u)^2 dV, \]
then \((M, g)\) is conformal to a sphere. If moreover \(L_{au}K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.

Proof. This is an immediate consequence of Proposition above. But, we can give an another proof. From (3.13) and the above relation, we find \(P_{ji} = 0\), that is,
\[\nabla_j u_i - \frac{1}{n} \Delta u g_{ji} = 0, \]
and consequently, by Theorem O, \((M, g)\) is conformal to a sphere. The latter part of the proposition follows from Theorem P.

(For Propositions 2~5, see Yano and Hiramatu [12].)

Proposition 6. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) admits a non-homothetic conformal change of metric \(g^* = e^{2\phi} g\) such that
\[\int_M u^{-n+1} G_{ji} u^i u^j dV + \frac{1}{2n} \int_M (u^{-n} L_{au} K^* - u^{-n+2} L_{au} K) dV \geq 0, \]
then \((M, g)\) is conformal to a sphere. If moreover \(L_{au}K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.

Proof. By using (3.12) and (4.4), we have \(P_{ji} = 0\), that is,
\[\nabla_j u_i - \frac{1}{n} \Delta u g_{ji} = 0, \]
and consequently, by Theorem O, \((M, g)\) is conformal to a sphere. We have the latter part of the proposition by Theorem P.

The latter part of the proposition above is a generalization of Theorems A and H.

Proposition 7. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n > 2\) admits a non-homothetic conformal change of metric \(g^* = e^{2\phi} g\) such that
\(\int_M \left(u^{n-3} G^{*j} G^{*j} - u G^{*j} G^{*j} \right) dV + \frac{(n-2)^2}{n} \int_M L_{d_u} K dV \leq 0, \)

then \((M, g)\) is conformal to a sphere. If moreover \(L_{d_u} K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.

Proof. By using (3.24) and (4.5), we have \(P_j = 0 \), that is,

\[\sum_{j} \Delta u \chi_j = 0, \]

and consequently, by Theorem O, \((M, g)\) is conformal to a sphere. Using Theorem P, we can prove the latter part of the proposition.

The first part of Proposition 7 is a generalization of Theorem B because of

\[\int_M (\Delta u) K dV = -\int_M L_{d_u} K dV, \]

and the latter part a generalization of Theorem C.

Proposition 8. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n > 2\) admits a non-homothetic conformal change of metric \(g^* = e^{\varphi} g\) such that

\[\int_M \left(u^{n-3} G^{*j} G^{*j} - u G^{*j} G^{*j} \right) dV + \frac{(n-2)^2}{n} \int_M u^{-n} L_{d_u} K^* dV \geq 0, \]

then \((M, g)\) is conformal to a sphere. If moreover \(L_{d_u} K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.

Proof. This follows from (3.27) and Theorems O and P.

Proposition 9. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n > 2\) admits a non-homothetic conformal change of metric \(g^* = e^{\varphi} g\) such that

\[\int_M \left(u^{-3} Z^{*k} Z^{*k} - u Z^{*j} Z^{*j} \right) dV + \frac{4(n-2)}{n} \int_M u^{-n} L_{d_u} K^* dV \leq 0, \]

then \((M, g)\) is conformal to a sphere. If moreover \(L_{d_u} K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.

Proof. This follows from (3.30) and Theorems O and P.

The first part of this proposition is a generalization of Theorem D and the latter part is a generalization of Theorem E.

Proposition 10. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n > 2\) admits a non-homothetic conformal change of metric \(g^* = e^{\varphi} g\) such that

\[\int_M \left(u^{-n-1} Z^{*k} Z^{*k} - u^{-n+3} Z^{*j} Z^{*j} \right) dV + \frac{4(n-2)}{n} \int_M u^{-n} L_{d_u} K^* dV \geq 0, \]
then \((M, g)\) is conformal to a sphere. If moreover \(L_{da}K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.

Proof. This follows from (3.32) and Theorems O and P.

Proposition 11. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n > 2\) admits a non-homothetic conformal change of metric \(g^* = e^{2u}g\) such that

\[
\int_M (u^{-n} W^*_{k,j} W^*_{k,j} - u W^*_{k,j} W^*_{k,j}) dV
+ \frac{4(n-2)}{n} \{a + (n-2)b\}^2 \int_M L_{da}K dV \leq 0
\]

then \((M, g)\) is conformal to a sphere. If moreover \(L_{da}K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.

Proof. This follows from (3.35) and Theorems O and P.

The first part of Proposition 11 generalizes Theorem F and the latter part generalizes Theorem G.

Proposition 12. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n > 2\) admits a non-homothetic conformal change of metric \(g^* = e^{2u}g\) such that

\[
\int_M (u^{-n-2} W^*_{k,j} W^*_{k,j} - u^{-n+3} W^*_{k,j} W^*_{k,j}) dV
+ \frac{4(n-2)}{n} \{a + (n-2)b\}^2 \int_M u^{-n} L_{da}K^* dV \geq 0
\]

then \((M, g)\) is conformal to a sphere. If moreover \(L_{da}K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.

Proof. This follows from (3.37) and Theorems O and P.

Proposition 13. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n > 2\) admits a non-homothetic conformal change of metric \(g^* = e^{2u}g\) such that

\[
u_p G_{ji} = \{u^q + (u^p-1)\varphi\} G^{*}_{ji} G^{*}_{ji}
\]

and

\[
\int_M (u^{-n} L_{da}K^* - L_{da}K) dV \geq 0
\]

where \(p\) is a real number such that \(p \leq 4\), \(q\) and \(r\) non-negative numbers and \(\varphi\) a
non-negative function on M, then (M, g) is conformal to a sphere. If moreover $L_{du}K=0$ or $K=\text{constant}$, then (M, g) is isometric to a sphere.

Proof. Subtracting (3.24) from (3.27), we obtain

\begin{equation}
\int_M \left\{ \left(u^{n-1}G_{ji}G^{*ji} - u^{-n+3}G_{ji}G^{ji} \right) - \left(u^{-3}G_{ji}G^{*ji} - uG_{ji}G^{ji} \right) \right\} dV \\
\quad + \frac{(n-2)^2}{n} \int_M (u^nL_{du}K* - L_{du}K) dV \\
\quad + (n-2)^2 \int_M (u^{-n} + u) P_{ji}P^{ji} dV = 0.
\end{equation}

By Lemma 12, from (4.11), (4.12) and (4.13), we have $P_{ji} = 0$, that is,

$$P_{ji} = -\frac{1}{n} f_{ij} = 0$$

and consequently, by Theorem O, (M, g) is conformal to a sphere. By using Theorem P, we can prove the latter part of this proposition.

The latter part of Proposition 13 is a generalization of Theorem L.

Corollary 1. If a compact orientable Riemannian manifold (M, g) of dimension $n>2$ admits a non-homothetic conformal change of metric $g^* = e^{2p}g$ such that

\begin{equation}
G_{ji}G^{*ji} = G_{ji}G^{*ji}
\end{equation}

and

$$\int_M (u^{-n}L_{du}K* - L_{du}K) dV \geq 0,$$

then (M, g) is conformal to a sphere. If moreover $L_{du}K = 0$ or $K = \text{constant}$, then (M, g) is isometric to a sphere.

Proof. Putting $p=q=r=0$ in (4.11), we have (4.14), and consequently this corollary follows immediately from Proposition 13.

The latter part of this corollary is a generalization of Theorem I.

Proposition 14. If a compact orientable Riemannian manifold (M, g) of dimension $n>2$ admits a non-homothetic conformal change of metric $g^* = e^{2p}g$ such that

\begin{equation}
u^p Z_{kjsh}Z^{*kjsh} = \{u^p + (u^r - 1)\varphi\} Z_{kjsh}Z^{*kjsh}
\end{equation}

and

$$\int_M (u^{-n}L_{du}K* - L_{du}K) dV \geq 0,$$

where p, q, r and φ are the same as in Proposition 13, then (M, g) is conformal to a sphere. If moreover $L_{du}K = 0$ or $K = \text{constant}$, then (M, g) is isometric to a
sphere.

Proof. Subtracting (3.30) from (3.32), we have

\begin{equation}
(4.16)\quad \int_M \left((u^{-n+1} Z_{kfl} Z_{k^{jfl}} - u^{-n+1} Z_{jfl} Z^{k^{jfl}})
- (u^{-3} Z_{kfl} Z_{k^{jfl}} - u Z_{jfl} Z^{k^{jfl}}) \right) dV
\end{equation}

\[+ \frac{4(n-2)}{n} \int_M (u^{-n} L_d K^* - L_d u K) dV \]

\[+ 4(n-2) \int_M (u^{-n+3} + u) P_{ji} P_{ji} dV = 0. \]

Using Lemma 12, (4.12), (4.15) and (4.16), we have \(P^i = 0 \), that is,

\[\nabla_j u_i - \frac{1}{n} \Delta u g_{ji} = 0, \]

and consequently, by Theorem O, \((M, g)\) is conformal to a sphere. By using Theorem P, we can prove the latter part of the proposition.

The latter part of Proposition 14 is a generalization of Theorem M.

COROLLARY 2. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n > 2\) admits a non-homothetic conformal change of metric \(g^* = e^{2\varphi} g\) such that

\begin{equation}
(4.17)\quad Z_{kfl} Z_{k^{jfl}} = Z_{jfl} Z^{k^{jfl}}
\end{equation}

and

\[\int_M (u^{-n} L_d K^* - L_d u K) dV \geq 0, \]

then \((M, g)\) is conformal to a sphere. If moreover \(L_d K = 0\) or \(K = \text{constant}\), then \((M, g)\) is isometric to a sphere.

Proof. Putting \(p = q = r = 0\) in (4.15), we get (4.17), and consequently Corollary 2 follows immediately from Proposition 14.

The latter part of Corollary 2 generalizes Theorem J.

PROPOSITION 15. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n > 2\) admits a non-homothetic conformal change of metric \(g^* = e^{2\varphi} g\) such that

\begin{equation}
(4.18)\quad u^p W_{kfl} W_{k^{jfl}} = \{u^q + (u^r - 1) \varphi\} W_{kfl} W_{k^{jfl}},
\end{equation}

\[a + (n-2)b \neq 0 \]

and

\[\int_M (u^{-n} L_d K^* - L_d u K) dV \geq 0, \]
where \(p, q, r \) and \(\varphi \) are the same as in Proposition 13, then \((M, g)\) is conformal to a sphere. If moreover \(L_{du}K=0 \) or \(K=\text{constant} \), then \((M, g)\) is isometric to a sphere.

Proof. Subtracting (3.35) from (3.37), we have

\[
(4.19) \quad \int_M \left((u-^{n-1}W^*_{kjih}W^{kjih} - u^{-n+3}W_{kjih}W^{kjih}) \right. \\
- (u^{-3}W^*_{kjih}W^{kjih} - uW_{kjih}W^{kjih}) \left) dV \\
+ \frac{4(n-2)}{n} \left\{ a + (n-2)b \right\} \int_M (u^{-n}L_{du}K* - L_{du}K) dV \\
+ 4(n-2) \left\{ a + (n-2)b \right\} \int_M (u^{-n}+u) P_jP^j dV = 0.
\]

By using Lemma 12, from (4.12), (4.18) and (4.19), we have \(P_{ji}=0 \), that is,

\[
P_{ji} = 0,
\]

and consequently, by Theorem O, \((M, g)\) is conformal to a sphere. By using Theorem P, we can prove the latter part of Proposition 15.

The latter part of Proposition 15 is a generalization of Theorem N.

COROLLARY 3. If a compact orientable Riemannian manifold \((M, g)\) of dimension \(n>2 \) admits a non-homothetic conformal change of metric \(g*=e^{2\rho}g \) such that

\[
(4.20) \quad W^*_{kjih}W^{kjih} = W_{kjih}W^{kjih}, \quad a + (n-2)b = 0
\]

and

\[
\int_M (u^{-n}L_{du}K* - L_{du}K) dV \geq 0,
\]

then \((M, g)\) is conformal to a sphere. If moreover \(L_{du}K=0 \) or \(K=\text{constant} \), then \((M, g)\) is isometric to a sphere.

Proof. Putting \(p=q=r=0 \) in (4.18), we get (4.20), and consequently Corollary 3 follows immediately from Proposition 15.

The latter part of Corollary 3 is a generalization of Theorem K.

BIBLIOGRAPHY

