著者

軽部 美穂

杏林大学医学部医学研究科内科学I専攻

(2000.7.11受付)

要旨

慢性腎不全（CRF）患者に関して、フローサイトメトリー（FCM）を用いた末梢血リンパ球サブセットの詳細な解析と、FF係数法を用いたCD4陽性Tリンパ球上のCD4抗原密度、およびリンパ球芽球化試験におけるCD4およびCD25抗原密度の定量的解析を行った。対象はCRF症例として維持透析（HD）症例22例、保存期の末期腎不全（ESRD）症例8例の他、健常対照群27例である。血流法により末梢血を流し、標識モノクローナル抗体で三重染色後、FCMにてCD3陽性細胞中のCD4、CD8、CD45（RA、RO）抗原の陽性率、絶対数を測定し、中庸、渡辺らの開発したFF係数法を用いて、CD4陽性Tリンパ球のCD4抗原密度を算出した。次にHD10例、対照群9例を対象に、末梢血単核球を用いたConA芽球化試験を行い、CD3、CD4陽性細胞上のCD4およびCD25抗原に関して、芽球化前のFSC、FI、FF係数を算出した。その結果、CRF症例において対照群に比し全リンパ球数、Tリンパ球数、CD4陽性細胞数の有意な低下がみられた。CD4陽性Tリンパ球のnaive/memory細胞比には有意な変化はなかった。CD4陽性T細胞におけるFSC、FIには有意差はみられなかったものの、FF係数はHD症例において対照群に比し有意に上昇を示した。芽球化反応におけるFF係数の検討では、芽球化後のHD症例におけるCD4は対照群のそれに比し明らかに低値を認め、CD25は逆に有意な高値であった。CRF症例においては、CD4陽性Tリンパ球の量的減少とともにCD4抗原の密度、さらには活性化状態におけるCD4およびCD25分子の発現レベルの変調の存在が明らかにされた。

緒言

慢性腎不全（以下CRFと略す）状態においては、原因疾患の如何を問わず末期腎不全（以下ESRDと略す）に進行すると細胞性免疫の異常を生じ、この状態は血液透析（以下HDと略す）治療が導入された後も継続する例が多いことが、結核罹患率の高さなどの臨床的な事実とや、ツベルク反応の陰転化、末梢血リンパ球数の異常、リンパ球芽球化反応の低下などの検査上の異常所見から既によく知られている。CRF症例の末梢血Tリンパ球の異常についてはこれまでに多くの研究が行われているが、CRF症例におけるTリンパ球サブセットの詳細な解析は充分になされておらず、またこれらのTリンパ球の表面抗原密度の定量的解析も行われていない。本研究では、

Key words: chronic renal failure, T lymphocyte subsets, CD4, CD25, FF index, flow cytometry.
HD導入前、導入後のCRF症例について、Tリンパ球サブセットの変動のみならず、蛍光強度（fluorescence intensity；FI）と前方散乱光（forward light scatter；FSC）から算出する中原らのFF係数法を応用し、Tリンパ球の細胞表面抗原密度の定量的解析を行った。さらに芽球化反応において、Tリンパ球の表面抗原密度を経時に定量分析した。その結果、CRFにおけるTリンパ球の量的、質的変動について新しい知見を得たので報告する。

対象症例と実験方法

1. 対象症例

杏林大学病院に通院、ないし入院中のCRF症例30例を対象とした。その内訳はHD導入前のESRD8例（慢性腎炎3例、糖尿病3例、腎硬化症2例、男性6例、女性2例、年齢52士17歳、血清クリアチニン値7.3士1.6（mg/dl））、HD導入後22例（慢性腎炎11例、糖尿病7例、腎硬化症4例、男性11例、女性11例、平均年令49士13歳）である。なおHD症例はHD導入後1年未満8例、HD導入後1〜6年6例、HD導入後6〜12年8例の3群に分けて検討を行った。いずれの群も輸血歴、B型、C型肝炎ウィルス陽性、梅毒血清反応陽性、結核罹患、ループス腎炎などの自己免疫疾患等、Tリンパ球の変動に影響を及ぼすと思われる疾患を有する症例は検索対象から除外した。対照として健常人27例（男性15例、女性12例、年齢50士10歳）についても全く同様な検索を実施した。今回の研究を実施することにあたり、CRF患者、健常対照群ともに研究の趣旨を充分に説明し、同意が得られた場合のみ末梢静脈から採血を行いリンパ球の質的、量的検索を実施した。

2. 実験方法

1）末梢血の採取

対照群およびESRD患者は午前の時間帯に、HD患者は透析開始直前に10mlのヘパリン加採血を行った。

2）Concanavalin A (ConA) による末梢血単核球の芽球分化

HD患者10例、対照群9例の末梢血よりFicoll-Paque（Pharacemia社製）を用いた比重遠心法にて末梢血単核球を分離し、10%牛胎児血清を加えたRPMI1640 (10% FCS-RPMI) 培養液にてこれを洗浄、その後1×10^6/mlの細胞濃度に調整した上、ConA10μg/mlを含む10% FCS-RPMI中で72時間、37℃培養を行った。

3）直接蛍光抗体三重染色法

末梢血の蛍光染色は全血法を用いた。Table 1に示した1〜5の組み合わせにより3種類の蛍光色素標識モノクローナル抗体（FITC-CD45RA; Pharmingen社製、FITC-CD45RO; DAKO社製、PE-CD3、Per-CP-CD4、Per-CP-CD8; Becton Dickinson社製）各5〜20μlを末梢血100μlに同時添加して三重染色を行った。蛍光標識抗体を加えた全血を4℃にて30分インキュベートした後、phosphate buffered saline (PBS)にて洗浄、次に溶液剤（塩化アンモニウム）を全血100μlに対して3ml加え、室温にて10分インキュベートした。この細胞をPBSにて洗浄した後、0.1% sodium azide含有PBSに再浮遊させ、FACScan flow cytometer（Becton Dickinson社製）による測定とLysis IIソフトウエアを用いたデータ解析を行った。ConAにより芽球化された単核球の蛍光染色に関しては、1×10^6個の細胞を100μlのPBSに浮遊させたものに、末梢血の染色の際と同様、各種蛍光標識モノクローナル抗体（FITC-CD25; DAKO社製、PE-CD3、Per-CP-CD4; Becton Dickinson社製）をTable 1の⑥の組み合わせで各々5〜20μl添加した。抗体添加後4℃にて30分インキュベートした後、PBSに

Abbreviations: ConA, concanavalin A; CRF, chronic renal failure; ESRD, end-stage renal disease; FCM, flow cytometry; FF, the first 'F' of FF stands for the fluorescence intensity and second one for the F in the forward light scatter; FI, fluorescence intensity; FITC, fluorescence isothiocyanate; FL, fluorescence; FSC, forward light scatter; HD, hemodialysis; PE, phycoerythrin; Per-CP, peridinin chlorophyll protein; SSC, side scatter.
The Kyorin Medical Society

Table 1 Immunofluorescence staining of T cell subsets by three different monoclonal antibodies

<table>
<thead>
<tr>
<th>Combinations</th>
<th>FITC</th>
<th>PE</th>
<th>Per-CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>① control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>② CD45RO</td>
<td>CD3</td>
<td>CD4</td>
<td></td>
</tr>
<tr>
<td>③ CD45RA</td>
<td>CD3</td>
<td>CD4</td>
<td></td>
</tr>
<tr>
<td>④ CD45RO</td>
<td>CD3</td>
<td>CD8</td>
<td></td>
</tr>
<tr>
<td>⑤ CD45RA</td>
<td>CD3</td>
<td>CD8</td>
<td></td>
</tr>
<tr>
<td>⑥ CD25</td>
<td>CD3</td>
<td>CD4</td>
<td></td>
</tr>
</tbody>
</table>

FITC, fluorescence isothiocyanate; PE, phycoerythrin; Per-CP, peridinin chlorophyll protein.

にて洗浄、0.1% sodium azide含有PBSに再浮遊させ、末梢血と同様にflow cytometry（FCM）を行った。

4) FCMによる解析およびFF係数の算出

CaliBRITE Beads（Becton Dickinson社）を用いて、FSC、およびFL（Fluorescence; 蛍光）1, 2, 3のゲインの調整を行った後、およそ2×10^4から5×10^4個の細胞について以下の方法で散乱光、蛍光強度に関するデータを集積した。末梢血のサンプルに対して、まずFSC及び側方散乱光（side scatter: SSC）によるscattergramのパターンにもとづきリンパ球群にgateを設定し、この中に含まれる細胞を測定の対象とした。ConAにより芽球化された単核球の解析においては、全ての細胞を測定の対象とした。そしてこれらの細胞に関して各抗体の組み合わせによって同定されるリンパ球各群の陽性率の他、各群におけるCD4もしくはCD25のFIの測定を行った。

FF係数の算出のため、FSC/SSCのscattergram上で各群集団に含まれる細胞数がほぼ同数になるようにリンパ球集団をFSC値に基づいて5分割し、各群集団毎のFSCおよびFIの平均値（MFSC, MFI）を測定した。次にこの5群の（MFSC, MFI）値データをそれぞれ（X, Y）座標上にプロットし、その5群から求められる回帰直線y=a+bxの、倾きbをFF係数とした。FFはFI, FSCの頭文字を取ったものである。各細胞集団全体の少なくとも95%以上（Mean±SD相当）をFF係数算定の対象とし、明らかに直線から外れるような場合に限り末端の1分画は計算の対象外とした。測定結果はMean±SDで表し、2標本両側t検定により危険率5%及び危険率1%で有意差を判定した。

結果

1. 末梢血白血球、リンパ球の定量的変動

Table 2に示すごとく、末梢血中の全白血球数はHD1年未満群で対照群に比して有意な高値（p<0.05）を認めたが、他のHD期間群、ESRD群では有意差を認めなかった。リンパ球数に関しては、HD症例全体は対照群に比して有意な低下（p<0.01）を認め、各HD期間別に比較しても有意な低値（1年未満、p<0.05；1~6年、p<0.05；6~12年、p<0.05）を示したが、HD期間別群の間での有意差は認められなかった。ESRD群のリンパ球数も対照群に比して有意な低値（p<0.01）を示したが、HD群との間には有意差を認めなかった。CD3+T細胞についても基本的にはリンパ球全体と同様の所見を認めた。なお、白血球数、リンパ球数、Tリンパ球数いずれに関しても、年齢間での有意差は認められなかった。

2. 末梢血Tリンパ球主要サブセットの定量的解析

末梢血におけるCD3陽性Tリンパ球の二つの主要なサブセットの定率を行った。CD3+CD4+細胞については、対照群からESRD患者、HD患者全体はいずれも有意な低値（ESRD、p<0.05；HD、p<0.01）を示したが、ESRD群とHD全体群の間では有意差はみられず、各HD期間の比較でも有意差は認めなかった。また今回検索した全CRF30症例の内、6例（20%）がCD4陽性細胞数300/μlを示し、5例（17%）が200/μlを示し、特に低値を示した（対照群902±341）。一方CD3+CD8+細胞に関しては、ESRD群、HD群全体とも対照群に比して低値を示す傾向が見られたものの、各群間の統計学的な有意差は認められなかった。さらにTable 3に示すように、このCD4陽性あるいはCD8陽性Tリンパ球上のCD45RA、CD45RO抗原の発現に関する検討を行ったところ、
Table 2 Absolute numbers of WBC, total lymphocytes, T cell and the subpopulations in patients with CRF

<table>
<thead>
<tr>
<th></th>
<th>Healthy controls (n=27)</th>
<th>Chronic renal failure patients (CRF)</th>
<th>Hemodialysis patients (HD)</th>
<th>End-stage renal disease patients (ESRD) (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>Total (n=22)</td>
<td>6169±1734</td>
<td>7081±2680</td>
<td>6850±1682</td>
</tr>
<tr>
<td></td>
<td>less than 1 year (n=8)</td>
<td></td>
<td>8337±3360*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1~6 year (n=6)</td>
<td></td>
<td>6433±1473</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~12 year (n=8)</td>
<td></td>
<td>6312±2424</td>
<td></td>
</tr>
<tr>
<td>Total lymph. (n)</td>
<td></td>
<td>2129±680</td>
<td>1456±526**</td>
<td>1217±635**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1480±585*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1456±459*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1432±579*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1217±635*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1217±635*</td>
<td></td>
</tr>
<tr>
<td>T cell (n)</td>
<td></td>
<td>1333±373</td>
<td>946±324**</td>
<td>851±555**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>988±418*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>939±325*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>911±248**</td>
<td></td>
</tr>
</tbody>
</table>

T-lymphocyte subpopulations

<table>
<thead>
<tr>
<th></th>
<th>CD4+ (n)</th>
<th>CD8+ (n)</th>
<th>CD4/CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (n=22)</td>
<td>902±341</td>
<td>421±235</td>
</tr>
<tr>
<td></td>
<td>less than 1 year (n=8)</td>
<td>567±217*</td>
<td>380±156</td>
</tr>
<tr>
<td></td>
<td>1~6 year (n=6)</td>
<td>615±286*</td>
<td>356±161</td>
</tr>
<tr>
<td></td>
<td>6~12 year (n=8)</td>
<td>540±197*</td>
<td>398±153</td>
</tr>
<tr>
<td></td>
<td></td>
<td>538±165*</td>
<td>373±168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>515±373*</td>
<td>299±220</td>
</tr>
</tbody>
</table>

Data are shown as mean±SD. Period compared: Healthy controls vs. less than 1 year vs. 1~6 y vs. 6~12 y vs. ESRD. *p<0.05, **p<0.01. Disease compared: Healthy controls vs. HD vs. CRF. *p<0.05, **p<0.01. Each value is expressed as number/mm³.

Table 3 Absolute numbers of naive cell, memory cell of CD4+ and CD8+ T lymphocyte subpopulations in patients with CRF

<table>
<thead>
<tr>
<th></th>
<th>Healthy controls (n=27)</th>
<th>Chronic renal failure patients (CRF)</th>
<th>Hemodialysis patients (HD)</th>
<th>End-stage renal disease patients (ESRD) (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (n=22)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>less than 1 year (n=8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1~6 year (n=6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~12 year (n=8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD45RA++/RO−</td>
<td>334±173</td>
<td>180±121**</td>
<td>149±77</td>
<td>187±155**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>202±180</td>
</tr>
<tr>
<td>CD45RA+RO+</td>
<td>161±80</td>
<td>87±52**</td>
<td>81±42*</td>
<td>65±21*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100±100</td>
</tr>
<tr>
<td>CD45RA−RO−</td>
<td>401±158</td>
<td>271±132**</td>
<td>280±160</td>
<td>257±168*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275±153*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>213±186**</td>
</tr>
<tr>
<td>CD45RA++/RO++</td>
<td>1.7±1.8</td>
<td>2.7±4.0</td>
<td>2.0±1.4</td>
<td>2.4±1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.0±6.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0±0.6</td>
</tr>
<tr>
<td>CD45RA−RO−</td>
<td>184±122</td>
<td>168±96</td>
<td>160±93</td>
<td>164±119</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180±93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163±153</td>
</tr>
<tr>
<td>CD45RA+RO+</td>
<td>146±132</td>
<td>97±48</td>
<td>109±56</td>
<td>92±25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90±56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78±63</td>
</tr>
<tr>
<td>CD45RA−RO−</td>
<td>133±120</td>
<td>94±76</td>
<td>74±41</td>
<td>76±37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128±111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55±26</td>
</tr>
<tr>
<td>CD45RA++/RO++</td>
<td>1.0±0.9</td>
<td>0.6±0.3</td>
<td>0.5±0.3</td>
<td>0.7±0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7±0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4±0.2*</td>
</tr>
</tbody>
</table>

Data are shown as mean±SD. Period compared: Healthy controls vs. less than 1 year vs. 1~6 y vs. 6~12 y vs. ESRD. *p<0.05, **p<0.01. Disease compared: Healthy controls vs. HD vs. CRF. *p<0.05, **p<0.01. Each value is expressed as number/mm³.
CD3⁺CD4⁺細胞に関しては、CD45RA⁺⁺RO⁻を示すいわゆる naive 細胞の数は HD 全体群において対照群に比べ有意な減少（p<0.01）を認めた。これも HD 間期別に検討すると、1〜6 年群および6〜12年群で、対照群に比べて有意な（p<0.05）減少を認めた。また CD45RA⁻⁻RO⁺⁺を示す memory 細胞の細胞数については、ESRD 期、HD 期ともに対照群に比べ有意な減少（ESRD 期、p<0.01；HD 期、p<0.01）を示した。naive/memory 細胞の比率、すなわち CD45RA⁺⁺/CD45RO⁻⁻ 逆分画の比率を各群で比較した結果は、HD 全体群および各 HD 期間群、ESRD 群のいずれにおいても対照群との間に有意差はみられなかった。この成績は CD4 陽性 T 細胞に関して、いずれの群においても naive/memory 細胞の比率は比較的一定に保たれていることを示している。一方 CD3⁺CD8⁺細胞では、naive 細胞、memory 細胞のいずれも CRF と対照群と対比で有意差を認めなかった。しかし naive/memory 細胞比をみると、ESRD 患者は対照群に比べ有意な低下（p<0.05）を示した。なお、上記いずれのリンパ球サブセットに関しても年齢との有意な相関関係は見出せなかった。

3. CD4 陽性 T リンパ球における CD4 抗原密度の解析

Table 4 に CRF 各群および対照群の末梢血中の CD4 陽性 T リンパ球における CD4 の平均蛍光強度（MFI）、平均前方散乱光（MFSC）、FF 係数を示す。CD4 の MFI 値は ESRD で対照群に比べて有意な高値（p<0.05）を認めた。MFSC 値は ESRD、HD 全体いずれも対照群と比べて有意差を認めず、また HD 間期別に比較検討した場合にも有意差はみられなかった。一方、HD 群の CD4 に関する FF 係数は対照群に比べて有意に高値（p<0.01）を示した。さらに期間別に分けて比較した場合、HD 1 年未満群の FF 係数は対照群と比較して有意に高値（p<0.05）を示した。なお、MFI、MFSC、FF index いずれも年齢との有意な関連はみられなかった。

4. ConA で誘導される芽球化 T リンパ球上の表面抗原の定量的解析

（1）CD3、CD4 陽性芽球化 T リンパ球における CD4 抗原の発現

CD4 の MFI 値は培養前では HD 群 79±18、対照群 83±4 と両者に有意な差異は認めず、また培養後において、対照群 140±16、HD 患者群 125±32 と両群共に著明に増加したが、両群間には有意な差異はみられなかった。培養前の MFSC 値は、HD 患者で 256±8、対照群で 238±5 と HD 患者で有意な高値（p<0.01）を認めたが、培養後の
MFSC値はHD群476±70、対照群472±53であり、両者の間に有意差を認めなかった。これに対してFF係数は、Fig.1（A）に示すように、培養前ではHD患者0.34±0.11、対照群0.36±0.04と両者の間に有意な差異を示さなかったものの、培養後ではHD患者0.31±0.04、対照群0.39±0.07とHD患者において有意な低値（p<0.05）を認めた。

（2）CD8，CD4陽性細胞化Tリンパ球上のCD25抗原の発現

培養前におけるCD25のMFI値は、HD患者28±8、対照群22±2とHD患者で有意な高値（p<0.05）を認めた。培養後では、HD患者2110±589、対照群1697±400といずれも培養前に比して有意な高値を認めたが、両者間に統計学的な差異はみられなかった。培養前のMFSC値は、HD患者263±11、対照群255±7と両者間に有意差は認められず、培養後のMFSC値においても、HD患者522±51、対照群514±39と両者間に有意差を認めなかった。FF係数は、Fig.1（B）に示すところ、培養前はHD患者−0.11±0.07、対照群−0.13±0.06と、両者間に有意差を認めなかったが、培養後では対照群4.55±1.36に対してHD患者7.28±1.37と、HD群の有意な高値（p<0.01）が認められた。

考察

末梢血中の白血球数は、HD群全体、ESRD群
いずれにおいても対照群に比し有意差を認めた。HD 期間別の検討では HD 1 年未満群において有意な増加を示したが、これは HD 初期には不安定な白血球数を呈するとの従来の報告と一致している。HD 群全体、ESRD 群の CD4 陽性 T リンパ球数は、従来の諸家の報告にみられるように対照群に比し著明に低下していることを確認した。そこで、本研究では、著明な減少のみられた T リンパ球の主要サブセットの変動についての検討を行った。このうち CD4 阳性 T リンパ球数は、HD 患者全体と ESRD 患者の両群、さらに HD 期間で分かった群のいずれにおいてもほぼ 300～700/μl のレンジにあった。これは一般的な健常人の CD4 細胞数 800～1800/μl と比べて明らかに低価であり、CD4 細胞数 500/μl 前後であるとの報告と一致している。またその内訳をみてみると、CRF 症例の 37%が CD4 阳性 T 細胞数 200～400/μl レベルにあった。CD4 阳性 T リンパ球減少を主徴とする AIDS において、CD4 阳性 T 細胞数 300/μl 以下になると結核症、帯状疱疹、口腔カンジダに罹患しやすくなり、「CD4 以下」となることカルテ肺炎等の感染を引き起こし得ることが知られている(1)。今回検討した CRF 症例では、CD4 阳性 T リンパ球数が 200/μl 以下という極端な低下例はみられなかったものの、単にリンパ球数の量的な見地からみても、多くの CRF 症例が健常人に比べ易感染症状態にあると考えられた。一方、CD4 陽性 T リンパ球数は各群で対照群に比して有意な変化はみられなかった。以上より、ESRD 期、HD 期を通じて、CRF 患者における T リンパ球数の低下は主に CD4 陽性細胞群の低下によることを明らかにした。この CD4 陽性細胞の選択的減少の機序に関しては、何らかの免疫異常が関与している可能性も予想される(14)。

リンパ球上に発現する CD45 抗原のアイソフォームの違いから CD4、CD8 陽性 T リンパ球は naive 細胞、memory 細胞の細胞亜群に分類される(2)。naive、memory 細胞間のバランスの変調が免疫能の亢進や抑制にどのように関連しているかその詳細は未だ不明であるが、免疫機能不全を示す例では naive/memory 値が異常を呈することが多いとされる(2)。CRF に関して、naive、memory 細胞の変動についての報告は未だみられないことから、著者はこの点の検討を行い、CD4 陽性 T リンパ球数の有意な減少がみられるものの、naive/ memory 細胞間の量的バランスは保たれていることを明らかにした。一方、CD8 陽性 T リンパ球において、CD45 抗原のアイソフォームの発現は可逆的とされ(2)，ESRD 患者で naive/memory の有意な低下がみられた意義に関しては不明である。今回の成績では、CRF における免疫能異常の主要なメカニズムが CD4 細胞亜群の naive、memory 両細胞間の量的不均衡にある可能性は否定的であると考えられた。

次に中村、渡辺らの開発した新たな手法を、すなわち、対象とする細胞群に関して、細胞サイズと着目する抗原の抗原量との関係を解析するための手法を用いて、CD4 陽性 T リンパ球上 CD4 抗原発現量の定量的な解析を試みた。中村らのこれまでの検討により、例えば CD4 陽性 T リンパ球上 CD4 抗原に関しては、その抗原量を反映すると考えられる CD4 の FI と、細胞のサイズを反映すると考えられる FSC との間に、ほぼ直線的な比例関係が成立していることが明らかにされている(15)。これは、CD4 陽性 T リンパ球上での CD4 抗原の増加率は、細胞のサイズに関わらずほぼ一定の値に保たれていることを示している。このことより、FSC および FI をそれぞれ X, Y 座標上にプロットした場合、その図形直線の傾きは、単位細胞サイズ当たりの CD4 抗原量の増減指標と考えられ、これを CD4 に関する FF 係数とした。細胞一つ当たりの抗原量を表すと考えられる MFI 値、および細胞サイズを反映すると考えられる MFSC 値と共に、この FF 係数を用いることにより、細胞当たりの抗原量、細胞サイズ、抗原密度についての詳細な検討が可能となる。本研究においても、この方法を用いることにより、ESRD 患者における MFI の有意な高値は主として細胞サイズの増加に依存したものである可能性が高いこと、また HD 患者では MFI, MFSC それぞれの変化は対照群と比較して有意ではなかったものの、
CD4のFF係数と対照群の抗原密度はHD患者において有意な高値を示すことなど、CD4抗原に関して詳細な解析が可能である。特に後者の結果について、HD患者ではCD4陽性Tリンパ球の減少が著明であったことを考慮すると、CD4陽性Tリンパ球の減少に伴い、残存するCD4陽性Tリンパ球上のCD4分子が代謝性に増加する方向に抑制されるという機構の存在が考えられる。
一方、CRF患者は慢性的なacidosis状態にあることから、活性酸素の産生が亢進し、これがリンパ球や単球の細胞膜に対して傷害的に作用を及ぼすとの報告もみられており、CD4分子がリンパ球細胞膜分子であることを考えると、活性酸素による細胞障害機構がCD4分子のkineticsに影響を及ぼしている可能性も考えられる。

以上、CRF状態では、末梢血におけるCD4陽性Tリンパ球反応の量的変動と共に、免疫機構に重要な役割を果たすCD4分子のリンパ球分画での分布密度にも変調がみられることを明らかにした。本研究ではさらに、ConA強化によるリンパ球活性化試験を行い、芽球上のCD4、およびリンパ球の活性化マーカーであるCD25（IL-2Rα受容体）抗原の発現を定量的に測定し、CRF患者のリンパ球反応の量的な変化ばかりではなく、その活性化能の変化、すなわち異常があるか否かを検討した。まず未刺激状態下では、HD患者のCD4陽性Tリンパ球上のCD25抗原密度（MFI）は、対照群のそれに比し有意に高値であるものの、FF係数をみると両者間で有意差は認められなかった。すなわち、芽球化前のCD25抗原量が高値であるのは、この状態でのHD患者のリンパ球サイズ（MPSC）も増大していることを反映すると考えられる。これまで未刺激状態下のHD患者のCD25抗原密度は対照群に比し高値であるとされているが、CD25分子の抗原密度の視点で検討すると、実際は対照群に比し明確な差異はないと考えられる。刺激後の幼若化リンパ球に関しては、リンパ球サイズやCD4、CD25抗原量においてHD患者と対照群の間に有意差を認めなかったが、FF係数による抗原密度はCD4、CD25ともにHD患者と対照群の間に有意差が認められた。

特に興味深い点は、芽球上におけるCD4とCD25の抗原密度は逆の動きを示すことである。すなわち、HD患者では、芽球上のCD25抗原の密度は対照群のそれを上回る動きを示したが、これは、HD患者において単にCD4陽性Tリンパ球の減少がみられるばかりではなく、その機能にも変調を来している可能性を示す結果であると考えられた。今後は、CRFにおける免疫異常のメカニズムを更に検討してゆくに当たっては、CD4陽性Tリンパ球の質的、量的異常を中心に、年齢、性別、原因疾患、全身状態、投薬内容などの諸因子を可能な限り層別化し、またFF係数などを応用した新たな観点からの検討が必要と思われる。

結 語
（1）HD患者およびESRD患者において、末梢血リンパ球数、およびTリンパ球数は減少していた。Tリンパ球数の減少は、主としてその内のCD4陽性Tリンパ球亜群の減少によるものであった。CD4陽性Tリンパ球の中ではnaive/memory細胞の不均衡はみられなかった。
（2）FF係数を用いたCD4陽性Tリンパ球のCD4抗原密度の検討より、HD患者においてCD4の抗原量の変化率は対照群に比し代謝性に増大していた。
（3）芽球化反応におけるCD4陽性Tリンパ球上のCD4抗原密度は、対照群に比し有意に低く、CD25の抗原密度は、対照群に比し有意に高値であった。
（4）以上の結果より、慢性腎不全において、CD4陽性Tリンパ球の量的、質的異常の存在が確認されたが、これらの異常は、慢性腎不全における免疫異常のメカニズムの一つである可能性が考えられた。

謝 辞
稲を終えるにあたり、御指導、御校閲を賜りました杏林大学第一内科長澤隆彦教授、直接御指導していただいた杏林大学臨床病理学渡辺慎助教授、実験に協力していただいた松島早月実験助手に感謝致します。
文 献
Studies on Peripheral Blood T Lymphocytes in Patients with Chronic Renal Failure

Miho Karube

Department of Internal Medicine (I), Course of Internal Medicine (Doctor's Program), Graduate School of Medicine, Kyorin University

In order to elucidate the precise mechanisms underlying impaired immune functions in patients with chronic renal failure (CRF), the density of CD4 molecules on CD4+ T lymphocytes was quantified by flow cytometry (FCM) using the newly developed FF index method, in addition to the determination of the counts of peripheral blood T lymphocyte subsets. Changes in the expression of CD4 and CD25 molecules on CD4+ T lymphocytes upon Concanavalin A (Con A) stimulation were also quantitatively analyzed by the FF index method. Heparinized peripheral venous blood samples were obtained from 30 cases of CRF, of whom 22 were on chronic hemodialysis (HD) and 8 had end-stage renal disease (ESRD), and 27 healthy volunteers. Direct three-color immunofluorescence staining of peripheral blood lymphocytes were performed by the whole blood method using combinations of monoclonal antibodies, including anti-CD3, CD4, CD8, CD45RA and CD45RO antibodies, labeled with three different fluorescent dyes. For HD patients, peripheral blood mononuclear cells were incubated with Con A in vitro and then similarly immunostained with monoclonal antibodies directed against CD3, CD4, and CD25. The stained cells were analyzed by FCM. FF indices for CD4 and CD25 were calculated based on the forward light scatter (FSC) values and the fluorescent intensity (FI) measurements for CD4 and CD25, respectively. The total lymphocyte and T lymphocyte counts were significantly decreased in CRF patients as compared with those in healthy donors. A significant decrease in the number of CD4+ T lymphocytes in comparison with that in healthy controls was also found in CRF, while the number of CD8+ T lymphocytes remained within the normal range. Among CD4+ T lymphocytes, both CD45RA+ naive and CD45RO+ memory cell populations were decreased in number in HD patients as compared with that in healthy donors. However, the proportion between these two CD4+ T lymphocyte subpopulations, or the naive/memory ratio was maintained within the normal range in HD patients. A significantly increased CD4 molecule density on CD4+ T lymphocytes, as estimated by the FF index, was noted in HD patients as compared with that in healthy volunteers, while FSC and CD4-FI values did not show any significant difference between the two groups. Following stimulation by Con A, the CD4 density on CD4+ T lymphocytes was significantly decreased as compared with that in healthy donors, while the density of CD25 was significantly increased in HD patients as compared with that in healthy volunteers. The present study demonstrates that besides the marked decrease in the number of CD4+ T lymphocytes in CRF patients, the expression level of molecules such as CD4 and CD25 on this particular lymphocyte subset, known to play critical roles within the immune network, is also altered. These results may indicate that the impaired immunity in patients with CRF could be closely related to the qualitative as well as quantitative changes in CD4+ T lymphocytes.