§ 1. Introduction.

Let \(C \) be a bounded closed convex subset of a Banach space \(E \) and let \(T \) be a nonexpansive mapping from \(C \) into itself. Browder [2] and Göhde [10] showed that if \(E \) is uniformly convex then \(T \) has a fixed point, while Kirk [13] proved that if \(E \) is reflexive and if \(C \) has normal structure then \(T \) has a fixed point. On the other hand, Goebel [7] defined the characteristic \(\varepsilon_0 \) of convexity of \(E \) and showed that \(E \) is uniformly convex if and only if \(\varepsilon_0 = 0 \), if \(\varepsilon_0 < 1 \) then \(E \) has normal structure and if \(\varepsilon_0 < 2 \) then \(E \) is reflexive. Also, Bynum [3] defined the normal structure coefficient \(N(E) \) of \(E \), and then Maluta [17] and Bae [1] proved that if \(N(E)^{-1} < 1 \) then \(E \) is reflexive and has normal structure. Using these coefficients, Goebel and Kirk [8], Goebel, Kirk and Thele [9] and Casini and Maluta [4] proved the fixed point theorems for uniformly \(k \)-lipschitzian mappings. (For the results on Hilbert space, see [5], [12], [14].) But it seems natural to define these coefficients for a convex set, since for any Banach space \(E \), a nonexpansive mapping has a fixed point if \(C \) is weakly compact and has normal structure.

In this paper, we introduce the modulus \(\delta(C, \varepsilon) \) of convexity, the characteristic \(\varepsilon_0(C) \) of convexity and the constant \(\tilde{N}(C) \) of uniformity of normal structure for a convex subset \(C \) of a Banach space and prove some results similar to [3], [7], [11], [17]. For example, we show that if \(\tilde{N}(C) < 1 \) then \(C \) is boundedly weakly compact. Further, by using these coefficients, we prove three fixed point theorems. All of these proofs are given by explicitly constructing a sequence which converges to a fixed point. We first show a fixed point theorem for nonexpansive semigroups. Secondly, we obtain a fixed point theorem for uniformly \(k \)-lipschitzian semigroups on \(C \) under \(k < \gamma \), where \(\gamma \) is determined by the modulus of convexity of \(C \). Also, using our results, we evaluate \(\gamma \) as \(1 < \gamma \leq 1 + (1 - \varepsilon_0(C))/2 \). Finally, we prove that Casini and Maluta’s result [4] is valid under more general semigroups.

§ 2. Preliminaries.

Let \(E \) be a real Banach space and let \(B \) be a bounded subset of \(E \). For a
nonempty subset \(C \) of \(E \) define,
\[
R(B, x) = \sup \{ \| x - y \| : y \in B \};
\]
\[
R(B, C) = \inf \{ R(B, x) : x \in C \};
\]
\[
\mathcal{C}(B, C) = \{ x \in C : R(B, x) = R(B, C) \}.
\]
We call the number \(R(B, C) \) the **Chebyshev radius** of \(B \) in \(C \) and the set \(\mathcal{C}(C, B) \) the **Chebyshev center** of \(B \) in \(C \).

Let \(\{ B_\alpha : \alpha \in A \} \) be a decreasing net of bounded subsets of \(E \). For a nonempty subset \(C \) of \(E \) define,
\[
r(\{ B_\alpha \}, x) = \inf_\alpha R(B_\alpha, x);
\]
\[
r(\{ B_\alpha \}, C) = \inf \{ r(\{ B_\alpha \}, x) : x \in C \};
\]
\[
\mathcal{A}(\{ B_\alpha \}, C) = \{ x \in C : r(\{ B_\alpha \}, x) = r(\{ B_\alpha \}, C) \}.
\]
The number \(r(\{ B_\alpha \}, C) \) and the set \(\mathcal{A}(\{ B_\alpha \}, C) \) are called the **asymptotic radius** and the **asymptotic center** of \(\{ B_\alpha : \alpha \in A \} \) in \(C \), respectively. We also know that \(R(B, \cdot) \) and \(r(\{ B_\alpha \}, \cdot) \) are continuous convex functions on \(E \) which satisfy the following:
\[
|R(B, x) - R(B, y)| \leq \| x - y \| \leq R(B, x) + R(B, y);
\]
\[
|r(\{ B_\alpha \}, x) - r(\{ B_\alpha \}, y)| \leq \| x - y \| \leq r(\{ B_\alpha \}, x) + r(\{ B_\alpha \}, y)
\]
for each \(x, y \in E \), cf. \([16]\).

A nonempty subset \(C \) of \(E \) is **boundedly weakly compact** if its intersection with every closed ball is weakly compact. It is easy to see that if \(C \) is boundedly weakly compact and convex, then \(\mathcal{C}(B, C) \) and \(\mathcal{A}(\{ B_\alpha \}, C) \) are nonempty.

For a subset \(D \) of \(E \), we denote by \(d(D) \) the diameter of \(D \) and by \(\overline{co}D \) the closure of the convex hull of \(D \). A convex set \(C \) of \(E \) is said to have **normal structure** if each bounded convex subset \(D \) of \(C \) with \(d(D) > 0 \) contains a point \(y \) such that \(R(D, y) < d(D) \).

The **modulus of convexity** of \(E \) is the function
\[
\delta_E(\varepsilon) = \inf \left\{ 1 - \frac{\| x + y \|}{2} : \| x \| \leq 1, \| y \| \leq 1, \| x - y \| \geq \varepsilon \right\}
\]
defined for \(0 \leq \varepsilon \leq 2 \).

Let \(S \) be a semitopological semigroup, i.e., \(S \) is a semigroup with a Hausdorff topology such that for each \(a \in S \) the mappings \(s \mapsto a \cdot s \) and \(s \mapsto s \cdot a \) from \(S \) to \(S \) are continuous. Let \(C \) be a nonempty closed convex subset of \(E \). Then a family \(\mathcal{S} = \{ T_t : t \in S \} \) of mappings from \(C \) into itself is said to be a **uniformly \(k \)-Lipschitzian semigroup** on \(C \) if \(\mathcal{S} \) satisfies the following:

1. \(T_t(x) = T_s T_t(x) \) for \(t, s \in S \) and \(x \in C \);
2. the mapping \((s, x) \mapsto T_s(x) \) from \(S \times C \) into \(C \) is continuous when \(S \times C \) has
the product topology;

(3) \(\| T_s(x) - T_s(y) \| \leq k \| x - y \| \) for \(x, y \in C \) and \(s \in S \).

In particular, a uniformly 1-lipschitzian semigroup on \(C \) is said to be a nonexpansive semigroup on \(C \). A semitopological semigroup \(S \) is left reversible if any two closed right ideals of \(S \) have nonvoid intersection. In this case, \((S, \leq) \) is a directed system when the binary relation "\(\leq \)" on \(S \) is defined by \(a \leq b \) if and only if \(\{ a \} \cup aS \supseteq \{ b \} \cup bS \).

§ 3. Modulus of convexity and characteristic of convexity.

We first define the modulus of convexity, the characteristic of convexity and the constant of uniformity of normal structure for a nonempty convex subset of a Banach space.

Definition 3.1. Let \(C \) be a nonempty convex subset of a real Banach space \(E \) with \(d(C) > 0 \). Then we define, for \(0 \leq \varepsilon \leq 2 \),

\[
\delta(C, \varepsilon) = \inf \left\{ \frac{1}{r} \| z - \frac{x + y}{2} \| : x, y, z \in C, 0 < r \leq d(C), \right. \\
\left. \| z - x \| \leq r, \| z - y \| \leq r, \| x - y \| \leq r \varepsilon \right\};
\]

\[
\varepsilon_0(C) = \sup \{ \varepsilon : 0 \leq \varepsilon \leq 2, \delta(C, \varepsilon) = 0 \};
\]

\[
\tilde{N}(C) = \sup \left\{ \frac{R(D, D)}{d(D)} : D \text{ is a nonempty bounded convex subset of } C \right\}.
\]

Remark 3.1. It follows from Definition 3.1 that \(\delta(C, 0) = 0 \), \(0 \leq \delta(C, \varepsilon) \leq 1 \), \(\delta(C, \varepsilon) \) is nondecreasing in \(\varepsilon \) and \(\delta(E, \varepsilon) = \delta_E(\varepsilon) \). Further for a nonempty convex subset \(D \) of \(C \) with \(d(D) > 0 \) it follows that \(\delta(C, \varepsilon) \leq \delta(D, \varepsilon), \varepsilon_0(D) \leq \varepsilon_0(C) \) and \(\tilde{N}(D) \leq \tilde{N}(C) \).

Remark 3.2. Let \(C \) and \(D \) be convex subsets of \(E \). For \(a \in E \), it is easy to see that \(\delta(C, \varepsilon) = \delta(C, a, \varepsilon), \delta(C + a, \varepsilon) = \delta(C, \varepsilon) \), and \(\delta(C \cap D, \varepsilon) = \max \{ \delta(C, \varepsilon), \delta(D, \varepsilon) \} \). Similarly we have \(\tilde{N}(C) = \tilde{N}(C), \tilde{N}(C + a) = \tilde{N}(C), \) and \(\tilde{N}(C \cap D) = \min \{ \tilde{N}(C), \tilde{N}(D) \} \).

Example 3.1. Let \(C[0, 1] \) be a Banach space of all continuous real functions on \([0, 1] \) with supremum norm and let \(A \) be a subspace of all affine functions in \(C[0, 1] \). Since \(C[0, 1] \) is not reflexive, we have \(\tilde{N}(C[0, 1]) = 1 \). But it is easy to see that \(A \) is isomorphic to \(l^2_\infty = (R, \| \cdot \|_\infty) \) and hence \(\tilde{N}(A) = \tilde{N}(l^2_\infty) = \frac{1}{2} \), cf. [17], [1].
It is well known that $\delta_{E}(\varepsilon)$ is continuous on $[0, 2)$, cf. [11]. We can also prove an inequality concerning the continuity of $\delta(C, \varepsilon)$. Before proving it we need the following lemma.

Lemma 3.1. Let C be a nonempty convex subset of a real Banach space E with $d(C) > 0$, let $u, v \in E$ and let $0 < r \leq d(C)$. For $z \in C$ and ε with $0 \leq \varepsilon \leq 2$ define a set $N_{r, u, v}(z)$ and a function $\delta_{r, u, v}(\varepsilon)$ as follows:

$$N_{r, u, v}(z) = \{(x, y) : x, y \in C, \|x - z\| \leq r, \|z - y\| \leq r, x - y = au, z - \frac{x + y}{2} = bv \text{ for some } a, b \geq 0\};$$

$$\delta_{r, u, v}(\varepsilon) = \inf \left\{ \frac{1}{r} \left\| z - \frac{x + y}{2} \right\| : z \in C, (x, y) \in N_{r, u, v}(z), \|x - y\| \geq r \varepsilon \right\}.$$

Then $\delta_{r, u, v}$ is a nondecreasing convex function from $[0, 2]$ to $[0, 1]$ with

$$\delta(C, \varepsilon) = \inf \{ \delta_{r, u, v}(\varepsilon) : u, v \in E, 0 < r \leq d(C) \}.$$

Proof. Since it is obvious that $\delta_{r, u, v}$ is nondecreasing and

$$\delta(C, \varepsilon) = \inf \{ \delta_{r, u, v}(\varepsilon) : u, v \in E, 0 < r \leq d(C) \},$$

we only prove that $\delta_{r, u, v}$ is convex.

For arbitrary $z_1, z_2 \in C$ and $(x_1, y_1) \in N_{r, u, v}(z_1)$ and $(x_2, y_2) \in N_{r, u, v}(z_2)$ with $\|x_1 - y_1\| \geq r \varepsilon_1$ and $\|x_2 - y_2\| \geq r \varepsilon_2$, there exist $a_1, a_2, b_1, b_2 \geq 0$ such that

$$x_1 - y_1 = a_1 u, z_1 - \frac{x_1 + y_1}{2} = b_1 v,$$

and

$$x_2 - y_2 = a_2 u, z_2 - \frac{x_2 + y_2}{2} = b_2 v.$$

For λ with $0 \leq \lambda \leq 1$, define $x_3 = \lambda x_1 + (1 - \lambda)x_2, y_3 = \lambda y_1 + (1 - \lambda)y_2$ and $z_3 = \lambda z_1 + (1 - \lambda)z_2$. Then, we have

$$x_3 - y_3 = \lambda(x_1 - y_1) + (1 - \lambda)(x_2 - y_2) = (\lambda a_1 + (1 - \lambda)a_2)u,$$

$$z_3 - \frac{x_3 + y_3}{2} = \lambda(z_1 - \frac{x_1 + y_1}{2}) + (1 - \lambda)(z_2 - \frac{x_2 + y_2}{2})$$

$$= (\lambda b_1 + (1 - \lambda)b_2)v.$$

Since $\|z_3 - x_3\| \leq r$ and $\|z_3 - y_3\| \leq r$, we have $(x_3, y_3) \in N_{r, u, v}(z_3)$. We also obtain

$$\|x_3 - y_3\| = \lambda \|x_1 - y_1\| + (1 - \lambda)\|x_2 - y_2\| \geq \lambda \varepsilon_1 + (1 - \lambda)\varepsilon_2$$

and
\[\delta_{r, u, v}(\lambda \varepsilon_1 + (1-\lambda)\varepsilon_2) \leq 1 - \frac{1}{r} \left\| z_2 - \frac{x_1 + y_1}{2} \right\| \]

\[= \lambda \left(1 - \frac{1}{r} \left\| z_1 - \frac{x_1 + y_1}{2} \right\| \right) + (1-\lambda) \left(1 - \frac{1}{r} \left\| z_2 - \frac{x_2 + y_2}{2} \right\| \right) \]

for arbitrary \(z_1, z_2 \in C \), \((x_1, y_1) \in N_{r, u, v}(z_1) \) and \((x_2, y_2) \in N_{r, u, v}(z_2) \). Therefore we have

\[\delta_{r, u, v}(\lambda \varepsilon_1 + (1-\lambda)\varepsilon_2) \leq \lambda \delta_{r, u, v}(\varepsilon_1) + (1-\lambda)\delta_{r, u, v}(\varepsilon_2). \]

Theorem 3.1. Let \(C \) be a nonempty convex subset of a real Banach space \(E \) with \(d(C) > 0 \). Then for all \(\varepsilon_1 \) and \(\varepsilon_2 \) with \(0 < \varepsilon_1 < \varepsilon_2 \leq 2r \),

\[\delta(C, \varepsilon_2) - \delta(C, \varepsilon_1) \leq \frac{\varepsilon_2 - \varepsilon_1}{2 - \varepsilon_1} (1 - \delta(C, \varepsilon_1)) \leq \frac{\varepsilon_2 - \varepsilon_1}{2 - \varepsilon_1}. \]

Proof. For any real number with \(\eta > 0 \), there exist \(u, v \in E \) and \(r \) with \(0 < r < d(C) \) such that \(\delta_{r, u, v}(\varepsilon_1) \leq \delta(C, \varepsilon_1) + \eta \) and hence we obtain

\[\delta_{r, u, v}(\varepsilon_2) = \delta_{r, u, v}\left(\frac{\varepsilon_2 - \varepsilon_1}{2 - \varepsilon_1} \right)^2 + \left(1 - \frac{\varepsilon_2 - \varepsilon_1}{2 - \varepsilon_1}\right) \delta_{r, u, v}(\varepsilon_1) \]

or

\[\delta_{r, u, v}(\varepsilon_2) - \delta_{r, u, v}(\varepsilon_1) \leq \frac{\varepsilon_2 - \varepsilon_1}{2 - \varepsilon_1} \left(\delta_{r, u, v}(2) - \delta_{r, u, v}(\varepsilon_1) \right) \leq \frac{\varepsilon_2 - \varepsilon_1}{2 - \varepsilon_1} (1 - \delta(C, \varepsilon_1)). \]

Then we have

\[\delta(C, \varepsilon_2) - \delta(C, \varepsilon_1) \leq \delta_{r, u, v}(\varepsilon_2) - \delta_{r, u, v}(\varepsilon_1) + \eta \leq \frac{\varepsilon_2 - \varepsilon_1}{2 - \varepsilon_1} (1 - \delta(C, \varepsilon_1)) + \eta. \]

Since \(\eta > 0 \) is arbitrary, we have

\[\delta(C, \varepsilon_2) - \delta(C, \varepsilon_1) \leq \frac{\varepsilon_2 - \varepsilon_1}{2 - \varepsilon_1} (1 - \delta(C, \varepsilon_1)) \leq \frac{\varepsilon_2 - \varepsilon_1}{2 - \varepsilon_1}. \]

The following lemma can be proved as in [16].

Lemma 3.2. Let \(C \) be a convex subset of a real Banach space \(E \). Let \(B \) be a bounded subset of \(C \) and let \(\{B_\alpha : \alpha \in A\} \) be a decreasing net of bounded subsets of \(C \). For each \(x, y \in C \), if \(R(B, x) \leq t, R(B, y) \leq t \) and \(\|x - y\| \leq t \cdot \varepsilon \) then
and if \(r(\{ B_\alpha \}, x) \leq t, r(\{ B_\alpha \}, y) \leq t \) and \(\| x - y \| \geq t \varepsilon \) then

\[
R \left(B, \frac{x + y}{2} \right) \leq t(1 - \delta(C, \varepsilon))
\]

It was proved by Bynum [3] that \(\hat{N}(E) \leq 1 - \delta_\varepsilon(1) \). By using Theorem 3.1, Lemma 3.2 and the method of [3], we can also obtain the following: Let \(C \) be a nonempty convex subset of a real Banach space \(E \) with \(d(C) > 0 \). Then \(\hat{N}(C) \leq 1 - \delta(C, 1) \).

Maluta [17] and Bae [1] proved that if \(\hat{N}(E) < 1 \) then \(E \) is reflexive. We can prove the following:

Theorem 3.2. Let \(C \) be a nonempty convex subset of a real Banach space \(E \) with \(d(C) > 0 \). If \(\hat{N}(C) < 1 \) then \(C \) is boundedly weakly compact and has normal structure.

Proof. It is obvious from \(\hat{N}(C) < 1 \) that \(C \) has normal structure. We may assume that \(C \) is bounded. Let \(\{ C_n \} \) be an arbitrary decreasing sequence of nonempty closed convex subsets of \(C \). If we show \(\{ C_n \} \) has nonempty intersection then we complete the proof, cf. [p. 433, 4]. If \(d(C_n) = 0 \) for some \(n \geq 1 \) then it is obvious that \(\{ C_n \} \) has nonempty intersection. So we assume \(d(C_n) > 0 \) for all \(n \geq 1 \). Let \(\eta \) be a real number with \(\hat{N}(C) < \eta < 1 \) and define by induction:

\[
C_{n, 0} = C_n;
\]

\[
x_{n, m} \in C_{n, m} \quad \text{such that} \quad R(C_{n, m}, x_{n, m}) \leq \eta d(C_{n, m});
\]

\[
C_{n, m+1} = \overline{\text{co}} \{ x_{k, m} : k \geq n \}.
\]

Then, we have \(C_{n, m} \) is nonempty, \(C_{n, m} \supseteq C_{n+1, m}, C_{n, m} \supseteq C_{n, m+1} \) and

\[
d(C_{n, m}) = \sup \{ \| x_{i, m, -1} - x_{j, m, -1} \| : i, j \geq n \} = \sup_{i \equiv n} \sup_{j \equiv n} \| x_{i, m, -1} - x_{j, m, -1} \|
\]

\[
\leq \sup_{i \equiv n} R(C_{i, m, -1}, x_{i, m, -1}) \leq \sup_{i \equiv n} R(C_{i, m, -1}, x_{i, m, -1})
\]

\[
\leq \sup_{i \equiv n} \eta d(C_{i, m, -1}) \leq \eta d(C_{n, m-1}) \leq \eta^m d(C_n)
\]

for all \(n, m \geq 1 \). Hence \(\lim d(C_{n, m}) = 0 \). Since \(\bigcap_{m=1}^\infty C_{n, m} = \bigcap_{m=1}^\infty C_{n, m-1} \) for all \(n \geq 1 \), there exists \(y \in E \) such that \(\bigcap_{n=1}^\infty C_{n, m} = \{ y \} \) for all \(n \geq 1 \). Therefore \(\bigcap_{n=1}^\infty C_n \) is nonempty.

Corollary 3.1 (Maluta [17] and Bae [1]). Let \(E \) be a real Banach space with \(\hat{N}(E) < 1 \). Then \(E \) is reflexive and has normal structure.
§ 4. Fixed point theorems.

In this section, we prove three fixed point theorems by using the results obtained in section 3. The following lemma is crucial in the proofs.

Lemma 4.1. Let C be a convex subset of a real Banach space E. Let \(\{B_a : a \in A\} \) be a decreasing net of bounded subsets of C and let D be a boundedly weakly compact convex subset of C. Let r be the asymptotic radius and A be the asymptotic center of \(\{B_a\} \) in D. Then

\[
d(A) \leq \varepsilon_0(C)r.
\]

Further let \(\varepsilon_0(C) < 1 \) and let \(\gamma \) be a real number such that \(\gamma(1 - \delta(C, 1/\gamma)) = 1 \). For a real number \(k \) with \(1 \leq k < \gamma \), define \(A_k = \{x \in D : r(\{B_a\}, x) \leq kr\} \). Then

\[
d(A_k) \leq \frac{k}{\gamma} r.
\]

Proof. In case \(r = 0 \), the inequality is true. In fact, if \(x, y \in A \) then

\[
\|x - y\| \leq r(\{B_a\}, x) + r(\{B_a\}, y) = 0
\]

and hence \(d(A) = 0 \). So we assume \(r > 0 \) and \(d(A) > 0 \). For any real number \(\eta \) with \(0 < \eta < d(A) \), there exist \(x, y \in A \) such that \(\|x - y\| = d(A) - \eta \). By Lemma 3.2 and convexity of A, we have

\[
r = r(\{B_a\}, \frac{x + y}{2}) \leq r(1 - \delta(C, \frac{d(A) - \eta}{r})).
\]

This implies

\[
\delta(C, \frac{d(A) - \eta}{r}) = 0
\]

and hence \(d(A) \leq \varepsilon_0(C)r \).

We may also assume \(r > 0 \) and \(d(A_k) > 0 \). For any real number \(\eta \) with \(0 < \eta < d(A_k) \), there exist \(x, y \in A_k \) such that \(\|x - y\| \geq d(A_k) - \eta \). Then, we have

\[
r \leq r(\{B_a\}, \frac{x + y}{2}) \leq kr(1 - \delta(C, \frac{d(A_k) - \eta}{kr})).
\]

Since \(\eta > 0 \) is arbitrary and \(\delta \) is continuous, it follows that

\[
\delta(C, \frac{d(A_k)}{kr}) \leq 1 - \frac{1}{k}.
\]

Suppose that \(\frac{1}{\gamma} \leq \frac{d(A_k)}{kr} \). Then we have

\[
1 - \frac{1}{\gamma} = \delta(C, \frac{1}{\gamma}) \leq \delta(C, \frac{d(A_k)}{kr}) \leq 1 - \frac{1}{k} < 1 - \frac{1}{\gamma}.
\]
This is a contradiction.

Remark 4.1. From Lemma 4.1, we have immediately the similar inequality concerning the Chebyshev radius and center. In fact, putting $B_n = B$, we have

$$d(C(B, D)) \leq \varepsilon_0(C) R(B, C).$$

The following theorem is a special case of results of Lim [15] and Takahashi [18], while the proof is constructive.

Theorem 4.1. Let C be a closed convex subset of a real Banach space E with $\varepsilon_0(C) < 1$ and let $S = \{T_t : t \in S\}$ be a nonexpansive semigroup on C. Suppose that S is left reversible and $\{T_t y : t \in S\}$ is bounded for some $y \in C$. Then there exists a $z \in C$ such that $T_t z = z$ for all $t \in S$.

Proof. Let $B_s(x) = \{T_t x : t \geq s\}$ for $s \in S$ and $x \in C$. Define $\{x_n : n \geq 0\}$ by induction as follows:

$$x_0 = y;$$

$$x_n \in A(\{B_s(x_{n-1})\}, C) \quad \text{for } n \geq 1.$$ Let $r_n(x) = r(\{B_s(x_{n-1})\}, x)$, $r_n = r(\{B_s(x_{n-1})\}, C)$ and $A_n = A(\{B_s(x_{n-1})\}, C)$ for $n \geq 1$. Then we have

$$r_n(T_t x_n) = \limsup_s \|T_s x_n - T_t x_n\| \leq \limsup_s \|T_s T_t x_{n-1} - T_t x_n\|$$

$$\leq \limsup_s \|T_s x_{n-1} - x_n\| = r_n$$

for all $t \in S$ and $n \geq 1$ and hence $T_t A_n \subseteq A_n$ for $t \in S$ and $n \geq 1$. By Lemma 4.1, we obtain

$$r_{n+1} = r_{n+1}(x_{n+1}) \leq r_{n+1}(x_n) \leq \sup_s \|T_s x_n - x_n\|$$

$$\leq d(A_n) \leq \varepsilon_0(C) r_n \leq (\varepsilon_0(C))^n r_1$$

and hence

$$\|x_{n+1} - x_n\| \leq r(\{B_s(x_n)\}, x_{n+1}) + r(\{B_s(x_n)\}, x_n) = r_{n+1} + r_{n+1}(x_n)$$

$$\leq 2(\varepsilon_0(C))^n r_1$$

for all $n \geq 1$. So, $\{x_n\}$ is a Cauchy sequence and hence $\{x_n\}$ converges to a point $z \in C$. Therefore we have

$$\|z - T_s z\| = \lim_{n \to \infty} \|x_n - T_s x_n\| \leq \lim_{n \to \infty} (r_n(x_n) + r_n(T_s x_n))$$

$$\leq \lim_{n \to \infty} 2(\varepsilon_0(C))^{n} r_1 = 0$$

for all $s \in S$.

By the method of Theorem 4.1, we can prove the following fixed point theorem which is slightly different from [9].
Theorem 4.2. Let \(C \) be a closed convex subset of a real Banach space \(E \) with \(\varepsilon_0(C) < 1 \) and let \(\gamma \) be a real number such that \(\gamma(1-\delta(C, 1/\gamma)) = 1 \). Let \(S = \{ T_t : t \in S \} \) be a uniformly \(k \)-lipschitzian semigroup on \(C \) with \(1 \leq k < \gamma \). Suppose that \(S \) is left reversible and \(\{ T_{ty} : t \in S \} \) is bounded for some \(y \in C \). Then there exists a \(z \in C \) such that \(T_sz = z \) for all \(s \in S \).

Proof. Let \(B_s(x) = \{ T_t x : t \geq s \} \) for \(s \in S \) and \(x \in C \). Define \(\{ x_n : n \geq 0 \} \) by induction as follows:

\[
x_0 = y;
\]
\[
x_n \in A(\{ B_s(x_{n-1}) \}, C) \quad \text{for} \quad n \geq 1.
\]

Let \(r_n(x) = r(\{ B_s(x_{n-1}) \}, x) \), \(r_n = r(\{ B_s(x_{n-1}) \}, C) \) and \(A_n = \{ x \in C : r_n(x) \leq kr_n \} \) for \(n \geq 1 \). Then since \(r_n(x_n) = r_n \leq kr_n \) and

\[
r_n(T_s x_n) = \lim_{s \to 0} \sup_s \| T_{s} x_{n-1} - T_s x_n \| \leq k \lim_{s \to 0} \sup_s \| T_s x_{n-1} - x_n \| = kr_n
\]

for all \(t \in S \) and \(n \geq 1 \), we have \(x_n, T_t x_n \in A_n \) for all \(t \in S \) and \(n \geq 1 \). By Lemma 4.1, we obtain

\[
r_{n+1} = r_{n+1}(x_{n+1}) \leq r_{n+1}(x_n) \leq \sup_s \| T_s x_n - x_n \| \leq d(A_n) \leq \frac{k}{\gamma} r_n \leq \left(\frac{k}{\gamma} \right)^n r_1
\]

for all \(n \geq 1 \). Therefore, as in the proof of Theorem 4.1, \(\{ x_n \} \) converges to a point \(z \in C \). So, we have

\[
\| z - T_s z \| = \lim_{n \to \infty} \| x_n - T_s x_n \| \leq \lim_{n \to \infty} (r_n(x_n) + r_n(T_s x_n)) \leq \lim_{n \to \infty} (1 + k) r_n = 0
\]

for all \(s \in S \).

Remark 4.2. Let \(C \) and \(\gamma \) be defined as in Theorem 4.2. Then we have

\[
1 < \gamma \leq 1 + \frac{1 - \varepsilon_0(C)}{2}.
\]

In fact, let \(\eta = 1/\gamma \) and if \(\delta(C, \eta) = 1 - \eta = 0 \). Then we have \(1 > \varepsilon_0(C) \geq \eta = 1 \). This is a contradiction. Hence \(\varepsilon_0(C) \leq \eta < 1 \). So, from Theorem 3.1,

\[
1 - \eta = \delta(C, \eta) \leq \frac{\eta - \varepsilon_0(C)}{2 - \varepsilon_0(C)}.
\]

Therefore we have

\[
1 < \gamma \leq 1 + \frac{1 - \varepsilon_0(C)}{2}.
\]
We can also obtain a generalization of Casini and Maluta’s fixed point theorem [4].

Lemma 4.2. Let C be a boundedly weakly compact convex subset of a real Banach space E. Let $\{B_a : a \in A\}$ be a decreasing net of nonempty bounded closed convex subsets of C and let $B = \bigcap_a B_a$. Then

$$r(\{B_a\}, B) \leq \hat{N}(C) \inf_{a} d(B_a).$$

Proof. Let $u_\beta \in C(B_\beta, B_\beta)$ for each $\beta \in A$. Then we have

$$r(\{B_a\}, u_\beta) \leq R(B_\beta, u_\beta) = R(B_\beta, B_\beta) \leq \hat{N}(C) d(B_\beta).$$

Let $\{u_\beta\}$ be a subnet of $\{u_\beta\}$ which converges weakly to a point $u_0 \in B$. By weakly lower semicontinuity of r and monotonicity of $d(B_\beta)$, we have

$$r(\{B_a\}, B) \leq r(\{B_a\}, u_0) \leq \limsup_{r} r(\{B_a\}, u_\beta) \leq \limsup_{r} \hat{N}(C) d(B_\beta) = \hat{N}(C) \inf_{a} d(B_a).$$

Theorem 4.3. Let C be a closed convex subset of a real Banach space E with $\hat{N}(C) < 1$ and let $S = \{T_t : t \in S\}$ be a uniformly k-Lipschitzian semigroup on C with $k < \hat{N}(C)^{-1/2}$. Suppose that S is left reversible and $\{T_t y : t \in S\}$ is bounded for some $y \in C$. Then there exists a $z \in C$ such that $T_s z = z$ for all $s \in S$.

Proof. Let $B_s(x) = \overline{co} \{T_t x : t \geq s\}$ and let $B(x) = \bigcap_s B_s(x)$ for $s \in S$ and $x \in C$. Define $\{x_n : n \geq 0\}$ by induction as follows:

$$x_0 = y,$$

$$x_n \in \mathcal{A}(\{B_s(x_{n-1})\}, B(x_{n-1})) \quad \text{for} \quad n \geq 1.$$

Let $r_n(x) = r(\{B_s(x_{n-1})\}, x)$ and $r_n = r(\{B_s(x_{n-1})\}, B(x_{n-1}))$ for $n \geq 1$. Then from $x_n \in B(x_{n-1}) = \bigcap_s B_s(x_{n-1})$ for $n \geq 1$, we have

$$r_{n+1}(x_n) = \limsup_{s} \|T_s x_n - x_n\| \leq \limsup_{s} (\inf_s R(B_s(x_{n-1}), T_s x_n))$$

$$= \limsup_{s} r_n(T_s x_n) = \limsup_{s} (\limsup_{s} \|T_s x_{n-1} - T_s x_n\|)$$

$$\leq k \limsup_{s} (\inf_{s} \|T_s x_{n-1} - x_n\|) = k r_n$$

and

$$\inf_{s} d(B_s(x_{n-1})) \leq \inf_{s} \{\|T_0 x_{n-1} - T_s x_{n-1}\| : a, b \geq s\}$$
Hence we have
\[r_{n+1}(x_n) \leq kr_n(x_{n-1}) \leq (k^2 \bar{N}(C))^n r_1(x_0). \]
Therefore, as in the proof of Theorem 4.2, \(\{ x_n \} \) converges to a common fixed point.

REFERENCES

Department of Information Science, Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo 152, Japan