桑における多胚種子実生の生長とアイソザイムパターンについて

尾暮正義

杉並区和田 農林水産省蚕糸試験場（〒166）
(1979年3月12日受理)

杉山（1950）は桑の多胚種子出現の要因を多胚性または受精後の卵細胞の異状分裂ないし胚の一部に染色体突然変異が起こることによるものと述べている。また、カンツツ類における多胚種子は胚心細胞の無性的な胚の発生による（OSAWA, 1912；上野ら, 1967）が、まれに受精胚の分裂によって発生する（OZSAN・CAMERON, 1963）といわれる。

著者は第1報（尾暮, 1979）において多胚種子およびそれらから生長した実生の形態や染色体数について報告したが、本稿はアイソザイムパターンおよび若干の形質から多胚種子の形成について考察する。

本文に入るに先だち、報文の作成にあたって重ねた助言を頂いた蚕糸試験場北浦速幹部長、松村幹夫篩育種第1研究室長および中島健次篩育遺伝研究室長に深甚の謝意を表す。

材料及び方法

材料には第1報（尾暮, 1979）で述べた1978年交雑の B4801-3xB5 など8組合せから出現した多胚種子実生およびその交雑種を用いた。

アイソザイムパターンの調査は、9〜10月に供試個体の枝条中央部の葉を採取し、澱粉ゲル電気泳動法によってインドール酸オシクダーゼおよびバーオキシダーゼについてそれぞれ数回反復した。検体の澱粉は東洋科学製の泳動澱粉を用いた。インドール酸オシクダーゼアイソザイムの呈色はENDO (1968) の方法を若干修正して行った。すなわち、蒸留水87mlにβインドール酸カリウム107mg（5mM）を溶解し、50mM 2,4,6-トリクロルフェノールスラリウム溶液2.0ml、1M硫酸マンガン溶液を1.6ml、硫酸スラリウムと硫酸の2M緩衝液（pH 6.0）10mlを加えて、最後にファーストゴールドBB塩200mgを溶解し、泳動後のゲル上に注ぎアルミ箔で覆って一夜放置した。また、バーオキシダーゼアイソザイムの呈色はENDO（1972）の方法に従い、5-アミノ-2-ナフートール159mg（1mM）をジメチルホルムアミドを5ml加えて完全に溶解し、0.5M酢酸ソーダ（pH5.0）を10ml加え更に蒸留水を加えて100mlとした。それに粉末活性炭を0.5g加え、スターサー上で摂拌してから吸引圧過し、得た無色の溶液に3％の過酸化水素1ml加えてゲル上に注ぎ、アルミ箔で覆い一昼夜放置した（青木・永井1978）。

発芽時の大形で、大小型の分類は播種後15日目に行い、葉の形態は9〜10月に調査した。また、枝条長、芽の形態、樹形などは12月上旬に調査した。

結果

第1図は多胚種子実生のバーオキシダーゼおよびインドール酸オシクダーゼのアイソザイムパターンを示したものである。

バーオキシダーゼは安定したバンドが陽極に2〜5本認められ、それらのバンドの上に不安定なうすいバンドが現われるほか、時には陰極にもうすいバンドが現われることがあった。インドール酸オシクダーゼは安定した濃いバンドが陽極に1〜3本認められた。そのバンドの下の試料をうすお白紙にやや不安定なうすいバンドが数本と、時には陰極に2、3本のバンドが現われたが、このアイソザイムパターン

—433—
第1図 離雑種のヒトピアソサイドパターン
8, 9, 12: B4801-3 × B5, 26: B4801
35: C2-6 × B5, 3: C5003-3 × C19-2

第2図 離雑種および離雑種のヒトピアソサイドパターン
26: B4801 × B11-4, 29: B31 × B5
A-5~A-8: I.A.A オキシダーゼのヒトピアソサイドパターン
A-11~A-15: バーキャンダーゼのヒトピアソサイドパターン

第3図 離雑種および離雑種のヒトピアソサイドパターン
P2: B5, P6: B32, P7: C2-6, P8: C32, P9: C19-2, P10: C5003-3
30~32: B32 × B5, 33~35: C2-6 × B5, 37: C32 × C19-2, 38: C5003-3 × C19-2
A-5~A-8: I.A.A オキシダーゼのヒトピアソサイドパターン
A-11~A-15: バーキャンダーゼのヒトピアソサイドパターン
<table>
<thead>
<tr>
<th>個体番号</th>
<th>交 雑 棄 名</th>
<th>発芽時の大きさ</th>
<th>株条長cm</th>
<th>アイソザイムパターンの同異</th>
</tr>
</thead>
<tbody>
<tr>
<td>対 照</td>
<td>B4801-3×B5</td>
<td></td>
<td>53</td>
<td>未定</td>
</tr>
<tr>
<td></td>
<td>白芽荌桑(♀)×白芽荌桑(♀)</td>
<td></td>
<td>55</td>
<td>未定</td>
</tr>
<tr>
<td>No. 1</td>
<td>B4801-3×B5</td>
<td>大小型</td>
<td>23,18</td>
<td>類似型</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>同大型</td>
<td>43,20</td>
<td>相違型</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>大小型</td>
<td>36,27</td>
<td>類似型</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>"</td>
<td>41,27</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>"</td>
<td>35,25</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>"</td>
<td>44,21</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>"</td>
<td>32,27</td>
<td>相違型</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>同大型</td>
<td>27,26</td>
<td>類似型</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>大小型</td>
<td>24,19</td>
<td>相違型</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>"</td>
<td>19,18</td>
<td>類似型</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td>"</td>
<td>28,18</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td>"</td>
<td>37,17</td>
<td>相違型</td>
</tr>
<tr>
<td>13</td>
<td>"</td>
<td>"</td>
<td>34,11,2</td>
<td>"</td>
</tr>
<tr>
<td>14</td>
<td>"</td>
<td>"</td>
<td>12,5</td>
<td>"</td>
</tr>
<tr>
<td>15</td>
<td>"</td>
<td>同大型</td>
<td>5,4</td>
<td>"</td>
</tr>
<tr>
<td>16</td>
<td>"</td>
<td>大小型</td>
<td>28,5</td>
<td>"</td>
</tr>
<tr>
<td>17</td>
<td>"</td>
<td>"</td>
<td>14,7</td>
<td>"</td>
</tr>
<tr>
<td>18</td>
<td>"</td>
<td>同大型</td>
<td>4,3</td>
<td>"</td>
</tr>
<tr>
<td>19</td>
<td>"</td>
<td>大小型</td>
<td>18,枯</td>
<td>"</td>
</tr>
<tr>
<td>20</td>
<td>"</td>
<td>同大型</td>
<td>枯, 枯</td>
<td>"</td>
</tr>
<tr>
<td>21</td>
<td>"</td>
<td>大小型</td>
<td>枯, 枯</td>
<td>"</td>
</tr>
<tr>
<td>22</td>
<td>"</td>
<td>"</td>
<td>枯, 枯</td>
<td>"</td>
</tr>
<tr>
<td>23</td>
<td>B4801×B5</td>
<td>"</td>
<td>8,枯</td>
<td>相違型</td>
</tr>
<tr>
<td>24</td>
<td>"</td>
<td>"</td>
<td>枯, 枯</td>
<td>"</td>
</tr>
<tr>
<td>25</td>
<td>"</td>
<td>同大型</td>
<td>枯, 枯</td>
<td>相違型</td>
</tr>
<tr>
<td>26</td>
<td>B4801×B11-4</td>
<td>"</td>
<td>39,29</td>
<td>相違型</td>
</tr>
<tr>
<td>27</td>
<td>"</td>
<td>大小型</td>
<td>3,枯</td>
<td>相違型</td>
</tr>
<tr>
<td>28</td>
<td>"</td>
<td>"</td>
<td>枯, 枯</td>
<td>"</td>
</tr>
<tr>
<td>29</td>
<td>B31×B5</td>
<td>同大型</td>
<td>35,27</td>
<td>類似型</td>
</tr>
<tr>
<td>30</td>
<td>師走桑×B5</td>
<td>大小型</td>
<td>49,25</td>
<td>相違型</td>
</tr>
<tr>
<td>31</td>
<td>"</td>
<td>"</td>
<td>24,14</td>
<td>"</td>
</tr>
<tr>
<td>32</td>
<td>"</td>
<td>“</td>
<td>36,18</td>
<td>"</td>
</tr>
<tr>
<td>33</td>
<td>C2-6×B5</td>
<td>同大型</td>
<td>31,23</td>
<td>類似型</td>
</tr>
<tr>
<td>34</td>
<td>"</td>
<td>大小型</td>
<td>38,29,枯</td>
<td>相違型</td>
</tr>
<tr>
<td>35</td>
<td>"</td>
<td>"</td>
<td>23,17</td>
<td>"</td>
</tr>
<tr>
<td>36</td>
<td>"</td>
<td>“</td>
<td>枯, 枯</td>
<td>"</td>
</tr>
<tr>
<td>37</td>
<td>C32×C19-2</td>
<td>同大型</td>
<td>26,20</td>
<td>類似型</td>
</tr>
<tr>
<td>38</td>
<td>C5003-3×C19-2</td>
<td>“</td>
<td>16,15</td>
<td>相違型</td>
</tr>
</tbody>
</table>

注：1. 対照の株条長はいずれも5個体の平均値で示す。
 2. 枯は本葉の展開後に枯絶したものを示す。
し，何回も材料がとれないので，1種子から発芽した多胚種子実生のうち2個体とも10cm以上の実生におけるアイソサイムパターンのみを第2図，3図に表わした。また，パーオキシダーゼ，インドール酢酸オキシダーゼアイソサイムとも，うすいバンドは除外して表わした。インドール酢酸オキシダーゼアイソサイムの①寄りのバンド（A-5〜8）は鮮明に現われるが，陽極の試料を取り寄りのバンド（A-11〜16）は生長で劣っている実生ほど不鮮明であったので，①寄りのバンドのみで表わした。

第2図及び3図のパーオキシダーゼおよびインドール酢酸オキシダーゼのアイソサイムパターンを併せて比較すると，多胚種子実生はその交雑親のどちらとも異なり，両親の中間のパターンを示した。

次に1つの多胚種子から生長した1組の実生の間で比較すると，一方の実生のアイソサイムパターンが他方と異なっているもの（相違型という）が認められた。すなわち，No.2, 7, 9, 12, 26, 30, 31, 32, 34, 35, 38の合計11組の多胚種子実生のアイソサイムパターンが相違型であり，交雑組合せ別にみればB4801-3×B5が12組のうち4組，B4801×B11-4が1組のうち1組，B31×B5が1組の中の1組，御三光×B5は3組の中の2組，C32×C19-2は1組の中の2組，C5003-3×C19-2は1組の中の1組であり，ほとんどの交雑組合せに相違型が認められた。

第1表は多胚種子実生の発芽期における大きさと落葉期の枝条長およびアイソサイムパターンの異同を示す。No.8, 15, 18, 38，などのように，発芽時に同型であった多胚種子実生の大きさは落葉期の枝条長があまり大きくなるが，他方，大小型は枝条長に大きな差がある傾向があった。しかし，No.2のように同形でも枝条長の差が大きいものもあり，No.10のように大小型でありながらその後の生長中に大きな差の生じていないものがあった。なお，多胚種子実生の枝条長を対照の白芽転染（9）×白芽転染（8）およびB4801-3×B5の正常な実生より全体的に劣り，2〜49cmと不揃いであった。

次に発芽時の大きさや落葉期の枝条長とアイソサイムパターンにおける異同は明確な関係は認められなかった。

秋末まで生長を続けた多胚種子実生の葉の形はいずれも全縁であり，業および芽の大きさ，色並びに樹色などにおいて，1組の多胚種子実生間における差異は認められなかった。しかし，アイソサイムパターンにおいて相違型であったNo.31は一方の葉形が卵形で鋸歯であるのに対し，他方は心形で乳頭状鋸歯であった。

考 察
多胚種子の形成には次の3つが考えられている。第1は栄心細胞から胚が発生するものである。これはカンヒ類の多くの品種にみられる多胚性で，部中心に近い栄心組織内の内側の細胞が分裂した無性的な胚である（OSAWA, 1912；上野ら，1967）。

第2に受精胚の分割によって発生するものである。これは受精した胚が発育初期に分体して生じるもので，カンヒ類の単胚性品種における多胚現象はこのようにして起こるという（OZSAN・CAMERON, 1963；上野ら，1967）。

第3は1つの胚のうち2個以上の細胞を形成し，それから胚が発生するか，または1つの卵細胞と胚のうちを構成する助胚細胞，反足細胞などから胚を形成するものである。

桑の多胚種子形成がこれに3要因のどれに基づくかを明らかにするため，遺伝子のより直観的な産物であるアイソサイム（遠藤，1974）のバンドパターンにより以下に考察する。

第2, 3図に示したように，いずれの交雑組合せにおいても多胚種子実生のアイソサイムパターンは両親のパターンの中間を示していた。このことはいずれの多胚種子も受精胚であったといえるであろう。第1の場合の栄心細胞から発生した胚は無性胚であり，親種と同じアイソサイムパターンを示すので，桑の多胚種子の形成要因とは考えられない。

次に第2の受精胚の分割による場合は，1つの多胚種子から生長した1組の実生は同一の遺伝子をもち，同一のアイソサイムパターンを示すはずである。しかしNo.2, 7, 9, 12, 26, 30, 31, 32, 34, 35および38のアイソサイムパターンは互に異なっていた。また，前報（尾尻，1979）に述べたように染色体数はすべて28本であったので，異なったアイソサイムパターンは遺伝子構成の差を示すものと考えられる。更に，No.31の実生間で葉の細部形態に差が認められた。以上のことから，No.2, 7など相互に異なったアイソサイムパターンを示す11個の多胚種子
については、受精卵の分割によって生じたとは考えにくい。これらの要因は第3の場合、すなわち1胚のうちに2個の卵細胞を形成し、それが各々受精され、また卵細胞とそれ以外の胚のうち構成細胞が受精して、多胚種子を形成したものと推察される。

同じアソサイムパターンを示す多胚種子実生については、葉および芽の形態や樹色などで差異がなかったこともあり、受精卵の分割によって生じた可能性も否定できない。しかし、バーキンジーーやおよびインドール酵酸オキシダーゼのアソサイムパターンが同じであっても、そのものが遺伝子構成において完全に同じであることを意味するものではない。B4801-3・B5の正常な実生を無作為に調査した結果でも、同じアソサイムパターンを示す実生が多く存在していた。したがって、バーキンジーーやおよびインドール酵酸オキシダーゼのアソサイムパターンが同じであっても、そのものが遺伝子構成において完全に同じであることを意味するものではない。

第1表に示したように、発芽時における同型の多胚種子実生が落葉期に同程度の枝条長であり、大小型が枝条長に大きな差を生じる傾向にあった。発芽時の同型で、大小型は前報に述べたように、多胚種子内の胚の大きさに起因すると思われるが、それがその後の生長に大きな影響を与えたものと考えられる。他方、No.2のように発芽時の同型が枝条長に大きな差を生じたり、No.10のように大小型が同程度になる場合もある。これらは同一ポットに植えられたので環境条件に差があったとは考えにくいので、遺伝的差異による可能性が強い。枝条の伸長性とアソサイムパターンとの関係についてみると、発芽時に同型でその後の生長に大きな差を生じたNo.29とNo.33では、バーキンジーーやおよびインドール酵酸オキシダーゼのアソサイムパターンが同じか似ていたにもかかわらず、遺伝子構成において差があったものと考えられる。したがって、アソサイムパターンが類似型であったものの中に遺伝的差異のあるものがあることが推定されるので、この報告で得られた結果では、多胚種子の多くは1胚のうちに2個の卵細胞、または1個の卵細胞と助胎細胞や反足細胞などが受精してできるものと考えられる。

摘要

第1報の材料を用い、澱粉ゲル電気泳動法によりバーキンジーやおよびインドール酵酸オキシダーゼのアソサイムパターンを、枝条伸長性等の形質を調査し、多胚種子形成の要因を考察した。

1. 多胚種子実生のアソサイムパターンは両親の中間の型を示した。
2. 1個の多胚種子から生長した1組の実生間でアソサイムパターンの差異が認められるものが調査個体22の中11個あった。
3. 多胚種子実生の枝条長に対照の実生よりかなり劣り、多胚種子から生長した1組の実生の間では発芽時の同型はその後の生長に大きな差がなく、大小型は差が大きく出る傾向があった。しかし、発芽時の同型、大小型と枝条長に一定の関係が認められない場合もあった。
4. 多胚種子実生から発芽した1組の実生の間に比較すると、大部分は葉および芽の形態、樹色などに差は認められなかったが、1組の多胚種子実生間葉の形において差異が認められた。
5. 以上の結果、多胚種子から発芽した1組の実生の間に遺伝的な差異があったと考えられるので、多胚種子の多くは受精胚分割によって発生したものでなく、1胚のうちに2個以上の卵細胞を形成し、それが各々受精され、1個の卵細胞とそれ以外の胚のうち構成細胞が受精して形成したものと推察される。

文 献

青木幸一郎・永井 裕(1978)：最新電気泳動法、671pp., 塔川書店、東京。

遠藤 徹(1974)：蛋白質酵素酵素, 19, 668-682。

杉山多四郎(1960)：日華稲, 19, 340-342。

上野 勇・岩政正男・西浦昌男(1967)：農試報, 57, 11-21.
Summary

Growth and isozyme pattern of seedlings from polyembryonic seed in the mulberry, *Morus* spp.

By

Masayoshi Ogure

To elucidate the mechanism responsible for polyembryony in the mulberry seedlings, developed from the polyembryonic seeds and their parents were compared with regard to the pattern of peroxidase and IAA oxidase isozymes and some morphological traits.

In almost all twin seedlings, most of the peroxidase and IAA oxidase isozyme bands of the parents occurred simultaneously, though in some seedlings one or two of the bands were intermediate between those of the parents as to the location and intensity.

Therefore, the polyembryonic seeds seemed not to contain asexual embryos which had been formed by the proliferation of nucellar cell having the seed-parent genotype.

Of 22 pairs of the twin seedlings investigated, 11 pairs showed some differences in the peroxidase isozyme patterns each other.

Generally, the seedlings derived from the same polyembryonic seeds were similar in shape, size and color of leaves and buds. But, there were one exceptional twin seed which gave rise to seedlings of different leaf shapes.

Inasmuch as the differences in the isozyme patterns and morphological traits appear to be genetically determined, it may be concluded that most of the polyembryonic seeds in the mulberry are not formed from the division of a fertilized embryo, but originated from fertilization of two or more egg cells which were formed in a embryosac, or from fertilization of one egg cell and the cells in a embryosac, for example, synergid and antipodal cells.

(Sericultural Experiment Station, Suginami-ku, Tokyo 〒166)