AORTITIS SYNDROME AND HYPERTHYROIDISM
—A CASE REPORT AND REVIEW OF THE JAPANESE LITERATURE—

YOSHIHIRO SATO1, MASARO KAJI1, SHUNJIRO KAGIYAMA2 AND KENICHI NAGASAWA2

The First Department of Internal Medicine, Kurume University, School of Medicine, Kurume, 8301 and Department of Internal Medicine, Saga Prefectural Hospital, Saga, 8402, Japan

Received for publication May 21, 1980

A patient with aortitis syndrome and hyperthyroidism was reported. A review of the literature revealed 14 other cases with aortitis syndrome and autoimmune thyroid diseases in Japan. These cases may add to other indirect evidence that aortitis syndrome may be caused by an autoimmune mechanism.

INTRODUCTION

Aortitis syndrome, observed most frequently in young oriental women, is an occlusive polyarteritis mainly of the branches of aortic arch (Ueda et al., 1965). For this condition various names, such as Takayasu's arteritis, pulseless disease, aortic arch syndrome, and young female arteritis, have been given. Ueda et al (1976) proposed the term "aortitis syndrome", which we will use in the present report.

We have recently seen a patient with aortitis syndrome and hyperthyroidism. This is of interest in relation to the etiology of these disorders. Although the etiology of aortitis syndrome is still unknown, many authors suggested the disease may be included in the group of autoimmune disease. On the other hand, the evidence for an autoimmune basis in hyperthyroidism is considerable (Werner et al. 1972). It is not uncommon for more than one autoimmune disease to occur in an individual concurrently, but a few papers referred to this association.

REPORT OF A CASE

A 32-year-old man was admitted to the hospital in December 12, 1978 because of palpitation, general malaise, and weight loss, with six months' duration. There was no past history of fever, visual disturbance, dizziness, and unconsciousness attack.

Physical examination revealed an alert, slightly under-nourished individual. The left radial pulse was normal in tension, but no pulsation was felt in the right branchial and radial arteries. Blood pressure was 110 systolic, 80 diastolic in the right arm, and 190 systolic, 80 diastolic in the left. Temperature was normal. The cardiac rhythm was regular with a rate of 108. The hands were warm and moist, and tremor of the fingers was present. The patient had exophthalmus. The thyroid was diffusely enlarged. Auscultation revealed a bruit maximal at the right neck, indicating stenosis of the right common carotid artery. This bruit was transmitted to the base of the heart. There was also noted a bruit in the left upper quadrant of the abdomen.
Ophthalmologic examination revealed nothing peculiar in both fundi. Deep tendon reflexes were exaggerated.

Examination of the blood revealed a hematocrit 48%, a red-cell count of 5.7 million, and a white-cell count of 6100, with 49% polymorphonuclear leukocyte, 6% monocyte, 1% eosinocyte, and 44% lymphocyte. Total serum protein was 7.6 mg, total cholesterol 132 mg, blood urea nitrogen 16 mg, and creatinine 0.8 mg per 100 ml. Serum sodium was 143, potassium 4.3, and chloride 104 mEq per liter. Serum immunoelectrophoresis showed an albumin 61.0%, α_1-globulin 3.0%, α_2-globulin 8.3%, β-globulin 10.2% and γ-globulin 17.2%. Erythrocyte sedimentation rate was 2 mm/hr. Tuberculin reaction was ++ positive. A serologic test for syphilis and CRP were negative. The basal metabolic rate was +29%. Serum thyroxine level was 17.5 μg per 100 ml, and triiodothyronine was 4.4 ng per ml. Serum thyrotropin response to thyrotropin-releasing hormone was subnormal. Plasma renin activity in basal state was 3.5 ng per ml per hour. Titer of antimicrosomal antibody was 1:6400, but antithyroglobulin antibody, rheumatoid factor, antinuclear antibody, and anti-aorta antibody were all negative.

A retrograde thoracic aortogram revealed a marked stenosis of the left subclavian artery, narrowing of the stem of the right common carotid artery, and irregular outline of both the aortic arch and the descending aorta (Fig. 1). A subsequent abdominal aortogram revealed narrowing of the abdominal aorta at the level of the first and second lumbar vertebrae, a marked stenosis of the left renal artery,
AORTITIS SYNDROME AND HYPERTHYROIDISM

and irregular outline of the upper half of the abdominal aorta (Fig. 2).

Thus, he was diagnosed as aortitis syndrome and hyperthyroidism and the diagnosis of aortitis syndrome was made from the arteriographic findings although there were no such findings as increase the erythrocyte sedimentation rate, positive CRP and anti-aorta antibody.

DISCUSSION

Not merely autoimmune thyroid diseases (Graves' disease and Hashimoto's thyroiditis) but also aortitis syndrome sometimes are associated with such autoimmune disease as rheumatoid arthritis or systemic lupus erythematosus. However, the association of aortitis syndrome and autoimmune thyroid disease has been reported in only 14 cases previously (Tezuka et al., 1965; Takasu et al., 1962; Ueda et al., 1965; Fujiwara et al., 1969; Eguchi et al., 1972; Kuniyoshi et al., 1973; Kishi et al., 1974; Kito et al., 1974; Yoshimaru et al., 1976; Takagi et al., 1978). As shown in Table, all patients were female, and the age ranged from 20 to 54 years. Five patients had histological findings compatible with Hashimoto's thyroiditis, and five had clinical and laboratory findings which are suggestive of Graves' disease. One patient reported by Kuniyoshi et al. (1973) had systemic lupus erythematosus. Takagi et al. (1978) reported that three cases (13%) out of 23 patients of aortitis syndrome were associated with autoimmune thyroid diseases and suggested that autoimmune thyroid disease may be a common complication of aortitis syndrome. On the

<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Year</th>
<th>Age</th>
<th>Sex</th>
<th>Clinical diagnosis</th>
<th>Histological diagnosis</th>
<th>Thyroid antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tezuka</td>
<td>1965</td>
<td>26</td>
<td>F</td>
<td>Hyperthyroidism</td>
<td></td>
<td>anti-TG* positive</td>
</tr>
<tr>
<td>2</td>
<td>Takasu et al.</td>
<td>1962</td>
<td>29</td>
<td>F</td>
<td>Hyperthyroidism</td>
<td></td>
<td>anti-TG* 1:10^5</td>
</tr>
<tr>
<td>3</td>
<td>Fujiwara et al.</td>
<td>1967</td>
<td>29</td>
<td>F</td>
<td>Myxedema</td>
<td>Hashimoto's thyroiditis</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Kuniyoshi et al.</td>
<td>1973</td>
<td>45</td>
<td>F</td>
<td>Myxedema, SLE</td>
<td>Hashimoto's thyroiditis</td>
<td>anti-M** 1:10^4</td>
</tr>
<tr>
<td>5</td>
<td>Kishi</td>
<td>1974</td>
<td>45</td>
<td>F</td>
<td>Hyperthyroidism</td>
<td></td>
<td>anti-M** positive</td>
</tr>
<tr>
<td>6</td>
<td>Kito et al.</td>
<td>1974</td>
<td>38</td>
<td>F</td>
<td>Myxedema</td>
<td>Hashimoto's thyroiditis</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Yoshimaru et al.</td>
<td>1976</td>
<td>38</td>
<td>F</td>
<td>Hyperthyroidism</td>
<td></td>
<td>anti-TG* 1:160^2</td>
</tr>
<tr>
<td>8</td>
<td>Takagi et al.</td>
<td>1978</td>
<td>42</td>
<td>F</td>
<td>Euthyroid Graves'</td>
<td>Hashimoto's thyroiditis</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Takagi et al.</td>
<td>1978</td>
<td>20</td>
<td>F</td>
<td>Hypothyroidism</td>
<td>Hashimoto's thyroiditis</td>
<td>anti-TG* 1:1600</td>
</tr>
<tr>
<td>10</td>
<td>Takagi et al.</td>
<td>1978</td>
<td>54</td>
<td>F</td>
<td>Hyperthyroidism</td>
<td>Hashimoto's thyroiditis</td>
<td>anti-TG* 1:400</td>
</tr>
</tbody>
</table>

* Anti-thyroglobulin antibody
** Anti-microsomal antibody
other hand, Thomas and Croft (1974) reported five (8.5%) out of 59 patients with giant cell arteritis had a history of thyrotoxicosis and suggested that giant cell arteritis is caused by an abnormal immune mechanism. Although aortitis syndrome differs clinically from giant cell arteritis, there is no clear histological difference between them (Nasu et al., 1968; Ito et al., 1978). Therefore, such association of autoimmune thyroid disease and aortitis syndrome or giant cell arteritis evokes considerable interest and raises question about the possible common immunological mechanisms of these diseases of artery.

The evidence for an autoimmune basis for hyperthyroidism is considerable (Werner et al., 1972). On the other hand, as to the etiology of aortitis syndrome, the most widely recognized opinion is that an autoimmune process is working in its origin (Sandring and Welin, 1961; Judge et al., 1962; McKusich, 1965; Riehl and Brown, 1965). The association of aortitis syndrome and hyperthyroidism may indicate a common origin as autoimmune disorders.

REFERENCES

