ON THE NORMALIZATION OF BI-QUADRATIC FORM

By Masato UENO

(Communicated by Y. Komatsu)

We know that any quadratic form can be normalized by an orthogonal transformation. We now investigate whether a bi-quadratic form may be normalized or not, and if it is possible we attempt to find out what are conditions necessary and sufficient.

Let a bi-quadratic form be given:

\[f(x, y) = \sum_{i+j=k} c_{ij} x_i y_j \]

summation being taken with respect to \(i, j \) and \(k \) and

\[c_{ij} = c_{ji} = c_{ij} \]

being real numbers.

Our present problem is to see that the above form can be transformed into

\[g(x', y') = \sum_{i+j=k} c_{ij} x'_ix'_j \]

by transformations

\[x_i = \sum x'_i \alpha_i \]

where the determinants \(|\alpha_i| \) and \(|\beta_{ij}| \) are both different from zero.

We take the matrix of degree \(n^2 \) of coefficients, of transformation and of the normalized form respectively

\[C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix} \]

\[R = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} \end{pmatrix} \]

\[D = \begin{pmatrix} \varepsilon_1 & 0 & \cdots & 0 \\ 0 & \varepsilon_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \varepsilon_n \end{pmatrix} \]

then it must be

\[R^* C R = D \]

\(R^* \) denoting the complementary matrix of \(R \). In this case \(R \) is the Kronecker products of \(P \) and \(Q \) where \(P = (\alpha_{ij}) \) and \(Q = (\beta_{ij}) \) are respectively \(x_i \)'s and \(y_j \)'s transformation matrices, i.e. \(R = P \times Q \).

Therefore, the problem of normalization of bi-quadratic form is reduced to normalization of matrix.

We next consider that the matrices are divided into \(n^2 \) small matrices of degree \(n \):

\[C_{ab} = \begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nn} \end{pmatrix}, \quad R_{ab} = \begin{pmatrix} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{n1} & \cdots & r_{nn} \end{pmatrix} \]

\[D_{ab} = \begin{pmatrix} \varepsilon_1 & 0 \\ 0 & \varepsilon_2 \end{pmatrix} \]

so that

\[C = \begin{pmatrix} C_{11} & \cdots & C_{nn} \end{pmatrix}, \quad R = \begin{pmatrix} R_{11} & \cdots & R_{nn} \end{pmatrix}, \quad R^* = \begin{pmatrix} R_{11}^* & \cdots & R_{nn}^* \end{pmatrix}, \quad D = \begin{pmatrix} D_{11} & 0 \\ 0 & D_{22} \end{pmatrix} \]

and

\[\begin{pmatrix} R_{11}^* & R_{12}^* \\ R_{21}^* & R_{22}^* \end{pmatrix} \begin{pmatrix} C_{11} & \cdots & C_{nn} \end{pmatrix} \begin{pmatrix} R_{11} & \cdots & R_{nn} \end{pmatrix} \]

\[= \begin{pmatrix} D_{11} & 0 \\ 0 & D_{22} \end{pmatrix} \]

where \(x, y = \sum_{n} \alpha_{ij} x_i y_j \).
It then follows that
\[\sum_{\mu=1}^{n} R_{\mu}^* C_{\mu} R_{\mu} = D, \]
\[= D, \quad (\forall \mu), \]
consequently
\[\sum_{\mu=1}^{n} P_{\mu}^* C_{\mu} P_{\mu} \gamma_{\mu} \gamma_{\mu} \begin{bmatrix} \alpha \end{bmatrix} = \circ, \quad (\forall \mu), \]
\[\sum_{\mu=1}^{n} P_{\mu}^* C_{\mu} P_{\mu} \gamma_{\mu} \gamma_{\mu} = D. \]
Moreover, it becomes
\[P_{\mu}^* C_{\mu} P = F_{\mu}, \quad (1) \]
where F_{μ} is a diagonal matrix for all μ and ν.

Proof. Let the element of lth row and mth column of $P_{\mu}^* C_{\mu} P$ be $x_{l,m}^{l,m}$, then it follows that if $l \neq m$,
\[\sum_{\mu=1}^{n} \gamma_{\mu} \gamma_{\mu} x_{l,m}^{l,m} = \circ \]
for all i and Ψ;
since the determinant of the coefficients $\gamma_{\mu} \gamma_{\mu}$ does not vanish, $x_{l,m}^{l,m}$ must be zero for all μ and ν. In other words, it is necessary that all the C_{μ} are transformed into diagonal matrices by the same matrix P.

Corollary. If several symmetric matrices A, B, C, \ldots, of the same degree are transformed by the same orthogonal matrix into diagonal matrices simultaneously, then A, B, C, \ldots are commutable.

Conversely, if matrices A, B, C, \ldots are commutable then there exists an orthogonal matrix P which transforms all the matrices into diagonal matrices.

Proof. Let P be an orthogonal matrix, $P^* = P^{-1}$, such that
\[P_1^* A P = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}, \quad P_1^* B P = \begin{bmatrix} \beta & 0 \\ 0 & \beta \end{bmatrix}, \quad P_1^* C P = \begin{bmatrix} \gamma & 0 \\ 0 & \gamma \end{bmatrix}, \]
Then, we have
\[P_1^* A P \begin{bmatrix} \beta & 0 \\ 0 & \beta \end{bmatrix} P = P_1^* B P P_1^{-1} A P, \]
that is
\[AB = BA \]
and so on.

Conversely, if $AB = BA$, $AC = CA$, $BC = CB$, then there exists an orthogonal matrix P transforming A into a diagonal matrix:
\[P_1^* A P = \begin{bmatrix} \alpha \end{bmatrix}, \quad (\forall \mu), \]
From the assumption, it must be
\[P_1^* B P = P_1^* B P (\alpha), \]
Without loss of generality we may assume $\alpha = \alpha_1 = \ldots = \alpha_t$, $\alpha = \alpha_r = \ldots = \alpha_t$, and hence $P_1^* B P$ must be of the form
\[\begin{bmatrix} B_1 & B_2 & 0 \\ 0 & \end{bmatrix}, \]
B_1, B_2, \ldots, being of degree t, s, \ldots, respectively. Since B_1, B_2, \ldots are also symmetric, we can take orthogonal matrices P_1, P_2, \ldots, such that
\[P_1^* B_1 P_1 = \begin{bmatrix} \beta_1 & 0 \\ 0 & \beta_2 \end{bmatrix}, \quad P_2^* B_2 P_2 = \begin{bmatrix} \beta_r & 0 \\ 0 & \beta_r \end{bmatrix}, \]
If we put
\[\begin{bmatrix} P_1^* B_1 P_1 & 0 \\ 0 & \end{bmatrix} = Q, \]
then
\[Q_1^* P_1^* B_1 P_1 Q = (\beta_1), \]
and, of course, $Q_1^* P_1^* B_1 P_1 Q = (\alpha)$. If we assume
\[\beta_1 = \beta_1', \beta_2 = \beta_2', \ldots, \beta_r = \beta_r', \ldots, \]
then $Q_1^* P_1^* B_1 P_1 Q$ must be of the form
\[\begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix}, \]
By continuing this operation, all the matrices A, B, C, \ldots can be transformed by the matrix $R = PQ$, into diagonal matrices.

Theorem. A necessary and sufficient condition that the bi-
quadratic form \(f(x, y) \) can be normalized by two orthogonal transformations of \(x \) and \(y \) is

1) \(C_{\mu\nu} \) are mutually commutable;

and

11) \(C'_{\mu\nu} \) are also mutually commutable,

\(C_{\mu\nu} \) being a small matrix of degree \(n \) in the \(\mu \) th row and \(\nu \) th column contained in the coefficient matrix \(C \), and \(C'_{\mu\nu} \) the corresponding one contained in the coefficient matrix \(C' \) whose constitution is as follows:

\[
C' = \begin{pmatrix}
C_{11} & C_{12} & \cdots & C_{1n} \\
C_{21} & C_{22} & \cdots & C_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n1} & C_{n2} & \cdots & C_{nn}
\end{pmatrix}
\]

Proof. It is evident that the condition is necessary. We shall show that it is also sufficient.

In view of i) there exists a matrix \(P \) such that

\[
P^T C_{\mu\nu} P = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\
C_{21} & C_{22} & \cdots & C_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n1} & C_{n2} & \cdots & C_{nn}
\end{pmatrix}
\]

where the \(F_{i\sigma} \) are all diagonal matrices. Now,

\[
F = \begin{pmatrix} F_{11} & \cdots & F_{1n} \\
\vdots & \ddots & \vdots \\
F_{n1} & \cdots & F_{nn}
\end{pmatrix}
\]

can be transformed by a proper orthogonal matrix \(R \) into a matrix of the form

\[
G = \begin{pmatrix} G_1 & 0 \\
0 & G_n
\end{pmatrix}
\]

where \(G_i \) are all symmetric. Let \(G_j = (f_{ij}^{''}) \); \(f_{ij}^{''} \) representing the element of \(i \) th row and \(j \) th column.

If all the \(G_i \) could not be transformed simultaneously by an orthogonal matrix into diagonal matrices, then there exist a pair of matrices \(G_j \) and \(G_j \) being not commutable.

\[
G_j G_j^T \neq G_j G_j^T
\]

It follows

\[
\sum_i f_{ij}^{''} f_{ij}^{''} = \sum_i f_{ij}^{''''} f_{ij}^{''''}
\]

for some \(i, j \).

Since

\[
f_{ij}^{''''} = \sum_{r} p_{ij} C_{\mu\nu} p_{rj}
\]

and so on;

\[
\sum_{r} \left(\sum_{\mu} p_{ij} C_{\mu\nu} p_{rj} \right) (\sum_{\nu} p_{ij} C_{\mu\nu} p_{rj})
\]

that is

\[
\sum_{r} p_{ij} p_{ij} p_{ij} p_{ij} \sum_{\mu} C_{\mu\nu} C_{\mu\nu}
\]

Since \(C_{\mu\nu} = C'_{\mu\nu} \), where \(C'_{\mu\nu} \) is an element of \(i \) th row and \(\mu \) th column of \(C' \), and since \(C'_{\mu\nu} C'_{\mu\nu} = C'_{\mu\nu} C'_{\mu\nu} \), the condition ii) implies that

\[
\sum_{\mu} C_{\mu\nu} C_{\mu\nu} C_{\mu\nu} = \sum_{\mu} C_{\mu\nu} C_{\mu\nu} C_{\mu\nu}
\]

for all \(i, j, k, \mu, \rho, \sigma \).

This contradicts to the above inequality, and the proof is completed.

Example.

\[
f(x, y) = 4 x_1^2 y_1^2 + 9 x_2^2 y_2^2 + 1 x_3^2 y_3^2 + 20 x_1^2 y_1^2 + 11 x_1^2 y_1^2 + 4 x_3^2 y_3^2 + 12 x_2^2 y_2^2 + 27 x_2^2 y_2^2 + 7 x_3^2 y_3^2
\]

- 47 -

\[
\begin{pmatrix}
4 & 2 & -4 \\
2 & 19 & -6 \\
-14 & -16 & 13
\end{pmatrix}, \quad \begin{pmatrix}
20 & -2 & 8 \\
-2 & 11 & 10 \\
8 & 10 & 14
\end{pmatrix}, \quad \begin{pmatrix}
12 & -6 & -18 \\
-6 & 27 & -12 \\
-18 & -12 & 15
\end{pmatrix},
\]

\[
\begin{pmatrix}
-1 & 4 & 8 \\
4 & 7 & 4 \\
8 & 4 & -1
\end{pmatrix}, \quad \begin{pmatrix}
-5 & 8 & 10 \\
8 & -11 & 2 \\
10 & 2 & -2
\end{pmatrix},
\]

\[
\begin{pmatrix}
-5 & 4 & -20 \\
-4 & 13 & -4 \\
20 & -16 & 1
\end{pmatrix}.
\]

These are all commutable each other, and

\[
\begin{pmatrix}
4 & -1 & -5 \\
-1 & 20 & -5 \\
-5 & -5 & 12
\end{pmatrix}, \quad \begin{pmatrix}
-16 & 4 & 2 \\
4 & 10 & -16 \\
2 & -16 & 12
\end{pmatrix}
\]

are also commutable. Therefore, the normalization must be possible. In fact, it takes place as follows: From

\[
\begin{pmatrix}
4 & -1 & -5 \\
2 & 19 & -6 \\
-14 & -16 & 13
\end{pmatrix} = \mathbf{0}, \quad \lambda = \pm 9, \; 36 ;
\]

\[
P = \begin{pmatrix}
\frac{1}{3} & -\frac{1}{2} & \frac{2}{3} \\
\frac{1}{3} & \frac{5}{6} & \frac{1}{3} \\
-\frac{2}{3} & \frac{5}{6} & \frac{1}{3}
\end{pmatrix}.
\]

\[
\lambda = \lambda_1, \lambda_2, \lambda_3 \quad (1 < \lambda_1 < 2, \; 12 < \lambda_2 < 13, \; 22 < \lambda_3 < 23) ;
\]

\[
Q = \begin{pmatrix}
-5\lambda_1 + 105 & -5\lambda_1 + 105 & -5\lambda_1 + 105 \\
(5(7\lambda_1^2 - 192\lambda_1 + 2286) - 2\lambda_1\lambda_2 + 192\lambda_2 - 192\lambda_1^2) & (5(7\lambda_1^2 - 192\lambda_1 + 2286) - 2\lambda_1\lambda_2 + 192\lambda_2 - 192\lambda_1^2) & (5(7\lambda_1^2 - 192\lambda_1 + 2286) - 2\lambda_1\lambda_2 + 192\lambda_2 - 192\lambda_1^2) \\
-5\lambda_1 + 105 & -5\lambda_1 + 105 & -5\lambda_1 + 105 \\
-5\lambda_1 + 105 & -5\lambda_1 + 105 & -5\lambda_1 + 105 \\
\lambda_1^2 - 24\lambda_1 + 77 & \lambda_1^2 - 24\lambda_1 + 77 & \lambda_1^2 - 24\lambda_1 + 77
\end{pmatrix}
\]

\[
\begin{pmatrix}
\mathbf{F}_0(\lambda_1) & \mathbf{F}_2(\lambda_1) & \mathbf{F}_4(\lambda_1) \\
\mathbf{F_0}(\lambda_2) & \mathbf{F}_2(\lambda_2) & \mathbf{F}_4(\lambda_2) \\
\mathbf{F_0}(\lambda_3) & \mathbf{F}_2(\lambda_3) & \mathbf{F}_4(\lambda_3)
\end{pmatrix}
\]

where

\[
\mathbf{F}_0(\lambda) = \frac{\lambda}{\lambda^4 + 17\lambda + 46}, \quad \mathbf{F}_2(\lambda) = \frac{\lambda}{\lambda^4 + 7\lambda - 102}, \quad \mathbf{F}_4(\lambda) = \frac{1}{\lambda^4 - 9\lambda + 14}.
\]

Remarks.

1. We can apply the theorem to cases:

1) \(n \) variables \(x \) and \(n' \) variables \(y \), \(n \) and \(n' \) being different;

2) poly-quadratic form, for example;

\[
\sum_{i,j} C_{ij} x_i y_j = \mathbf{0} \quad (x, y, z, \ldots);
\]

3) Hermitian form of complex coefficients satisfying

\[
C_{ij} = \overline{C_{ji}} = \overline{C_{ij}} = \overline{C_{ij}}.
\]

2. It seems to be difficult to find conditions for the case that the form may be normalized by non-orthogonal transformations whose determinants are not extinguished.

3. A condition for a form to be positive-definite, that is, all \(C_{ij} > 0 \) is given by,

\[
\begin{cases}
C_{ii} > 0, & C_{ii} > 0, \\
|C_{ij}| > 0.
\end{cases}
\]

(*) Received June 9, 1951.

Musashi University, Tokyo.