C-15 チェック部インタラネットの構築

杏林大・医・中央臨床検査部
○高城敏志、江上照夫、若谷信滋
内村英正

はじめに 当院の検査部は100名の職員が4つ健在
に分かれ配属されているため、情報の伝達方法が複雑で
うまく機能しないケースも見受けられた。検査システム
を平成10年10月よりイーサネットLANに変更する機会に、基幹系シス
テムと情報系システムの併用を目指しインタラネットの構
築を始めた。

システム構築 インタラネットの運用を検討するため
に情報ネットワーク委員会を設立した。委員会ではネット
ワーク利用上の基準を策定し、職員への啓蒙とネット
ワーク利用の監視を行っている。また、インタラネットの
核となるホームページのコンテンツについて検討を加
え、将来的に病院全体への公開することを念頭に置き開
発を進めた。コンテンツには①毎日行事予定、②業務連
絡、③業務マニュアル、④議事録、⑤学会スライド、⑥
内線番号検索、⑦医学用語辞典などを作成した。

利用状況 検査部ホームページは本年5月より1ヶ月
の試験運用を行い6月より開始した。6月の利用状況で
は40％の人が毎日見ていると答え、見たことがない人
は17％だったが、9月に行った調査では毎日見ている人
が70％、見ていない人は7％となった。利用頻度の最も
高いコンテンツは電子掲示板で、発言に対するコメント
を付けるためオンライン会議室として利用し、特
殊な症例の検討やパソコンの利用法などが話題となっている。
その一方で、17％が掲示板での発言をしたくないと
答え、47％が発言をしたくが抵抗があると言っている。

まとめ インタラネットを運用することにより情報の
共有化が可能となった。業務に直結させることによって、
3ヶ月で職員の9割以上が利用するようになり、情報伝
達の漏れが少なくなった。

C-16 PGP 9.5抗体を用いたヒト胎児鏡鼻器の観察

杏林大・保・解剖④、医・第一解剖①
○幸松麻衣子①、高見茂②、松村撫子④
西山文朗②

目的 哺乳類の主なフェロモン受容体系は鏡鼻系であり、
鏡鼻上皮の構成細胞である鏡鼻受容ニューロンは、鏡鼻
神経を介してフェロモン情報を一次中枢である副嗅球に
伝えている。ヒト胎児においても、鏡鼻上皮及び鏡鼻神
経が存在するので、胎児鏡鼻上皮細胞が機能している可
能性があるが、細胞生物学的詳細は大きくない。そこで、今
日我々は動物の鏡鼻受容ニューロンに含まれるprotein
gene product 9.5（PGP 9.5）に対する抗体を用い、5
ヶ月胎児鏡鼻器の免疫組織化学検査をおこなった。

方法 検体（10例）は、フォルマリン固定された後エ
タノール中に長期保存されていた。鏡鼻器を含む鼻部
組織を取り出し、デンプン固定液にて再固定後、クリオ
スタットにて凍結切片を作製した。一次抗体としてウシ
のヒト PGP トルクローナル抗血清（希釈率1:2,000）
を用いた。免疫染色はペルオキシダーゼ・ストレプト
アビシン・ビオチン法を採用した。

結果および考察 10例のうち9例の鏡鼻器に、固定
状態の相違から染色性に差があるもの、PGP 9.5免疫
活性が認められた。鏡鼻上皮細胞は、多列上皮であり、
PGP 9.5免疫陽性細胞の細胞体は、ほぼ上皮全層に亘
ってみられた。細胞体を頭部起始を管腔まで伸長して、終
末部を形成しているものが観察され、基底膜付近には突
起の認められない細胞も散見された。さらに粘液腺細胞
にはPGP 9.5免疫陽性を示す神経線維が観察された。
一次抗体を用いて免疫染色をおこなったものを陰性コント
ロールとしたが、免疫陽性像は全く認められなかった。
頭部突起をもつ鏡鼻上皮細胞の形態は各部の鏡鼻受容ニューロンと類似しており、PGP 9.5免疫陽性神経線維束は
鏡鼻神経である可能性が高い。したがって、5ヶ月胎児
鏡鼻上皮細胞はフェロモンを受容し、鏡鼻神経を介して
その情報を中枢に伝えている可能性が考えられる。

C-17 一次味覚路における脳由来神経栄養因子の

局在

杏林大・保・解剖
○岡田美代子、高見茂、西山文朗

目的 我々の研究室ではラット有細胞原頭味噌における
脳由来神経栄養因子（brain-derived neurotrophic factor、BDNF）の免疫活性が存在することを明らか
にした。味覚系におけるBDNFの作用機軸を解明する
基礎研究として、今回は背状線頭味噌および一次味覚路
に遊走神経線維を送っている舌暗神経下神経節における,
BDNF蛋白とBDNF mRNAの局在を、有細胞原
頭味噌においてはBDNF mRNAの局在を、免疫組織
化学的方法、in situ hybridization（ISH）法を用い

NII-Electronic Library Service