Redox Potential Values of Br⁺/Br⁻ System with Regard to the Use of N-Bromosuccinimide as Titrant

M. SARWAR*, Inamul-HAQU, B. A. KHOKHAR and G. M. ZIA**

Redox potential of Br⁺Br⁻ system when N-bromosuccinimide is used as a titrant is described in water and aqueous solution containing acids and base.

1 Introduction

The oxidizing property of N-bromosuccinimide has been used for the determination of various substances(11-13). These oxidations were selective as well as general. Until now the selection of conditions was made just by hit and trial. It was not known what would be the oxidizing potential of N-bromosuccinide in the given conditions. There was not any systematic study available on the redox potential of Br⁺Br⁻ system with regard to the use of N-bromosuccinimide in various conditions.

In this paper it was decided to study the redox potential of the Br⁺/Br⁻ system in aqueous medium, acetic acid, HCl, H₂SO₄, and Na₂CO₃ of various molarities. These results of redox potentials of Br⁺/Br⁻ system when N-bromosuccinimide is used as a titrant, will help the analytical chemist to judge before hand which substances possibly can be oxidized in the given system.

2 Experimental

2.1 Apparatus

All potential measurements were made with Radelkis Universal pH meter, type: OP 204/1. Platinum strip indicating electrode was used against saturated calomel reference electrode.

2.2 Reagents

* Government College of Science, Lahore. Analytical Chemistry and Instrumentation Division, Pakistan Council of Scientific and Industrial Research (PCSIR) Lahore, Pakistan

** Defence Science Organization Laboratories, Chaklala Rawalpindi

N-bromosuccinimide −0.01 M solution of recrystallized N-bromosuccinimide was prepared in distilled and deionized water.

Potassium bromide −0.01 M solution of recrystallized potassium bromide was made in distilled and deionized water. Similarly the CH₃COOH, Na₂CO₃, HCl, and H₂SO₄ were also of analytical grade and the dilutions to required molarities were made in distilled and deionized water.

3 Procedure

The potentiometer was standardized as given in the manual and then checked with the known system of [Fe(CN)₆]₃⁻/[Fe(CN)₆]₄⁻. To a 100 ml beaker a 20 ml solution of 0.01 M N-bromosuccinimide was added and then the electrodes were dipped into it and 20 ml of 0.01 M KBr were added. After magnetic stirring the potential was measured. These values were then changed to standard potentials with respect to standard hydrogen electrode. When the potential in acidic or alkali medium was measured the molarities of acids or bases were calculated from the total volume in the beaker.

4 Results and Discussion

The redox potential of Br⁺/Br⁻ system was first measured in aqueous medium because water is almost a universal solvent and most of the determinations are done in it. The potential was measured from a total volume of 40 ml in which 20 ml of 0.01 M N-bromosuccinimide and 20 ml of 0.01 M KBr were mixed. The redox
The Table 1 The values of redox potential of the Br⁺/Br⁻ system in different aqueous media at 25°C

<table>
<thead>
<tr>
<th>Aqueous medium</th>
<th>Molarity</th>
<th>Redox potential (V)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>-</td>
<td>+1.103</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>0.1</td>
<td>+1.142</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>+1.146</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>+1.148</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>0.1</td>
<td>+1.170</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>+1.168</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>+1.136</td>
</tr>
<tr>
<td>Sulphuric acid</td>
<td>0.1</td>
<td>+1.156</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>+1.144</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>+1.139</td>
</tr>
<tr>
<td>Sodium carbonate</td>
<td>0.1</td>
<td>+0.828</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>+0.804</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>+0.796</td>
</tr>
</tbody>
</table>

* The reliability of results is ± 20 mV.

The redox potentials in aqueous medium with several concentrations of acetic acid were measured and molarity of CH₃COOH was calculated from the total volume in the potential measuring beaker. As the molarity of the acid increases the redox potential of Br⁺/Br⁻ system shows little increase. We have not gone beyond the molarities shown in Table 1 because in general practice these are the workable concentrations.

But the redox potential in aqueous hydrochloric acid medium is certainly greater than that of CH₃COOH. As is clear from Table 1, with increasing concentration of HCl there is decrease in redox potential. This may be due to the increase of hydrogen ion concentration thus decreasing the diffusion of Br⁺ from N-bromosuccinimide.

Similar is the case when the potential was measured in aqueous sulphuric acid.

The redox potential of the system Br⁺/Br⁻ was also measured in alkaline medium and for this, sodium carbonate was selected. As can be seen from the Table 1 that the redox potential is much less in alkaline medium than in acid medium.

The results of all the measurements are summarized in Table 1.

The results in Table 1 show that the redox potential of N-bromosuccinimide in dilute mineral acids is 1.16-1.17 volts and in alkaline medium it is 0.82 volts. This potential is quite high for many determinations. The compounds which have been determined with N-bromosuccinimide are ascorbic acid¹,² thiocyanate³, cysteine⁴, arsenite⁵, stanous⁶, thiosulphate⁷, sulfide⁸, and nitrite⁹. The oxidation potential of ascorbic acid in acidic medium is 0.32 V¹⁰ while the oxidation potential of thiocyanate in acidic medium is 0.77 V¹¹. At pH of 7.0 cysteine has oxidation potential of 0.33 V¹² and arsenite at the same pH has oxidation potential of 0.31 V¹³. Stanous has oxidation potential of 0.15 in acidic medium¹⁴. The oxidation potential of thiosulphate in aqueous medium is 0.4 V¹⁵. Sulfide at pH 6 can be oxidized at 0.14 V¹⁶. The oxidation potential of nitrite in alkaline medium is 0.01 V¹⁷. These potentials are well below the redox potential of N-bromosuccinimide in order to oxidize these compounds.

It shall be remembered that the potentials are represented by the following Nernst equation:

\[E = E_0 + \frac{RT}{nF} \ln \frac{a_{OX}}{a_{Red}} \]

As the concentrations of reacting species are quite low, in the vicinity of 0.01 M, the activity coefficients of oxidized and reduced forms are taken as unity, therefore, these will be replaced by concentrations. Keeping all these redox potential values in mind N-bromosuccinimide can be used quite carefully and usefully.

Acknowledgement:
We are thankful to Miss Shaheen Zaidi for her help in this investigation.

References:
本会記事
（昭和52年度役員）

◇本部◇

理事会
会長 向坊 隆（東大）
副会長 清山哲郎（九大）, 吉村三郎（旭電化）, 松野武雄（横浜国立）, 森本一郎（三亜化学）
編集委員長 仁木栄次（東大）
監事 川田龍彦（三井アルミウム）, 小谷 豊（電気調査大）, 高橋正雄（横浜国立）, 萩原良一（旭電化）
広務理事 小田 宏（東工大）, 守永健一（埼玉大）
会計理事 今井健一（神奈川工大）, 杉本忠男（電気機械）
編集理事 青柳 茂（東工大）, 竹盛英男（東工試）, 山内 咲（東大）

理事 玉谷武男（東京工業），伊藤昭夫（電気研），大澤仁志（東工大），渡辺一（電気化学），藤又 茂（旭電化），北村 道三（三井金属製品），佐伯隆造（東工大），下垂春雄（昭和電工），川上 洋（清流化学），馬場利一（電気調査研），中村竹（横山国大），町田宏作（日立製作所）, 松尾時郎（住友化学）, 森川元知（古河電池）

前会長会議
議長 向坊 隆（東大）
委員 井上信成, 岡田延三, 野島義一, 武井 武, 森本英一, 岡 俊平, 高田 碩, 藤田武夫, 鈴木治雄, 竹谷英一郎, 中山一郎

編集委員会
委員長 仁木栄次（東大）
理事 青柳 茂（東工大）, 竹盛英男（東工試）, 山内 咲（東大）
委員 池田義之助（三洋電機）, 小川忠彦（横浜国立）, 小田

吉（旭電化）, 骨塚光彦（日本電気），小出田繁（東電），後藤俊吉（東大），佐々木靖男（日立製作所），盛原国雄（神奈川工試）, 城上 孝（東京工業電気），飾野光利（東大），松本 稔二（富士製薬），高橋不二雄（宇部電気），谷内茂男（東北大）, 赤 哲行（理研）, 鈴田光一（東工大）, 藤崎 健（電機研究），平山 通（昭和電工），福田田松太郎（松下電器），前田 昭（ダイヤリサーチ）, 松本 昭（愛媛大）, 森 健夫（東京大）

◇研究・技術懇談会◇
エネルギー問題懇談会 主席 昔野昌義（東大）
光電気化学研究懇談会 主席 本多健一（東大）
環境電気化学研究懇談会 主席 松野武雄（横浜国立）
高湿化学研究懇談会 主席 早川保昌（山梨大）
電解質溶液化学研究懇談会 主席 大澤仁志（東工大）
アルミ新製鉄技術懇談会 主席 稲川林治（北海道工大）
ソーダ工業技術懇談会 主席 吉澤四郎（京大）
電気機器・形態研究懇談会 主席 芹池 明（埼玉工業）
センサ研究懇談会 主席 清山哲郎（九大）

◈専門委員会◈
電池技術委員会 委員長 高橋武彦（名大）
腐食専門委員会 委員長 田島 政（東工大）
溶融塩専門委員会 委員長 岡崎四郎（京大）
電子材料専門委員会 委員長 塚本哲男（昭和化学）

◈支部◈
北海道支部 支部長 吉村義男（北海道）
東北支部 支部長 水野 稔（東北大学）
関東支部 支部長 本多健一（東大）
北陸支部 支部長 小田伸夫（日本電気）
東海支部 支部長 伊藤 祐（名工大）
関西支部 支部長 林 忠夫（阪神）
九州支部 支部長 柳川 澄三（九大）

◈海外事務所◈
アメリカ事務所 主席 小沢昭弥（ニューヨーク）