KONA Powder and Particle Journal
Online ISSN : 2187-5537
Print ISSN : 0288-4534
ISSN-L : 0288-4534
Original Research Papers
Decoration of Carbon Nanotubes by Semiconducting or Metallic Nanoparticles using Fluidized Bed Chemical Vapour Deposition
Pierre LassègueNicolas CoppeyLaure NoéMarc MonthiouxBrigitte Caussat
Author information

2016 Volume 33 Pages 322-332


Multi-Walled Carbon Nanotubes (MWCNTs) have promising properties that make them potentially useful in a wide variety of applications. The decoration of MWCNTs by metallic or semiconducting nanoparticles aims to intensify some of their properties, in particular thermal and electrical conductivity. Fluidized Bed Chemical Vapour Deposition (FBCVD) is an efficient process to uniformly coat powders by various materials. The coating by SnO2, Fe and Si nanoparticles of MWCNTs (Graphistrength®) tangled in balls of 360 microns in mean diameter using the FBCVD process has been studied. The influence of some deposition parameters with and without oxidative pre-treatment is analysed on the nucleation and growth of nanoparticles. The various results obtained indicate that the intrinsic surface reactivity of MWCNTs is high enough for CVD precursors involving the formation of highly reactive unsaturated species such as silylene SiH2 formed from silane SiH4 pyrolysis in the case of Si deposition. But it must be enhanced for less reactive CVD precursors such as tin tetrachloride SnCl4 which needs the presence of oxygen-containing groups at the nanotube surface to allow Sn nucleation. So, provided the reactivity of the powder surface and that of the CVD precursors are well tuned, the FBCVD process can uniformly coat the outer surface of MWCNTs by metallic or semiconducting nanoparticles.

Fullsize Image
Information related to the author

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
Previous article Next article