The Theory of Vector Valued Fourier Hyperfunctions of Mixed Type. II

By

Shigeaki NAGAMACHI

Abstract

The soft resolution \(\mathcal{Q}_{k,1} \) of the sheaf \(\mathcal{O}_{k,1} \) of rapidly decreasing holomorphic functions of \((k,1)\) type is constructed. Using the above resolution, we prove \(H^k_\mathbb{C}(V,^{p,\bar{p}}\mathcal{O}_{k,1}) \) \(\cong L(\mathcal{O}_{k,1}(K), E) \).

§ 1. Introduction

In the first part of the present paper (S. Nagamachi [4]), which will be referred to as [I], we defined the mixed type Fourier hyperfunctions which take values in a Fréchet space \(E \). The purpose of this second part is to prove that the space \(H^k_\mathbb{C}(V,^{p,\bar{p}}\mathcal{O}_{k,1}) \) of \(E\)-valued Fourier hyperfunctions with support contained in a compact set \(K \) is isomorphic to the space \(L(\mathcal{O}_{k,1}(K), E) \) of continuous linear mappings of \(\mathcal{O}_{k,1}(K) \) into \(E \). We proved this theorem in [I] only for \(E = \mathcal{C} \) (Theorem 5.13 of [I]).

In Section 2, we study the Fourier transformation for slowly increasing \(C^\infty \) functions and rapidly decreasing distributions. In Section 3, we prepare the theory of cohomology with bounds in an appropriate form.

In Section 4, we construct a soft resolution of the sheaf \(\mathcal{Q}_{k,1} \) of rapidly decreasing holomorphic functions (Theorem 4.9),

\[0 \rightarrow \mathcal{Q}_{k,1} \rightarrow \mathcal{Q}'_{(0,0)} \rightarrow \cdots \rightarrow \mathcal{Q}'_{(0,p)} \rightarrow 0, \]

where \(\mathcal{Q}'_{(0,p)} \) is the sheaf subordinate to the presheaf \(\{ \mathcal{Q}'_{(0,p)}(\mathcal{O}) \} \) of \((0,p)\)-forms whose coefficients are rapidly decreasing distributions in \(\mathcal{O} \).

Communicated by M. Sato, October 27, 1978.

* Department of Mathematics, Faculty of Engineering, Tokushima University, Tokushima 770, Japan.
(Definition 4.1). To do this, we use the method similar to that developed in 7.6 of L. Hörmander [1], that is, the duality arguments, using the property of the Fourier transformation (Propositions in § 2) and the estimate of the solutions of certain system of linear equations with polynomial coefficients (Proposition 3.5, which is an extension of Theorem 7.6.11 of L. Hörmander [1]).

Using this method, we construct also the following resolution of $\mathcal{O}_{k,1}$, on $Q^{k,1}$:
\[
0 \rightarrow \mathcal{O}_{k,1} \rightarrow \mathcal{F} (\alpha, 0) \rightarrow \cdots \rightarrow \mathcal{F} (\alpha, n) \rightarrow 0,
\]
which is an extension of Theorem 4.11 of [I], where the resolution has been obtained only on the open subset \mathcal{O} of $Q^{k,1}$ satisfying a certain condition.

In Section 5, we prove $H^2_{t} (V, \mathcal{O}, K) = L (\mathcal{O}_{k,1} (K), E)$ (Theorem 5.7) using the Serre-Komatsu duality theorem and properties of tensor products of E with nuclear Fréchet spaces.

We continue to use the same notions and notations as those in [I].

§ 2. Function Spaces

In this section we study the Fourier transformation for slowly increasing C^∞ functions and rapidly decreasing distributions.

Definition 2.1. Let K be the closure of $\bigcap_{i=1}^{l} (\Gamma_i \times B_i)$ in $Q^{k,1}$, where Γ_i is the strictly convex closed cone in $R^{2k_i + l_i}$ whose vertex is at the origin and B_i is the closed ball in R^{l_i} whose center is at the origin.

In this section we always denote by K the compact set defined in Definition 2.1.

We identify C^∞ with R^{2n} and denote by $\langle x, \eta \rangle$ the inner product in R^{2n}, i.e., $\langle x, \eta \rangle = \sum_{i=1}^{2n} x_i \eta_i$.

Definition 2.2. Let $h_{K, \delta} (\eta) = \sup_{x \in K \cap R^{2n}} (- \langle x, \eta \rangle + \varepsilon |x|)$. Define $K^0 = \{ \eta \in R^{2n}; h_{K, \delta} (\eta) < \infty \}$ and $K_0 = \bigcap_{i=1}^{l} (\Gamma_i \cap R^{k_i})$, where $\Gamma_i =$
\{\eta \in \mathbb{R}^{m+1}; \langle x, \eta \rangle > 0 \text{ for all } 0 \neq x \in \Gamma_i\}.

Proposition 2.3. Let \(K^\circ \) be the interior of \(K^\circ \). If \(\eta = (\alpha_i, \beta_i) \in K^\circ \) for \(i = 1, \ldots, j \) and arbitrary real \(s_i, 1 \leq i \leq j \).

Proof. Let \(\eta_i = (\alpha_i, \beta_i) \in \Gamma_i^\circ \times \mathbb{R}^i \). Then

\[h_{K^\circ}(\eta) = \sup_{x \in K^\circ \cap \mathbb{R}^m} \left(-\langle x, \eta \rangle + \varepsilon |x| \right) \]

\[= \sum_{i=1}^j \sup_{x_i \in \Gamma_i} \left(-\langle x_i, \alpha_i \rangle + \varepsilon |x_i| \right) + \sum_{i=1}^j \sup_{y_i \in \mathbb{R}^i} \left(-\langle y_i, \beta_i \rangle + \varepsilon |y_i| \right) \]

\[= \sum_{i=1}^j h_{\Gamma_i^\circ}(\alpha_i) + \sum_{i=1}^j h_{\mathbb{R}^i}(\beta_i) \]

\(h_{K^\circ}(\eta) < \infty \) implies that \(h_{\Gamma_i^\circ}(\alpha_i) < \infty \) for all \(i \) and this shows that \(\langle x_i, \alpha_i \rangle > 0 \) for \(0 \neq x_i \in \Gamma_i \) because if \(\langle x_i, \alpha_i \rangle \leq 0 \) for some \(0 \neq x_i \in \Gamma_i \), then \(-\langle t x_i, \alpha_i \rangle + \varepsilon |t x_i| \) tends to infinity as \(t \to \infty \), this is a contradiction. Thus we have \(K^\circ \supset K^\circ_\varepsilon \) and \(K^\circ \supset \cup_{\varepsilon>0} K^\circ_\varepsilon \). Conversely if \(\eta \in K^\circ \), then let \(\inf_{x \in \mathbb{R}^m} \langle x_i, \alpha_i \rangle = \delta_i > 0 \) and choose \(\varepsilon > 0 \) satisfying \(\varepsilon < \delta_i \) for all \(i \). Then we have \(-\langle t x_i, \alpha_i \rangle + \varepsilon |t x_i| \leq 0 \) for \(x_i \in \Gamma_i, |x_i|=1 \) and \(t \geq 0 \), consequently \(h_{\Gamma_i^\circ}(\alpha_i) \leq 0 \) for all \(i \). Since \(h_{\Gamma_i^\circ}(\beta_i) < \infty \) for all \(i \), \(h_{K^\circ}(\eta) = \sum_{i=1}^j h_{\Gamma_i^\circ}(\alpha_i) + \sum_{i=1}^j h_{\mathbb{R}^i}(\beta_i) < \infty \). Thus we have \(K^\circ \subset \cup_{\varepsilon>0} K^\circ_\varepsilon \).

Proposition 2.4. If \(\eta = ((\alpha_i, \beta_i), \ldots, (\alpha_j, \beta_j)) \in K^\circ \), then \(((t_i \alpha_i, s_i \beta_i), \ldots, (t_j \alpha_j, s_j \beta_j)) \in K^\circ_\varepsilon \) for \(t \geq 1 \) and arbitrary real \(s_i, 1 \leq i \leq j \).

Proof. \(\eta \in K^\circ \) is equivalent to \(h_{\Gamma_i^\circ}(\alpha_i) < \infty \) for \(1 \leq i \leq j \). Since \(h_{\Gamma_i^\circ}(\alpha_i) = \sup_{x \in \Gamma_i^\circ, |x|=1, t \geq 0} (-\langle x, \alpha_i \rangle + \varepsilon) s_i \), \(h_{\Gamma_i^\circ}(\alpha_i) < \infty \) is equivalent to \(\inf_{x \in \mathbb{R}^m} \langle x_i, \alpha_i \rangle \geq \varepsilon \) and \(\inf_{x \in \mathbb{R}^m} \langle x_i, t_i \alpha_i \rangle \geq \varepsilon \) implies \(\inf_{x \in \mathbb{R}^m} \langle x_i, t_i \alpha_i \rangle \geq \varepsilon \) for \(t_i \geq 1 \). Thus we have \(((t_i \alpha_i, s_i \beta_i), \ldots, (t_j \alpha_j, s_j \beta_j)) \in K^\circ \).

Corollary 2.5. Let \(\text{Int } K^\circ \) be the interior of \(K^\circ \). If \(\eta = ((\alpha_i, \beta_i), \ldots, (\alpha_j, \beta_j)) \in \text{Int } K^\circ \), then for \(t \geq 1 \) and arbitrary real \(s_i, 1 \leq i \leq j \), \(\eta(t, s) = ((t_i \alpha_i, s_i \beta_i), \ldots, (t_j \alpha_j, s_j \beta_j)) \in \text{Int } K^\circ \).

Proof. If \(\eta \in \text{Int } K^\circ \), then there exists a neighbourhood \(V \) of zero such that \(\eta + V \subset K^\circ \). By Proposition 2.4 we have \(\eta(t, s) + V(t, 1) \subset K^\circ \), where \(V(t, 1) = \{v(t, 1); v \in V\} \) is a neighbourhood of zero. Thus we
Proposition 2.6. Let $0<\delta<\varepsilon$. Then K°_ε is strictly contained in K°_δ, that is, the distance between K°_ε and the complement $(K^\circ_\varepsilon)^c$ of K°_ε is positive. Therefore $K^\circ_\varepsilon \subset \text{Int } K^\circ_\delta$.

Proof. Let $\eta \in K^\circ_\varepsilon$ and $e \in C^\omega$ with $|e|<\varepsilon-\delta$. Since $\eta \in K^\circ_\varepsilon$ is equivalent to $\inf_{x_i \in \Gamma_i, |x_i|=1} \langle x_i, \alpha_i \rangle \geq \varepsilon$ for $i=1, \ldots, j$,

$$\inf_{x_i \in \Gamma_i, |x_i|=1} \langle x_i, \alpha_i + e_i \rangle \geq \inf_{x_i \in \Gamma_i, |x_i|=1} \langle x_i, \alpha_i \rangle - \sup_{x_i \in \Gamma_i, |x_i|=1} \langle x_i, e_i \rangle \geq \varepsilon - (\varepsilon - \delta) = \delta.$$

Thus we have shown that $\eta + e \in K^\circ_\delta$ for all $\eta \in K^\circ_\varepsilon$ and $|e|<\varepsilon-\delta$. This shows that K°_ε is strictly contained in K°_δ.

Proposition 2.7. Let f be a C^N function with support contained in $K \cap R^{2n}$. Suppose there exist positive constants δ and C such that $|D^\alpha f(x)| \leq Ce^{|\alpha|}$ for all $|\alpha| \leq N$. Define

$$\tilde{f}(\zeta) = (2\pi)^{-n} \int_{R^{2n}} e^{ic(x, \zeta)} f(x) dx.$$

Then $\tilde{f}(\zeta)$ is an analytic function defined in $\{\zeta \in C^{2n}, \text{Im } \zeta \in \text{Int } K^\circ_\varepsilon\}$ for any $\varepsilon>\delta$, and satisfies

$$(2.1) \quad |\tilde{f}(\zeta)| \leq C\varepsilon e^{h_\varepsilon (\text{Im } \zeta)} / (1 + |\zeta|)^N$$

for some constant $C_\varepsilon>0$ and $\text{Im } \zeta \in K^\circ_\varepsilon$.

Proof. Let $\text{Im } \zeta \in K^\circ_\varepsilon$. The inequalities

$$|\zeta^\alpha \tilde{f}(\zeta)| \leq (2\pi)^{-n} \int_{R^{2n}} e^{-(\langle x, \text{Im } \zeta \rangle + \varepsilon |x|)} e^{-\varepsilon |x|} |D^\alpha f(x)| dx$$

$$\leq C\varepsilon e^{h_\varepsilon (\text{Im } \zeta)}$$

imply that $\tilde{f}(\zeta)$ is analytic in $\text{Im } \zeta \in \text{Int } K^\circ_\varepsilon$ and satisfies (2.1) for $\text{Im } \zeta \in K^\circ_\varepsilon$.

Corollary 2.8. Let $f \in \mathcal{T}_\varepsilon(K)$ (Definition 2.14 of [1]), then $\tilde{f}(\zeta)$ is an analytic function defined in $\{\zeta \in C^{2n}; \text{Im } \zeta \in K^\circ_\varepsilon\}$ and satisfies
in $\Im \zeta \in K^\circ_\varepsilon$ for any $\varepsilon>0$ and $N>0$, where $C_{N,\varepsilon}$ is a positive number independent of ζ.

Proof. The corollary follows from Propositions 2.3, 2.6 and 2.7.

Proposition 2.9. Let K be the set defined in Definition 2.1. For any $0<\varepsilon \leq 1$, there exists an $\eta_\varepsilon \in \text{Int } K^\circ_\varepsilon$ satisfying $|\eta_\varepsilon| \leq A\varepsilon$ for some positive constant A not depending on ε.

Proof. Let $\eta \in K^\circ_\varepsilon$ and $A = |\eta|$. Define $\eta_\varepsilon = \varepsilon \eta$ for $0<\varepsilon \leq 1$, then $|\eta_\varepsilon| = A\varepsilon$ and

$$h_{K,2\varepsilon}(\eta_\varepsilon) = \sup_{x \in K^\circ_\varepsilon \cap \mathbb{R}^n} \left(-\langle x, \varepsilon \eta \rangle + 2\varepsilon |x| \right) = \varepsilon h_{K,\varepsilon}(\eta) < \infty.$$

This shows that $\eta_\varepsilon \in K^\circ_{2\varepsilon} \subset \text{Int } K^\circ_\varepsilon$.

Proposition 2.10. Let $N \geq 3n$, and let $g(\zeta)$ be an analytic function in $\{ \zeta \in C^n; \Im \zeta \in \text{Int } K^\circ_\varepsilon \}$ which satisfies

$$|g(\zeta)| \leq C \frac{1}{(1 + |\zeta|)^N} e^{h_{K,\varepsilon}(\Im \zeta)}$$

for $\Im \zeta \in K^\circ_\varepsilon$. If we define

$$(2.2) \quad \hat{g}(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\langle x, \xi \rangle} \hat{g}(\xi) d\xi \quad \text{for } \eta \in \text{Int } K^\circ_\varepsilon,$$

$\hat{g}(x)$ is a C^∞ function with support contained in $K \cap \mathbb{R}^n$, satisfying $|D^a\hat{g}(x)| < M\varepsilon^{|a|}$ for some constant M and $\varepsilon = A\varepsilon$, where A is the constant appeared in Proposition 2.9.

Proof. The inequalities

$$|\hat{g}(x)| = |(2\pi)^{-n} \int_{\mathbb{R}^n} e^{-i\langle x, \xi \rangle} e^{\varepsilon \zeta \cdot v} g(\xi + i\eta) d\xi|$$

$$\leq C e^{\varepsilon \zeta \cdot v} \int |g(\xi + i\eta)| d\xi$$

$$\leq C e^{\varepsilon \zeta \cdot v} e^{h_{K,\varepsilon}(\zeta)}$$
hold for \(\eta \in \text{Int} K^o_{\varepsilon} \). \(x \notin K \) implies \(x_i \notin \Gamma_i \) or \(y_k \notin B_k \) for some \(l, k \). Hence there exists \(\alpha_i \in \Gamma^o \) such that \(\langle x_i, \alpha_i \rangle < 0 \) or \(y_k \) satisfies \(\langle y_k, s y_k \rangle > h_{B_k, \varepsilon} (s y_k) \) for large \(s > 0 \). Since (2.2) is independent of \(\eta \in \text{Int} K^o_{\varepsilon} \) by the Cauchy-Poincaré theorem, we have, for large \(s > 0 \),

\[
(2.3) \quad |\tilde{g}(x)| \leq C \exp \left(\langle x_i, t \alpha_i \rangle + \langle y_k, -s y_k \rangle + h_{B_k, \varepsilon} (-s y_k) \right) \\
+ \sum_{i \in \Omega} \langle x_i, \alpha_i \rangle + \sum_{i \in \Omega} \langle y_i, \beta_i \rangle + \sum_{i \in \Omega} h_{B_i, \varepsilon} (\beta_i),
\]

where we have used the facts that \(h_{r \xi, \varepsilon} (\alpha_i) \leq 0 \) and \(\eta = ((\alpha_i, \beta_i), \cdots, (t \alpha_i, \beta_i), \cdots, (\alpha_s, s y_s), \cdots, (\alpha_j, \beta_j)) \in \text{Int} K^o_{\varepsilon} \) for large \(t, s \) (Proposition 2.4). The right hand side of (2.3) vanishes as \(t \) or \(s \) tends to infinity. Thus we have \(g(x) = 0 \) if \(x \notin K \).

Let \(|\alpha| \leq N - 3n \). The inequalities

\[
(2.4) \quad |D^s \tilde{g}(x)| = (2\pi)^{-n} \left| \int_{R^{1n}} e^{-i(x, \xi)} e^{i(x, \xi)} (-i \xi + \eta) \alpha (\xi + i \eta) d\xi \right| \\
\leq C e^{(x, \xi)} e^{h_{K, \varepsilon}(\xi)} \\
\leq C e^{(x, \xi)} e^{h_{K, \varepsilon}(\xi)}
\]

hold for \(\eta = \eta_\varepsilon \in \text{Int} K^o_{\varepsilon} \) such that \(|\eta_\varepsilon| \leq \delta = A \varepsilon \) by Proposition 2.9. Hence

\[
(2.5) \quad |D^s \tilde{g}(x)| \leq M e^{(x, \xi)}
\]

holds for some constant \(M > 0 \).

Proposition 2.11. Let \(f \) be a \(C^r \) function satisfying the conditions in Proposition 2.7, then \(\tilde{f} = f \).

Proof. Let \(\eta \in \text{Int} K^o_{\varepsilon} \), then \(e^{-(\eta, \xi)} = f(y) \) is rapidly decreasing. Therefore we have

\[
\tilde{f}(x) = (2\pi)^{-n} \int_{R^{1n}} e^{-i(x, \xi)} \left(\int_{R^{1n}} e^{i(y, \xi)} f(y) dy \right) d\xi \\
= (2\pi)^{-n} \int_{R^{1n}} e^{-i(x, \xi)} \left(\int_{R^{1n}} e^{i(y, \xi)} e^{-(\eta, \xi)} f(y) dy \right) d\xi \\
= f(x).
\]

Proposition 2.12. Let \(g(\xi) \) be an analytic function satisfying the condition in Proposition 2.10. Then \(\tilde{g} = g \).
Proof. Let $\zeta = \xi + i\eta$ and $\eta \in \text{Int } K^0_{\delta}$, then $g(x + i\eta)$ is integrable with respect to x. Therefore we have

$$\tilde{g}(\zeta) = (2\pi)^{-2n} \int_{\mathbb{R}^n} e^{i(x, \xi)} \left(\int_{\mathbb{R}^n + i\eta} e^{-(y, \eta)}g(x) \, dx \right) \, du$$

$$= (2\pi)^{-2n} \int_{\mathbb{R}^n} e^{-(y, \eta)} e^{i(x, \xi)} \left(\int_{\mathbb{R}^n} e^{-(y, \eta)} e^{i(x, \xi)} g(x + i\eta) \, dx \right) \, du$$

$$= g(\xi + i\eta) = g(\zeta).$$

Proposition 2.13. Let $f \in \mathcal{D}(K)$, we define

$$(2.6) \quad \|f\|_{\delta, \zeta} = \int_{\mathbb{R}^n - iK_{\delta}} |\tilde{f}(\zeta)|^2 e^{-2|\zeta|, \zeta \in \text{Im } \zeta} \left(1 + |\zeta|^{\delta} \right) \, d\lambda$$

then there exists a seminorm $\|f\|_{\delta, \zeta} = \sup_{x \in \mathbb{R}^n, |x| \leq M} |e^{-\zeta|x|} D^{\alpha} f(x)|$ of $\mathcal{D}(K)$ such that $\|f\|_{\delta, \zeta} \leq C \|f\|_{\delta, \zeta}$.

Proof. The inequalities

$$|e^{-\zeta, \zeta \in \text{Im } \zeta} |\tilde{f}(\zeta)|$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-\zeta, \zeta \in \text{Im } \zeta} e^{i(x, \xi)} D^\alpha f(x) \, dx$$

$$\leq \frac{1}{(2\pi)^n} \left| \int_{\mathbb{R}^n} e^{(x, \zeta) - \zeta, \zeta \in \text{Im } \zeta} e^{i(x, \xi) \zeta} D^\alpha f(x) \, dx \right|$$

$$\leq \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \left| e^{-\zeta|x|} D^\alpha f(x) \right| \, dx$$

$$\leq C_{\delta} \|f\|_{\delta, \zeta},$$

for $0 < \delta < \varepsilon$ and $\text{Im } \zeta \in K^0_{\delta}$, show that

$$e^{-2|\zeta|, \zeta \in \text{Im } \zeta} \left(1 + |\zeta|^{\delta} \right) |\tilde{f}(\zeta)| \leq C' \|f\|_{\delta, \zeta}.$$

Then we have

$$\|f\|_{\delta - 2n, \zeta} = \int_{\mathbb{R}^n + iK_{\delta}} e^{-2|\zeta|, \zeta \in \text{Im } \zeta} \left(1 + |\zeta|^{\delta} \right) |\tilde{f}(\zeta)|^2 \, d\lambda$$

$$\leq C \|f\|_{\delta, \zeta}.$$

Thus we have, for $M = N + 3n$ and $\delta = \varepsilon/2$

$$\|f\|_{\delta, \zeta} \leq C \|f\|_{\delta, \zeta}.$$
Proposition 2.14. \(\text{Int } K_\epsilon^0 = \bigcup_{\epsilon > \epsilon} K_\epsilon^0 \).

Proof. \(\text{Int } K_\epsilon^0 \supset \bigcup_{\epsilon > \epsilon} K_\epsilon^0 \) is clear from Proposition 2.6. Let \(\eta \in \text{Int } K_\epsilon^0 \), then there exists a positive number \(\gamma \) such that for every \(\epsilon \in C^n \) with \(|\epsilon| \leq \gamma \), \(\eta + \epsilon \in K_\epsilon^0 \). Thus we have

\[
0 \geq \sup_{x_i \in R_\epsilon, |x_i| = 1, |\epsilon| \leq \gamma} (-\langle x_i, \alpha_i + \epsilon_i \rangle + \epsilon) = \sup_{x_i \in R_\epsilon, |x_i| = 1} (-\langle x_i, \alpha_i \rangle + \epsilon + \gamma).
\]

This shows that \(\eta \in K_{\epsilon + \gamma}^0 \) and \(\text{Int } K_\epsilon^0 \subset \bigcup_{\epsilon > \epsilon} K_\epsilon^0 \).

Proposition 2.15. \(\text{Int } K_\epsilon^0 \) is a convex set and \(h_{K,\epsilon}(\eta) \) is a convex function in \(\text{Int } K_\epsilon^0 \).

Proof. Let \(\xi, \eta \in \text{Int } K_\epsilon^0 \), then there exist \(\delta > \epsilon \) such that \(\xi, \eta \in K_{\epsilon + \delta}^0 \). For \(\lambda, \mu \geq 0, \lambda + \mu = 1 \), we have

\[
(2.7) \quad h_{K,\delta}(\lambda \xi + \mu \eta) = \sup_{x \in K \cap R^m} (-\langle x, \lambda \xi + \mu \eta \rangle + \delta |x|) = \sup_{x \in K \cap R^m} (-\lambda \langle x, \xi \rangle - \mu \langle x, \eta \rangle + \delta (\lambda + \mu) |x|) \\
\leq \lambda h_{K,\delta}(\xi) + \mu h_{K,\delta}(\eta) < \infty.
\]

This shows that \(\lambda \xi + \mu \eta \in K_{\epsilon + \delta}^0 \subset \text{Int } K_\epsilon^0 \). Hence \(\text{Int } K_\epsilon^0 \) is convex. The equation (2.7) shows that \(h_{K,\delta}(\eta) \) is a convex function defined in \(K_{\epsilon + \delta}^0 \), hence \(h_{K,\epsilon}(\eta) \) is convex in \(\text{Int } K_\epsilon^0 \).

Proposition 2.16. \(h_{K,\epsilon}(\eta) \) is Lipschitz continuous in \(K_\epsilon^0 \), that is,

\[
|h_{K,\epsilon}(\eta) - h_{K,\epsilon}(\eta')| \leq C|\eta - \eta'|
\]

for some constant \(C \).

Proof. Let \(h_{R,\epsilon}(\alpha_i) = \sup_{x_i \in R_\epsilon} (-\langle x_i, \alpha_i \rangle + \epsilon |x_i|) \) and \(h_{B,\epsilon}(\beta_i) = \sup_{y_i \in B_\epsilon} (-\langle y_i, \beta_i \rangle + \epsilon |y_i|) \). Then

\[
h_{K,\epsilon}(\eta) = \sum_{i=1}^j h_{R,\epsilon}(\alpha_i) + \sum_{i=1}^j h_{B,\epsilon}(\beta_i)
\]

where \(\eta = (\alpha_i, \beta_i, \ldots, (\alpha_j, \beta_j)) \) and \(x = ((x_i, y_i), \ldots, (x_j, y_j)) \). Let \(|B_\epsilon|\)
be the diameter of the ball B_t. We have
\[|h_{B_t,\epsilon}(\beta_t) - h_{B_t,\epsilon}(\beta'_t)| \leq \sup_{x_t \in B_t} |\langle x_t, \beta_t - \beta'_t \rangle| \leq |B_t| |\beta_t - \beta'_t| . \]
Since $\eta \in K_0$ implies that $h_{F_t,\epsilon}(\alpha_t) = 0$ for all i, we have
\[|h_{K,\epsilon}(\eta) - h_{K,\epsilon}(\eta')| \leq C|\eta - \eta'| \]
where $C = \max_i (|B_t|)$.

§ 3. Cohomology with Bounds

For the later use, we develop the theory of cohomology with bounds on the pseudoconvex domain Ω in \mathbb{C}^n, which is an extension of what is developed in 7.6 of L. Hörmander [1], where the case $\Omega = \mathbb{C}^n$ is treaded.

Here we use the same notation that is used in 7.6 of L. Hörmander [1]. We denote by $U^{(n)}$ the covering of \mathbb{C}^n which consists of the cubes $U^{(n)}_v$ with side equal to $2 \cdot 3^{-n}$ and center at $g \cdot 3^{-n}$, where g runs through the set I of points in \mathbb{C}^n with integral coordinates. For every v and g we can find precisely one g' such that $U^{(n)}_v$ contains the cube with the same center as $U^{(n)}_v$ but twice the side; we set $p_v, v = g'$. More generally if $v < u$, we define
\[\rho_{u,v} = \rho_{u-1,v} \rho_{u-1,v} \cdots \rho_{u-1,v} . \]

Let Ω be an open subset of \mathbb{C}^n, then $U^{(n)} \cap \Omega = \{ U^{(n)}_v \cap \Omega; g \in I \}$ is an open covering of Ω. We also define
\[\Omega^{n,v} = \bigcup \{ U^{(n)}_v; U^{(n)}_v \subset \Omega \} \quad \text{for} \quad g' = \rho_{u,v} \]
and
\[\Omega_\varepsilon = \{ z \in \Omega; \text{dist} (z, \Omega^c) > \varepsilon \} \]
where dist (z, Ω^c) is the distance between the point z and the complement Ω^c of Ω. We use the abbreviation $\Omega^{n,v}$ for $(\Omega^{n,v})^{\omega}$.

Let $P = (P_{j,k}), j = 1, \ldots, p, k = 1, \ldots, q$ be the matrix with polynomial entries, and consider the sheaf homomorphism
\[(3.1) \quad P: \mathcal{O}^q \rightarrow \mathcal{O}^p \]
defined by the mapping $(f_1, \ldots, f_q) \in \mathcal{O}^q$ to $\{ \sum P_{j,k} f_k \}^q_{j=1}$. Let R_P be the
kernel of the sheaf homomorphism (3.1). It is known that \(R_p \) is a coherent analytic sheaf and finitely generated by the germs of \(q \)-tuples \(Q = (Q_1, \cdots, Q_p) \) with polynomial components such that

\[
\sum_{k=1}^{p} P_{j,k} Q_k = 0, \quad j = 1, \cdots, p.
\]

(See Lemma 7.6.3 of L. Hörmander [1].)

If \(\phi \) is a continuous function, we define \(C^{q} (U \cap Q, R_p, \phi) \) as the set of alternating cochains \(c = \{ c_s \} \in I^{r-1} \) where \(c_s \in \Gamma (U \cap Q, R_p) \), and

\[
\| c \| = \sum \int_{U \cap Q} | c_s |^2 e^{-\phi} d\lambda < \infty.
\]

We define \(\rho_{s, \phi} : C^{q} (U \cap Q, R_p, \phi) \to C^{q} (U \cap Q, R_p, \phi) \) by setting \((\rho_{s, \phi} c) \), equal to the restriction of \(c_{s+1} (\cdot, \cdots, \cdot, \cdot, \cdot) \) to \(U \).

Proposition 3.1. Let \(\phi \) be a plurisubharmonic function in an open set \(V \) in \(C^* \), and \(Q \) be a pseudoconvex domain contained in \(V \). For every cochain \(c \in C^{q} (U \cap V, \mathcal{O}, \phi) \) with \(\delta c = 0 \), one can find a cochain \(c' \in C^{q-1} (U^\alpha \setminus O, \mathcal{O}, \phi) \) so that \(\delta c' = \rho_{s, \phi} c \)

\[
(3.2) \quad \| c' \|_\phi \leq K \| c \|_\phi.
\]

Here \(K \) is a constant independent of \(\phi \) and \(c \), and \(\psi \) is defined by \(\psi (z) = \phi (z) + 2 \log (1 + |z|^2) \).

We prove this in a way similar to Proposition 7.6.1 of L. Hörmander [1], so that we need the following lemma.

Lemma 3.2. Let \(Q \) be a pseudoconvex domain and let \(Q' \) be a relatively compact subset of \(Q \). For every plurisubharmonic function \(\phi \) in \(Q \) and every \(f \in L^r_{(0, q+1)} (Q, \phi) \) with \(\partial f = 0 \), one can find \(u \in L^r_{(0, q)} (Q, \text{loc}) \) with \(\partial u = f \) and

\[
\int_{Q'} |u|^2 e^{-\phi} d\lambda \leq K \int_{Q} |f|^2 e^{-\phi} d\lambda
\]

where \(K \) is independent of \(u \) and \(\phi \).

Proof. See Lemma 7.6.2 of L. Hörmander [1].
Proof of Proposition 3.1. We introduce the space $C^p(\mathcal{U}^{(\omega)} \cap V, \mathcal{L}_q, \phi)$ of all alternating cochains $c = \{c_s\}, s \in I^{p+1}$, where $c_s \in L^2(\mathcal{U}^{(\omega)} \cap V, \phi)$, $\partial c_s = 0$ and

$$\|c\|_p^2 = \sum_{|s| = p+1} \int_{\mathcal{U}^{(\omega)} \cap V} |c_s|^2 e^{-\phi} d\lambda < \infty.$$

We wish to prove that if $\partial c = 0$, then one can find $c' \in C^{p-1}(\mathcal{U}^{(\omega)} \cap Q^{p-1}, \mathcal{L}_q, \phi)$ so that $\partial c' = \rho_{p+p-1}^* c$ and (3.2) hold.

For $q=0$, this assertion is precisely Proposition 3.1. We shall prove it assuming, if $p>1$, that it has already been proved for smaller values of p and all q.

Choose a non-negative function $\chi \in C^\infty_c(\mathcal{U}^{(\omega)})$ such that $\sum \chi(z - g) = 1$. Now set $b_s = \sum \chi(z - g) c_{p,s}, s \in I^p$, then we have $\partial b = c$ and

$$|b_s|^2 \leq \sum \chi(z - g) |c_{p,s}|^2,$$

hence

$$\|b\|_p \leq \|c\|_p.$$

Let $\bar{\partial} b$ be the cochain belonging to $C^{p-1}(\mathcal{U}^{(\omega)} \cap V, \mathcal{L}_q, \phi)$ defined by $$(\bar{\partial} b)_s = \bar{\partial} b_s = \sum \bar{\partial} \chi(z - g) / \chi.$$

Then we obtain with a constant K

$$\|\bar{\partial} b\|_p \leq K \|c\|_p.$$

Now $\partial \bar{\partial} b = \bar{\partial} b = \partial c = 0$. If $p>1$, we can by the inductive hypothesis find a cochain $b' \in C^{p-2}(\mathcal{U}^{(\omega)} \cap Q^{p-2}, \mathcal{L}_q, \phi)$ such that $\partial b' = \rho_{p+p-1}^* \bar{\partial} b$ and for some constant K_1

$$\|b'\|_p \leq K_1 \|\bar{\partial} b\|_p \leq K K_1 \|c\|_p.$$

Since $\bar{\partial} b' = 0$ and ψ is plurisubharmonic, by Lemma 3.2 we can choose $b'' \in L^2(\mathcal{U}^{(\omega)} \cap Q^{p+1}, \psi)$ for every $s \in I^{p-1}$ satisfying $U^{(\omega)}_s \subset Q^{p+1}$, $s' = \rho_{p-2,p+p-1}^* s$ so that $\bar{\partial} b'' = b''$ in $U^{(\omega)}_s$ and with a constant K_2,

$$\int_{U^{(\omega)}_s} |b''|^2 e^{-\phi} d\lambda \leq K_2 \int_{U^{(\omega)}_s} |b''|^2 e^{-\phi} d\lambda.$$

Now set

$$c' = \rho_{p+p-1}^* b - \bar{\partial} b''.$$

Then $\partial c' = \rho_{p+p-1}^* \partial b = \rho_{p+p-1}^* c$, and

$$\bar{\partial} c' = \rho_{p+p-1}^* \bar{\partial} b - \partial \bar{\partial} b'' = \rho_{p+p-1}^* \bar{\partial} b - \partial \rho_{p+p-1}^* \partial b \partial b''.$$
Summing up the estimates for b, b' and b'' given above, we obtain $c' \in C^{p-1}(\mathcal{U}^{(\sigma+\nu)}, \mathcal{Q}^{\nu+\sigma-1}, \mathcal{L}_q, \psi)$ and the estimate (3.2).

It remains to consider the case $p=1$. The fact that $\overline{\partial}b = 0$ then means that $\overline{\partial}b$ defines uniquely a form f of type $(0, q+1)$ in \mathcal{V} with $\overline{\partial}f = 0$ and

$$\int \left| f \right|^2 e^{-\mu}d\lambda \leq \left\| \overline{\partial}b \right\|_2^2 \leq K^2 \left\| c \right\|_2^2.$$

By Theorem 4.4.2 of L. Hörmander [1], we can find a form $u \in L^{2b}(\mathcal{Q}, \psi)$ so that $\overline{\partial}u = f$ and

$$\int \left| u \right|^2 e^{-\mu}d\lambda \leq \int \left| f \right|^2 e^{-\mu}d\lambda.$$

Setting $c' = b - u$, we obtain $c' \in C^q(\mathcal{U}^{(\sigma)}, \mathcal{Q}, \mathcal{L}_q, \psi)$ and the estimate (3.2).

Proposition 3.3. Let P be a matrix with polynomial entries and \mathcal{Q} be a neighbourhood of 0. Then there exists a neighbourhood \mathcal{Q}' of 0 such that for every $u \in \mathcal{O}(\mathcal{Q} + z)^q$ one can find $v \in \mathcal{O}(\mathcal{Q} + z)^q$ satisfying $Pv = Pu$, and

$$\sup_{\mathcal{A} + \mathbf{z}} |v| \leq C(1 + |z|)^x \sup_{\mathcal{A} + \mathbf{z}} |Pu|,$$

where the constants C and N are independent of u and $z \in \mathcal{C}^q$.

Proof. See Proposition 7.6.5 of L. Hörmander [1].

Proposition 3.4. Let a matrix P and an integer v be given. Then there exist integers μ and N such that, if ϕ is plurisubharmonic in a pseudoconvex domain \mathcal{Q} and for some constant $C > 0$

$$|\phi(z) - \phi(z')| < C, \quad |z - z'| < 1,$$

then for every $c \in C^q(\mathcal{U}^{(\sigma)} \cap \mathcal{Q}^{\nu+\phi}, \mathcal{R}_p, \psi)$ with $\delta c = 0$, $\sigma > 0$, $\lambda \leq \nu$, one can find $c' \in C^{q-1}(\mathcal{U}^{(\sigma)} \cap \mathcal{Q}^{\nu+\phi}_{(\delta-\nu)}, \mathcal{R}_p, \phi_y)$ so that $\delta c' = \rho^\phi c$ and for some constant K

$$\|c'\|_{\phi} \leq K\|c\|_{\phi}.$$
Here \(\phi_N(z) = \phi(z) + N \log(1 + |z|^2) \), \(\tau = 2^n \) and \(\varepsilon \geq \sqrt{2n} 3^{1-1} \).

Proof. We can also prove the proposition in a way similar to the proof of Theorem 7.6.10 of L. Hörmander [1]. We shall prove it by induction for decreasing \(\sigma \), noting that it is valid when \(\sigma > 2^n \), since there are no non-zero \(c \in C^s(Q^{(\omega)} \cap Q^{(\mu)}, \mathcal{R}, \phi) \). Thus assume that the theorem has been proved for all \(P \) when \(\sigma \) is replaced by \(\sigma + 1 \). By Lemma 7.6.4 of L. Hörmander [1], we have \(c = Qd_\psi \) for \(d \in C(Q^{(\omega)} \cap Q^{(\mu)}, \mathcal{O}, \phi_N) \). By Proposition 3.3 and the condition (3.4), if \(\mu \) is large we can choose \(d'_\psi \in \mathcal{O}(P^{(\sigma)}) \) so that \(Qd'_\psi = Qd_\psi = c_\psi \) in \(P^{(\sigma)} \) and

\[
\left| \int_{U^{(\sigma)}} |d'_\psi|^2 (1 + |z|^2)^{-\sigma} e^{-\phi} d_\lambda \right| \leq C \int_{U^{(\sigma)}} |c_\psi|^2 e^{-\phi} d_\lambda
\]

for \(s' = \rho_{\mu, s} \) and \(U^{(\sigma)} \subset Q^{(\mu)} \). Thus we have \(d'_\psi \in C^s(Q^{(\omega)} \cap Q^{(\mu)}, \mathcal{O}, \phi_N) \), \(\rho_{\mu, s} c = Qd_\psi \) and

\[
\|d'_\psi\|_{s'} \leq C_1 \|c\|_{\phi}.
\]

Since \(\delta c = 0 \), it follows that \(\delta Qd'_\psi = Q\delta d'_\psi = 0 \). Thus \(\delta d' = d'' \in C^{s+1}(Q^{(\omega)} \cap Q^{(\mu)}, \mathcal{R}, \phi_N) \), and since \(\delta d'' = 0 \) and \(\phi_N \) is plurisubharmonic, it follows by the inductive hypothesis that for suitable \(N' \) and \(\mu' > \mu \) we can find \(d'' \in C^s(Q^{(\omega)} \cap Q^{(\mu'}, \mathcal{R}, \phi_{N'}) \) so that \(\delta d'' = \rho_{\mu_{\mu'}, s} d'' \) and

\[
\|d''\|_{s_{\mu'}} \leq C_2 \|d''\|_{s_{\mu}}.
\]

Setting \(r = \rho_{\mu_{\mu'}, s} d'' \), we have \(\delta r = \rho_{\mu_{\mu'}, s} d'' \) and

\[
\|r\|_{s_{\mu'}} \leq C_3 \|r\|_{s_{\mu}} \leq C_4 \|c\|_{\phi}.
\]

Hence Proposition 3.1 shows that for some \(\mu'' > \mu' \) and \(N'' > N' \) one can find \(r' \in C^{s-1}(Q^{(\omega)} \cap Q^{(\mu'' \times \mu_{\mu'} \times \mu_{\mu''}), \mathcal{O}, \phi_{N''}) \) so that \(\rho_{\mu_{\mu'}, r, \mu''} = \delta r' \) and

\[
\|r'\|_{s_{\mu''}} \leq C_5 \|r\|_{s_{\mu'}} \leq C_6 \|c\|_{\phi}.
\]

Here we used the fact that \(Q^{(\mu'') \times \mu_{\mu'} \times \mu_{\mu''}) \) is a pseudoconvex domain contained in \(Q^{(\mu', \mu'')} \) as \(\varepsilon \geq \sqrt{2n} 3^{1-1} \). If we set \(c' = Qr' \), it follows that

\[
\partial c' = Q\partial r' = Q\rho_{\mu_{\mu'}, r, \mu''} = \rho_{\mu_{\mu'}, s} \rho_{\mu_{\mu'}, r, \mu''} d' - \rho_{\mu_{\mu'}, s} Qd'' = \rho_{\mu_{\mu'}, s} c.
\]

Since (3.6) implies (3.5) for suitable \(\mu \) and \(N \), the proposition is
Proposition 3.5. Let \(\mathcal{Q}' \) be an open set which is strictly contained in a pseudoconvex domain \(\mathcal{Q} \) of \(\mathbb{C}^n \) (dist \((\mathcal{Q}', \mathcal{Q}) \geq \delta > 0\)). Given the system \(P \) there is a constant \(N \) such that, if \(\phi \) is a plurisubharmonic function satisfying (3.4), then for all \(u \in \mathcal{O}(\mathcal{Q})^q \) one can find \(v \in \mathcal{O}(\mathcal{Q}')^q \) with \(Pv = Pu \) and

\[
(3.7) \quad \int_{\mathcal{Q}'} |v|^2 e^{-\phi} (1 + |z|^2)^{-N} d\lambda \leq C \int_{\mathcal{Q}} |Pu|^2 e^{-\phi} d\lambda
\]

where \(C \) is a constant independent of \(u \).

Proof. First, choose \(\nu \) so that \(\delta > \tau z = 2^m \sqrt{2n} 3^{1-\nu} \). By Proposition 3.3 we can choose \(\nu < \mu \) so that there exists an element \(u \in \mathcal{O}(U_{\nu}^{(q)})^q \) such that \(Pu = Pu \) in \(U_{\nu}^{(q)} \subset U_{\nu}^{(q)} \subset \mathcal{Q} \), and for some constants \(C \) and \(N \) independent of \(u \) and \(g \in I \)

\[
(3.8) \quad \int_{U_{\nu}^{(q)}} |u|^2 e^{-\phi} (1 + |z|^2)^{-N} d\lambda \leq C \int_{U_{\nu}^{(q)}} |Pu|^2 e^{-\phi} d\lambda
\]

where \(g' = \rho_{m,\nu} g \). Let \(c_{\nu,\mu} = u_{\nu} - u_{\mu} \). This defines a cocycle \(c \in C^\infty(U_{\nu}^{(q)} \cap \mathcal{Q}^q, R_p, \phi_{\nu}) \) and by (3.8) we obtain

\[
(3.9) \quad \|c\|_{g,\nu}^2 \leq C' \int_{\mathcal{Q}} |Pu|^2 e^{-\phi} d\lambda.
\]

Proposition 3.4 asserts that for some \(\lambda > \mu \) and \(N' > N \) there exists a cochain \(c' \in C^\infty(U_{\lambda}^{(q)} \cap \mathcal{Q}', R_p, \phi_{\lambda'}) \) such that \(\delta c' = \rho_{\lambda,\mu} c |\mathcal{Q}' \) and

\[
(3.10) \quad \|c'\|_{g,\nu}^2 \leq C'' \|c\|_{g,\nu}.
\]

Here we used the fact that \(\mathcal{Q}' \) is contained in \(\Omega_{\nu}^{(i)} \) as \(\delta > \tau z \). This means that if we set \(v = u_{\nu,\mu} + c' \in U_{\nu}^{(q)} \cap \mathcal{Q}' \), we define uniquely an element \(v \in \mathcal{O}(\mathcal{Q}')^q \). Since \(Pu' = 0 \), it follows that \(Pv = Pu' \), and from the estimates (3.8), (3.9) and (3.10) we obtain (3.7) with \(N \) replaced by \(N' \).

§ 4. Soft Resolution of \(\mathcal{Q}_{k,i} \)

In this section, we define the space \(\mathcal{Q}(\mathcal{Q}) \) of rapidly decreasing distributions, and using this space we make a resolution of \(\mathcal{Q}^{(i)} \), that is,
Definition 4.1. Let \mathcal{Q} be an open set in $\mathbb{Q}^{k,1}$. We denote by $\mathcal{G}(\mathcal{Q})$ the inductive limit $\lim_{K \subset 2 \mathcal{F}_e(K)}$ of $\mathcal{F}_e(K)$, where K is a compact set in \mathcal{Q}. We denote by $\mathcal{G}'(\mathcal{Q})$ the dual space of $\mathcal{G}(\mathcal{Q})$.

Since the injection of $\mathcal{G}(\mathcal{Q})$ into $\mathcal{F}(\mathcal{Q})$ (Definition 2.13 of [I]) is continuous and of dense range, $\mathcal{F}'(\mathcal{Q})$ is a linear subspace of $\mathcal{G}'(\mathcal{Q})$. Moreover, we have the following proposition.

Proposition 4.2. An element of $\mathcal{G}'(\mathcal{Q})$ belongs to $\mathcal{F}'(\mathcal{Q})$ if and only if it has a compact support.

Proof. Let $T \in \mathcal{F}'(\mathcal{Q})$. By the definition of the topology of $\mathcal{F}(\mathcal{Q})$ (see Definition 2.13 of [I]), there are a compact set K in \mathcal{Q}, an integer $m \geq 0$, and a constant $C > 0$ such that for all $f \in \mathcal{F}(\mathcal{Q})$,

$$|\langle T, f \rangle| \leq C \sup_{|x| \leq m, x \in K \cap \mathbb{C}^n} |D^m f(x)| e^{-|x|/(m+1)}.$$

This implies immediately that $\langle T, f \rangle = 0$ whenever the support of f is contained in the complement of K, which means that $\text{supp} T \subset K$.

Conversely if T is an element of $\mathcal{G}'(\mathcal{Q})$ with the compact support K. Let $\alpha(x) \in \mathcal{F}_e(\mathcal{Q})$ be equal to one in some neighbourhood of K. Then $\langle T, f \rangle = \langle T, \alpha f \rangle$ and if ϕ, converges to zero in $\mathcal{F}(\mathcal{Q})$, $\alpha \phi$, converges to zero in $\mathcal{G}(\mathcal{Q})$. Therefore $\mathcal{F}(\mathcal{Q}) \ni \phi \to \langle T, \phi \rangle$ is continuous, hence $T \in \mathcal{F}'(\mathcal{Q})$.

Proposition 4.3. If \mathcal{Q} is a bounded open set in \mathcal{C}^n then $\mathcal{G}'(\mathcal{Q}) = \mathcal{D}'(\mathcal{Q})$.

Proof. It is obvious, since $\mathcal{G}(\mathcal{Q}) = \mathcal{D}(\mathcal{Q})$.

Proposition 4.4. Let K be a compact subset of $\mathbb{Q}^{k,1}$ defined in Definition 2.1, and \mathcal{Q} be a neighbourhood of K. For $f \in \mathcal{F}'(\mathcal{Q})$, define

$$\hat{f}(\xi) = \langle f, e^{-i\xi \cdot \cdot \cdot} \rangle / (2\pi)^n.$$
then \(\hat{f}(\zeta) \) is analytic in \(\{ \zeta \in \mathbb{C}^n; |\text{Im } \zeta| < \varepsilon \} \) for some \(\varepsilon > 0 \) and there exists an \(N \) satisfying \(|\hat{f}(\zeta)| \leq C(1 + |\zeta|)^N \) for \(|\text{Im } \zeta| < \varepsilon \). The equality

\[
(4.2) \quad \langle f, v \rangle = \int_{\mathbb{R}^{2n}} \hat{f}(\xi + i\eta) \overline{v}(\xi + i\eta) \, d\xi
\]

holds for \(v \in \mathcal{D}(K) \) and \(\eta \in K^0 \) with \(|\eta| < \varepsilon \).

Proof. By the definition of the topology of \(\mathcal{D}(\mathcal{O}) \), there exists a seminorm \(\| \cdot \|_{L, N, \varepsilon} \) satisfying \(\| f, v \|_{L, N, \varepsilon} \leq C \| v \|_{L, N, \varepsilon} \) for some constant \(C \), where \(\| v \|_{L, N, \varepsilon} = \sup_{x \in L \cap \mathbb{R}^{2n}, |a| \leq N} |D^\alpha f(x) e^{-\varepsilon|x|}| \) for the compact set \(L \) in \(\mathcal{O} \) and \(\varepsilon > 0, N > 0 \). If \(|\text{Im } \zeta| < \varepsilon \), then

\[
\| e^{-i(x, \zeta)} \|_{L, N, \varepsilon} = \sup_{x \in L \cap \mathbb{R}^{2n}, |a| \leq N} |e^{-i(x, \zeta)}| e^{-\varepsilon|x|} \leq \sup_{|a| \leq N} \{ |\zeta| \} \leq (1 + |\zeta|)^N < \infty .
\]

Hence \(\hat{f}(\zeta) = \langle f, e^{-i(x, \zeta)} \rangle / (2\pi)^n \) is analytic in \(|\text{Im } \zeta| < \varepsilon \) and satisfies \(|\hat{f}(\zeta)| \leq C(1 + |\zeta|)^N \). Since

\[
v(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^{2n}} e^{-i(x, \xi + i\eta)} \overline{v}(\xi + i\eta) \, d\xi
\]

by Proposition 2.11, and the Riemann sum converges with respect to the seminorm \(\| \cdot \|_{L, N, \varepsilon} \), then

\[
\langle f, v \rangle = \langle f, \frac{1}{(2\pi)^n} \int_{\mathbb{R}^{2n}} e^{-i(x, \xi + i\eta)} \overline{v}(\xi + i\eta) \, d\xi \rangle = \int_{\mathbb{R}^{2n}} \hat{f}(\xi + i\eta) \overline{v}(\xi + i\eta) \, d\xi .
\]

Remark 4.5. The equality (4.2) holds when \(v \) satisfies \(|D^\alpha v(x)| \leq C e^{\varepsilon|x|} \) for \(|\alpha| \leq N + 3n \) and \(\delta > 0 \) such that \(K^\delta \) has an element \(\gamma \) satisfying \(|\gamma| < \varepsilon \).

Let \(\overline{\partial} \) be the Cauchy-Riemann operator defined by

\[
\overline{\partial}: u = \sum_{i_1, \ldots, i_p < i_p} u_{i_1, \ldots, i_p} d\bar{z}_{i_1} \wedge \cdots \wedge d\bar{z}_{i_p} \rightarrow
\]

\[
\overline{\partial} u = \sum_{i_1, \ldots, i_p < i_p} \left(\partial u_{i_1, \ldots, i_p} / \partial \bar{z}_j \right) d\bar{z}_j \wedge d\bar{z}_{i_1} \wedge \cdots \wedge d\bar{z}_{i_p} .
\]
If we identify forms u and w with vector functions \tilde{u} and \tilde{w} having $\binom{n}{p}$ and $\binom{n}{p+1}$ components respectively, δ_p can be represented by $P_p(D)$ where $P_p(\zeta)$ is a $\binom{n}{p} - \binom{n}{p+1}$ matrix with polynomial entries, and $D = i\partial/\partial x$. It is known as the Koszul resolution that the following sequence is exact:

$$0 \rightarrow A^{tP_{p-1}(\zeta)} \rightarrow A^n \rightarrow \cdots \rightarrow A^{tP_p(\zeta)} \rightarrow \cdots$$

$$\cdots \rightarrow tP_p(\zeta) \rightarrow A \rightarrow \text{Coker } tP_p(\zeta) \rightarrow 0,$$

where A is the polynomial ring of the variable $\zeta = (\zeta_1, \cdots, \zeta_n)$ and $tP_p(\zeta)$ is the transpose of $P_p(-\zeta)$ (see Example 4 in §7 of Chapter VII of V. P. Palamodov [5]). It is known that R_{tP_p} is generated by the germs of the lows of the matrix $P_{p-1}(\zeta)$ (see Lemma 7.6.3 of L. Hörmander [1]). Since R_{tP_p} is a coherent analytic sheaf, we have the following proposition.

Proposition 4.6. Let Ω be a pseudoconvex domain. If $f \in \mathcal{O}^s(\Omega)$ satisfies the equation $tP_p(\zeta)f(\zeta) = 0$, then there exists a $g \in \mathcal{O}^s(\Omega)$ satisfying $f(\zeta) = tP_{p+1}(\zeta)g(\zeta)$, where $r = \binom{n}{p+1}$ and $s = \binom{n}{p+2}$.

Proof. See Theorem 7.2.9 of L. Hörmander [1].

Definition 4.7. (The sheaf of rapidly decreasing distributions.) We denote by \mathcal{G}' the sheaf determined by a presheaf $\{\mathcal{G}'(\mathcal{O})\}$, where Ω is an open set in $Q^{k,1}$.

For any locally finite covering $\{U_a\}$ of Ω, there exists a partition of unity $\{\phi_a\}$ subordinate to the covering $\{U_a \cap \mathcal{C}^n\}$ such that all derivatives of ϕ_a are bounded. Then $\mathcal{G}'(\mathcal{O})$ is the section module of the sheaf \mathcal{G}' and \mathcal{G}' is a soft sheaf.

Theorem 4.8. Let Ω be a neighbourhood of a point z_∞ at infinity in $Q^{k,1}$. If $f \in \mathcal{G}'_{(0,p)}(\Omega)$ satisfies $\bar{\partial}f = 0$, then there exists a neighbourhood ω of z_∞ with $\omega \subseteq \Omega$ and $u \in \mathcal{G}'_{(0,p-1)}(\omega)$ such that $\bar{\partial}u = f$ in ω.
Proof. First we choose a neighbourhood \(\omega \) of \(z_0 \) having the form \(\omega = a + \text{Int } K \), where \(K \) is the compact set in \(Q^{k,i} \) defined in Definition 2.1 and \(a \in \mathbb{R}^n \).

Let \(L \) be a compact set in \(\varrho \) containing \(\omega \). Then \(f \in \mathcal{F}'_\varepsilon (L)^i \) and satisfies, for some \(m > 0, \varepsilon > 0, |\langle f, \psi \rangle| \leq C \| \psi \|_{m, \varepsilon} \) for all \(\psi \in \mathcal{F}_\varepsilon (L)^i \), where \(J = \left\{ \frac{n}{p} \right\} \). Hence

\[
(4.3) \quad |\langle f, \phi \rangle| \leq C \| \phi \|_{m, \varepsilon} \quad \text{for } \phi \in \varrho (\omega)^i,
\]

where \(\| \phi \|_{m, \varepsilon} = \sum_{j=1}^J \sup_{x \in \mathbb{R}^n, |\omega| \leq \varepsilon} |D^p \phi_j(x)| e^{-\varepsilon^{|x|}} \). If we can show that there exist \(M > 0 \) and \(\varepsilon > 0 \) satisfying

\[
(4.4) \quad |\langle f, \nu \rangle| \leq C \| \vartheta \nu \|_{m, \varepsilon} \quad \text{for all } \nu \in \varrho (\omega)(n) \omega,
\]

by the Hahn-Banach theorem there exists a \(\nu \in \mathcal{F}'_\varepsilon (\omega)^i \) satisfying \(\langle f, \nu \rangle = \langle u, \vartheta \nu \rangle \), that is, \(\vartheta u = f \) in \(\omega \), where \(\vartheta \) is the dual operator of \(\bar{\vartheta} \). Let \(\nu \in \varrho (\omega)^i \), then \(\text{supp } \nu \subset a + K \). By the coordinate transformation (translation) we may assume \(\text{supp } \nu \subset K \). Then, by Corollary 2.8, \(\vartheta (\zeta) \) is analytic for \(\text{Im } \zeta \in K^\circ \) and satisfies, for any \(\varepsilon > 0 \) and \(\nu > 0 \),

\[
|\vartheta (\zeta)| \leq C_{\varepsilon, \nu} \frac{1}{(1 + |\zeta|)} e^{h_{K, \varepsilon} (\text{Im } \zeta)} \quad \text{for } \text{Im } \zeta \in K^\circ.
\]

Let \(\vartheta_p \) be represented by \(P_p (D) \), then by Proposition 3.5 there exists an \(N \) such that for any \(\nu \) there exists a function \(V (\zeta) \) analytic for \(\text{Im } \zeta \in K^\circ_\varepsilon \) and satisfying

\[
\int_{\mathbb{R}^n + i \text{Int } K^\circ_\varepsilon} |V (\zeta)|^2 e^{-2h_{K, \varepsilon} (\text{Im } \zeta)} (1 + |\zeta|) e^{-N} d\lambda \leq \int_{\mathbb{R}^n + i K^\circ_\varepsilon} |V_p (\zeta) \vartheta (\zeta)|^2 e^{-2h_{K, \varepsilon} (\text{Im } \zeta)} (1 + |\zeta|) e^{-N} d\lambda < \infty,
\]

where we have used the fact that \(h_{K, \varepsilon} (\text{Im } \zeta) \) is a convex (hence plurisubharmonic) function satisfying the condition (3.4) and \(\mathbb{R}^n + i \text{Int } K^\circ_\varepsilon \) is a pseudoconvex domain strictly contained in \(\mathbb{R}^n + i \text{Int } K^\circ_\varepsilon \) (see Propositions 2.15 and 2.16). From the above inequality, we have

\[
|V (\zeta)| \leq C \frac{1}{(1 + |\zeta|) e^{h_{K, \varepsilon} (\text{Im } \zeta)}} \quad \text{for } \text{Im } \zeta \in K^\circ_\varepsilon.
\]
Propositions 2.10, 2.12 and the above inequality imply that $V(\zeta) = \vartheta_1(\zeta)$ for a $C^{r-N_{-n}}$ function v_1 with support contained in K satisfying $\|v_1\|_{r-N_{-n}, \epsilon \lambda} < \infty$. From Propositions 3.5 and 4.6, there exists a function $\Phi(\zeta)$ analytic in $\{\zeta \in \mathcal{C}^n; \text{Im}\zeta \in \text{Int} K_{\mu}^0\}$ and satisfying $V(\zeta) - \vartheta(\zeta) = \epsilon P_{\mu}(\zeta) \Phi(\zeta)$ and

$$\int_{R^{2n} \times fK_{\mu}^0} |\Phi(\zeta)|^2 e^{-2hK_{\mu} \epsilon(\text{Im}\zeta)} (1 + |\zeta|^2)^{-N_{-n}} d\lambda < \infty,$$

for some constant ϵ depending only on $P_{\mu}(\zeta)$ and $P_{\mu-1}(\zeta)$. This implies that there exists a $C^{r-N_{-n}}$ function Φ with support contained in K, satisfying $\Phi(\zeta) = \tilde{\Phi}(\zeta)$ and $\|\tilde{\Phi}\|_{r-N_{-n}, \epsilon \lambda} < \infty$.

Considering the inequality (4.3), if we take sufficiently large $\nu>0$ and small $\epsilon>0$, we have

$$\langle f, v_1 \rangle - \langle f, v \rangle = \langle f, \epsilon P_{\mu}(D) \phi \rangle = \langle P_{\mu}(D)f, \phi \rangle = \langle \tilde{\phi}, \phi \rangle = 0.$$

Let $\alpha \in \mathcal{F}_{e}(L)$ with $\alpha(x) = 1$ on a neighbourhood of $\omega \cap R^m$. Define $f_0 = \alpha f$, then $f_0 \in \mathcal{F}'(D)$ by Proposition 4.2, and $\langle f, v \rangle = \langle f_0, v \rangle$ for any C^∞ function v with support contained in ω and satisfying $\|v\|_{m, \epsilon} < \infty$.

By Remark 4.5 if we take sufficiently large $\nu>0$ and small $\epsilon>0$, we have

$$|\langle f, v \rangle|^2 = |\langle f, v_1 \rangle|^2 = |\langle f_0, v_1 \rangle|^2 \leq \left(\int_{R^{2n}} \left| \tilde{f}_0(\xi + i\eta) \vartheta_1(\xi + i\eta) |d\xi|^2 \right|^2$$

$$\leq \int_{R^{2n}} |\tilde{f}_0(\xi + i\eta)|^2 (1 + |\xi|^2)^{r-N_{-n}} d\xi$$

$$\times \int_{R^{2n}} |\tilde{V}(\xi + i\eta)|^2 (1 + |\xi|^2)^{r-N_{-n}} d\xi$$

$$\leq C_1 \int_{R^{2n} \times fK_{\mu}^0} |\tilde{V}(\zeta)|^2 e^{-2hK_{\mu} \epsilon(\text{Im}\zeta)} (1 + |\zeta|^2)^{-N_{-n}} d\lambda$$

$$\leq C \int_{R^{2n} \times fK_{\mu}^0} \left| \epsilon P_{\mu-1}(\zeta) \tilde{\vartheta}(\zeta) \right|^2 e^{-2hK_{\mu} \epsilon(\text{Im}\zeta)} (1 + |\zeta|^2)^{-N_{-n}} d\lambda$$

$$\leq C \|\epsilon P_{\mu-1}(D)v\|_{N_{-\epsilon} \lambda} = C\|\tilde{\theta} v\|_{N_{-\epsilon} \lambda},$$

The last inequality follows from Proposition 2.13. Thus we have shown (4.4), and completed the proof.
Theorem 4.9. We have the following soft resolution of the sheaf \(\mathcal{O}_{k,1} \):

\[
0 \to \mathcal{O}_{k,1} \to \mathcal{O}_{(0,0)}' \to \mathcal{O}_{(0,1)}' \to \cdots \to \mathcal{O}_{(0,n)}' \to 0.
\]

Proof. Since the restriction of \(\mathcal{O}_{k,1} \) or \(\mathcal{O}' \) to \(C^n \) is \(\mathcal{O} \) or \(\mathcal{D}' \), respectively, and it is well known that the following sequence is exact:

\[
0 \to \mathcal{O} \to \mathcal{D}'_{(0,0)} \to \cdots \to \mathcal{D}'_{(0,n)} \to 0.
\]

In order to obtain the resolution (4.5), we have only to make it at points at infinity. It is done in Theorem 4.8.

Definition 4.10. Let \(K \) be the compact set in \(Q^{k,1} \) defined in Definition 2.1. Define \(I_{K,\varepsilon}(\gamma) = \sup_{x \in K \cap R^n} (|x, \gamma| - \varepsilon|x|) \) and \(K_{\varepsilon} = \{ \gamma \in R^{2n}; I_{K,\varepsilon}(\gamma) < \infty \} \).

Proposition 4.11. Let \(\Omega \) be an open set in \(Q^{k,1} \) containing \(K \). If \(f \in \mathcal{F}'(\Omega) \) satisfies the inequality \(\langle f, v \rangle \leq C \|v\|_{K,\varepsilon} \) for all \(v \in \mathcal{F}(\Omega) \), where \(\|v\|_{K,\varepsilon} = \sup_{x \in K \cap R^n, |\alpha| \leq N} |D^\alpha f(x)| e^{-\varepsilon|x|} \), then \(\hat{f}(\zeta) = \langle f, e^{-i(x,\zeta)} \rangle / (2\pi)^n \) is analytic in \(\{ \zeta \in C^{2n}; \text{Im} \zeta \in \text{Int} K_{\varepsilon} \} \) and satisfies, for some constant \(C \geq 0 \),

\[
|\hat{f}(\zeta)| \leq C (1 + |\zeta|)^N e^{iK,\varepsilon(\text{Im} \zeta)} \quad \text{for Im} \zeta \in K_{\varepsilon}.
\]

Proof. Let \(\zeta = x + i\eta \) and \(\gamma \in K_{\varepsilon} \). Then we have

\[
\|e^{-i(x,\zeta)}\|_{K,\varepsilon} = \sup_{z \in K \cap R^n, |\alpha| \leq N} |\zeta^\alpha e^{i(x,\eta)}| e^{-\varepsilon|x|} \leq (1 + |\zeta|)^N e^{iK,\varepsilon(\text{Im} \zeta)}.
\]

Since \((e^{-i(x,\zeta)} - e^{-i(x,\zeta)}) / h \) converges to \(-ixe^{-i(x,\zeta)} \) as \(h \to 0 \) with respect to \(\| \cdot \|_{K,\varepsilon} \) for \(\text{Im} \zeta \in \text{Int} K_{\varepsilon} \), \(\hat{f}(\zeta) \) is analytic.

Proposition 4.12. Let \(F(\zeta) \) be an analytic function in \(\{ \zeta \in C^{2n}; \text{Im} \zeta \in \text{Int} K_{\varepsilon} \} \) satisfying the inequality (4.6). Then \(F(\zeta) \) defines an element \(f \in \mathcal{F}'(Q^{k,1}) \) with support contained in \(K \) satisfying

\[
\langle f, \phi \rangle = \int_{R^{2n} + i\eta} F(\zeta) \overline{\phi}(\zeta) d\zeta \quad \text{for} \quad \phi \in C_0^\infty(R^{2n}).
\]
Proof. If $\phi \in C^\omega_c (\mathbb{R}^n)$, then $\tilde{\phi} (\zeta)$ is an entire function satisfying for any $\nu > 0$

$$|\tilde{\phi} (\zeta)| \leq C e^{\alpha \nu (\text{Im} \zeta) / (1 + |\zeta|)^{\nu}} ,$$

where B is the support of ϕ and $h_B (\eta) = \sup_{x \in B} (-<x, \eta>)$. Hence the linear form

$$\int_{\mathbb{R}^n} F (\zeta) \tilde{\phi} (\zeta) d\zeta = \langle f, \phi \rangle$$

defines a distribution f. Let B be convex and $B \cap K = \phi$, then there exists a vector $\eta \in (-K^0) \subset K^0_{\delta}$ such that for some $\delta > 0$

$$\sup_{x \in K \cap \mathbb{R}^n} \langle x, \eta \rangle \leq \langle y, \eta \rangle - \delta |\eta|$$

for all $y \in B$, hence $I_{K, \varepsilon} (\eta) + h_B (\eta) \leq -\delta |\eta|$. Thus we have

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} F (\zeta) \tilde{\phi} (\zeta) d\zeta$$

$$\leq \lim_{\varepsilon \to 0} C e^{\alpha \varepsilon (\text{Im} \zeta) + h_B (\zeta)} \leq \lim_{\varepsilon \to 0} C e^{-\delta |\zeta|} = 0 .$$

Hence the support of f is contained in K. Let L be a neighbourhood of K having the form of Definition 2.1. If $\psi \in \mathcal{F}_c (L)$ then $\tilde{\phi} (\zeta)$ is analytic in \{ $\zeta \in \mathbb{C}^n; \text{Im} \zeta \in L^0$ \} and satisfies for any $\nu > 0$ and $\varepsilon > 0$

$$|\tilde{\phi} (\zeta)| \leq C e^{\alpha \varepsilon (\text{Im} \zeta) / (1 + |\zeta|)^{\nu}}$$

for $\text{Im} \zeta \in L^0_\varepsilon$. Hence it follows from the formula

$$\int_{\mathbb{R}^n} F (\zeta) \tilde{\phi} (\zeta) d\zeta$$

that the distribution f can be extended to $\mathcal{F}_c (L)$. Let $\alpha \in \mathcal{F}_c (L)$ such that $\alpha (x) = 1$ in a neighbourhood of K, then $\alpha \psi \in \mathcal{F}_c (L)$ for $\psi \in \mathcal{F}(\mathbb{R}^n_i)$. Since the support of f is contained in K, we have $\langle f, \psi \rangle = \langle f, \alpha \psi \rangle$. This shows that $f \in \mathcal{F}'(\mathbb{R}^n_i)$.

Let \mathcal{Q} be an open set in $\mathbb{Q}^{k \cdot i}$ which has the form $a + \text{Int} K$, where K is the convex set defined in Definition 2.1 and $a \in \mathbb{C}^n$.

Theorem 4.13. If $\tilde{\partial}_p \nu = 0$ for $\nu \in \mathcal{F}_{(0, p)} (\mathcal{Q})$, then there exists $u \in \mathcal{F}_{(0, p - 1)} (\mathcal{Q})$ satisfying $\tilde{\partial}_{p - 1} u = \nu$.
Proof. We represent δ_ν by $P_\nu(D)$. Since all the spaces of the sequence

$$
\mathbb{T}(\mathcal{Q})^q \xrightarrow{P_{\nu-1}(D)} \mathbb{T}(\mathcal{Q})^r \xrightarrow{P_\nu(D)} \mathbb{T}(\mathcal{Q})^s
$$

are FS spaces (see Remark 2.27 in [I]), we have only to show that the dual sequence

$$
\mathbb{T}'(\mathcal{Q})^q \xleftarrow{^tP_{\nu-1}(D)} \mathbb{T}'(\mathcal{Q})^r \xleftarrow{^tP_\nu(D)} \mathbb{T}'(\mathcal{Q})^s
$$

is exact and the range of $^tP_{\nu-1}(D)$ is closed.

Let $g \in \mathbb{T}'(\mathcal{Q})^r$, then there exist a convex set of the form $b + L$ contained in \mathcal{Q} and constants $N > 0$, $\varepsilon > 0$ such that the estimate

$$
|\langle g, v \rangle| \leq C\|v\|_{b + L, N, \varepsilon}
$$

holds for all $v \in \mathbb{T}(\mathcal{Q})^r$. We may assume that L is also a convex set of the type in Definition 2.1. By coordinate transformation (translation) we may also assume $b = 0$. Then, by Proposition 4.11, $\tilde{g}(\zeta)$ is analytic in $\{\zeta \in C^n; \text{Im } \zeta \in \text{Int } L^0_\nu\}$ and satisfies

$$
|\tilde{g}(\zeta)| \leq C(1 + |\zeta|)^N e^{tL_{1/2}(|\text{Im } \zeta|)} \quad \text{for } \text{Im } \zeta \in L_\nu^0.
$$

The equation $^tP_{\nu-1}(D)g = 0$ implies $^tP_{\nu-1}(-\zeta)\tilde{g}(\zeta) = 0$ in $\{\zeta \in C^n; \text{Im } \zeta \in \text{Int } L^0_\nu\}$. Then by Propositions 3.5 and 4.6, there exists an analytic function $F(\zeta)$ such that $^tP_{\nu}(-\zeta)F(\zeta) = \tilde{g}(\zeta)$ for $\text{Im } \zeta \in \text{Int } L^0_{\nu/2}$ and satisfying for some $\nu > 0$

$$
|F(\zeta)| \leq C(1 + |\zeta|)^N e^{tL_{1/2}(|\text{Im } \zeta|)} \quad \text{for } \text{Im } \zeta \in L^0_{\nu/2}.
$$

Here we used the fact that $I_{L, \varepsilon}(\eta)$ is convex and Lipschitz continuous, and $L^0_{\nu/2}$ is a convex set contained strictly in L^0_ν. This shows that there exists $f \in \mathbb{T}'(\mathcal{Q})^s$ such that

$$
\langle f, P_\nu(D)v \rangle = \int_{\mathbb{R}^n + t\eta} F(\zeta) P_\nu(\zeta) \overline{v}(\zeta) \, d\zeta
$$

$$
= \int_{\mathbb{R}^n + t\eta} ^tP_\nu(-\zeta) F(\zeta) \overline{v}(\zeta) \, d\zeta
$$

$$
= \int_{\mathbb{R}^n + t\eta} \tilde{g}(\zeta) \overline{v}(\zeta) \, d\zeta = \langle g, v \rangle
$$

for all $v \in \mathbb{T}(K)$, that is, $^tP_\nu(D)f = g$.

Next we prove the closedness of the range of $^tP_\nu(D)$. Assume
$F_j \to F$ in $\mathcal{E}'(\Omega)$ with $F_j = \iota^* P_0(D) G_j$ for $G_j \in \mathcal{E}'(\Omega)^n$. Since the sequence \{\(F_j\)\} is a bounded set in the DFS space $\mathcal{E}'(\Omega)$, there exist a compact set L in Ω (we may assume that L is a convex set of the type in Definition 2.1) and constants $C>0$, $\varepsilon>0$ satisfying
\[
\left| \tilde{F}_j(\zeta) \right| \leq C (1 + |\zeta|)^N e^{\varepsilon \Re(z)} \quad \text{for} \quad \Im \zeta \in L_{\varepsilon}. \]

By Proposition 3.5 we can choose $\Psi_j(\zeta)$ satisfying
\[
(4.8) \quad |\Psi_j(\zeta)| \leq C' (1 + |\zeta|)^N e^{\varepsilon \Re(z)} \quad \text{for} \quad \Im \zeta \in L_{\varepsilon}. \]

Since \{\(\Psi_j(\zeta)\)\} forms a normal family, there exists a subsequence which converges to $\Psi(\zeta)$ which also satisfies (4.8). Thus there exists $G \in \mathcal{E}'(\Omega)^n$ satisfying
\[
\langle G, P_0(D) v \rangle = \int_{\mathbb{R}^n + z \in L} \Psi(\zeta) P_0(\zeta) \overline{v}(\zeta) d\zeta
= \lim_{k \to \infty} \int_{\mathbb{R}^n + z \in L} i P_0(-\zeta) \Psi_j(\zeta) \overline{v}(\zeta) d\zeta
= \lim_{k \to \infty} \langle F_j, v \rangle = \langle F, v \rangle.
\]

This shows that $F = \iota^* P_0(D) G$, that is, the range of $\iota^* P_0(D)$ is closed.

At the end of this section, we give an extension of Theorem 4.11 of [1].

Theorem 4.14. We have the following soft resolution of the sheaf $\mathcal{O}_{k,1}$ on \mathbb{Q}^{k+1}:
\[
(4.7) \quad 0 \to \mathcal{O}_{k,1} \xrightarrow{\partial} \mathcal{E}(\mathbb{Q},0) \to \cdots \to \mathcal{E}(\mathbb{Q},n) \to 0. \]

Proof. Since the restriction of $\partial \mathcal{O}_{k,1}$ or \mathcal{E} to \mathbb{C}^n is \mathcal{O} or \mathcal{E} respectively, and it is well known that the following sequence is exact:
\[
0 \to \mathcal{O} \xrightarrow{\partial} \mathcal{E}(\mathbb{Q},0) \to \cdots \to \mathcal{E}(\mathbb{Q},n) \to 0. \]

In order to obtain the resolution (4.7) of $\partial \mathcal{O}_{k,1}$, we have only to make the resolution at points at infinity. Since the point z_∞ at infinity has a fundamental system of neighbourhoods whose member has the form $a + \text{Int } K$, Theorem 4.13 gives the resolution at points at infinity.
Remark 4.15. In the above theorem the resolution is obtained on the whole $Q^{k,1}$, while in Theorem 4.11 of [I], it is obtained on the open subset \mathcal{O} which satisfies the condition (i) of Definition 4.5 of [I].

§ 5. Fourier Hyperfunctions with Compact Supports

In this section, we show that the space $\mathcal{H}^*_K(V, \mathcal{O}_{k,1})$ of E-valued Fourier hyperfunctions is isomorphic to the space $L(Q_{k,i}(K), E)$ of continuous linear mappings from $Q_{k,i}(K)$ to a Fréchet space E.

Let K be a compact set in $\bigcap_{i=1}^j D^{\alpha_i}$ and V be an $\mathcal{O}_{k,1}$-pseudoconvex neighbourhood of K in $Q^{k,1}$. From Theorem 5.8 and Corollary 5.10 of [I], we have $H^p_0(V, Q_{k,1}) = 0$ for $0 \leq p \leq n - 1$ and $H^p(K, Q_{k,1}) = 0$ for $p \geq 1$. Therefore from the long exact sequence of cohomology groups with compact supports,

$$0 \rightarrow H^0(V-K, Q_{k,1}) \rightarrow H^*_0(V, Q_{k,1}) \rightarrow H^0(K, Q_{k,1})$$

follows that $\delta : H^0(K, Q_{k,1}) \cong H^*_0(V-K, Q_{k,1})$ and $H^*_0(V-K, Q_{k,1}) = 0$, for $n \geq 2$.

Since by Theorem 4.9 we have the soft resolution

$$0 \rightarrow Q_{k,1} \rightarrow G_0^1 \rightarrow G_0^2 \rightarrow \cdots \rightarrow G_0^n \rightarrow 0,$$

$H^*_0(V-K, Q_{k,1})$ can be represented by the first cohomology group of the complex $(Q_{\alpha,1}, (V-K), \delta)$. Then δ can be represented as the following continuous mapping. Let U be an open neighbourhood of K and $\alpha \in \mathcal{F}_e(U)$ such that $\alpha = 1$ in $W \cap R^m$, where W is some neighbourhood of K in U. The map

$$\partial_{U,\alpha} : H^0(U, Q_{k,1}) \rightarrow \{u \in \mathcal{F}^1_{\alpha,1}(V-K) ; \bar{\delta}u = 0\}$$

defined by $\partial_{U,\alpha}(f) = \bar{\delta}(\alpha f)$ is continuous and induces a continuous map of $H^0(U, Q_{k,1})$ into $H^*_0(V-K, Q_{k,1})$. These maps define the map δ on the inductive limit $H^0(K, Q_{k,1}) = \lim_{\overrightarrow{U \supset K}} H^0(U, Q_{k,1})$ of $H^0(U, Q_{k,1})$ and therefore δ is continuous. Moreover we can show that δ is an open mapping.
Proposition 5.1. Let $n \geq 2$. Consider the dual complex,

$$
\begin{align*}
&\mathcal{F}(V-K, \mathcal{O}_{n-1}) \xrightarrow{\delta_{n-1}} \mathcal{F}(V-K, \mathcal{O}_{n-2}) \\
&\mathcal{F}'(V-K, \mathcal{O}_{n-1}) \xrightarrow{-\delta_{n-1}} \mathcal{F}'(V-K, \mathcal{O}_{n-2}) \\
&\mathcal{F}(V-K, \mathcal{O}_{n-1}) \xrightarrow{\delta_{n-1}} \mathcal{F}(V-K, \mathcal{O}_{n-2}) \\
&\mathcal{F}'(V-K, \mathcal{O}_{n-1}) \xrightarrow{-\delta_{n-1}} \mathcal{F}'(V-K, \mathcal{O}_{n-2})
\end{align*}
$$

Then the ranges of the operators are all closed.

Proof. $H^2_e(V-K, \mathcal{O}_{k,1}) = 0$ shows that the range of $-\delta_1$ is closed, and from Theorem 5.11 of [I], it follows that the range of $-\delta_{n-1}$ is closed. The closedness of ranges of other operators is a consequence of the so-called Serre-Komatsu duality theorem (see Theorem 4.7 of [I]).

Proposition 5.2. Let $n \geq 2$, then $H^0(K, \mathcal{O}_{k,1})$ and $H^1_e(V-K, \mathcal{O}_{k,1})$ are DFS spaces.

Proof. Proposition 2.7 of [I] shows that $H^0(K, \mathcal{O}_{k,1}) = \mathcal{O}_{k,1}(K)$ is a DFS space. $\mathcal{F}(V-K)$ is a DFS space as the dual space of an FS space $\mathcal{F}(V-K)$ (see Remark 2.27 of [I]). Since a closed subspace and a quotient space (by its closed subspace) of a DFS space are also DFS spaces, it follows from the fact that the range of $-\delta_0$ is closed, that $H^1_e(V-K, \mathcal{O}_{k,1})$ is a DFS space.

Theorem 5.3. Let E be a fully complete space, and let F be a barreled space. Let f be a linear mapping of a subspace $E_0 \subset E$ onto F. Suppose that the graph of f is closed in $E \times F$. Then f is open.

Proof. See Theorem 4.10 of V. Pták [6].

Proposition 5.4. Let $n \geq 2$, then $\delta : H^0(K, \mathcal{O}_{k,1}) \to H^1_e(V-K, \mathcal{O}_{k,1})$ is a homeomorphism.

Proof. It is known that DFS spaces are fully complete and barreled spaces (see Theorems 4.3.28 and 4.3.40 of H. Komatsu [3]). Since δ is a one-to-one onto continuous mapping, it follows from Theorem
5.3 that δ is a homeomorphism.

Proposition 5.5. Let $n \geq 2$, then $H^{n-1}(V-K, \tilde{\mathcal{O}}_{k,i}) \cong [\mathcal{O}_{k,i}(K)]'$.

Proof. $H^{n-1}(V-K, \tilde{\mathcal{O}}_{k,i})$ is represented by the $(n-1)$-th cohomology group of the complex $(\mathcal{F}_{(0,n-1)}(V-K), \delta)$. It follows from Proposition 5.1 and the so-called Serre-Komatsu duality theorem (Theorem 4.7 of [I]) that

$$H^{n-1}(V-K, \tilde{\mathcal{O}}_{k,i}) \cong [H^i_k(V-K, \mathcal{O}_{k,i})]' \cong [\mathcal{O}_{k,i}(K)]'.$$

Let E be a Fréchet space. From the exact sequence,

$$(5.2) \quad \cdots \to H^p_k(V, \mathcal{O}_{k,i}) \to H^p(V, \mathcal{O}_{k,i}) \to H^{p+1}_k(V, \mathcal{O}_{k,i}) \to \cdots$$

and the fact that if V is $\mathcal{O}_{k,i}$-pseudoconvex, $H^p(V, \mathcal{O}_{k,i}) = 0$ for $p > 0$ (see Theorem 6.6 of [I]), it follows that $H^p_k(V, \mathcal{O}_{k,i}) \cong H^{n-1}(V-K, \mathcal{O}_{k,i})$, for $n \geq 2$.

Proposition 5.6. Let $n \geq 2$, then $H^{n-1}(V-K, \mathcal{O}_{k,i}) \cong H^{n-1}(V-K, \mathcal{O}_{k,i}) \hat{\boxtimes} E$ for a Fréchet space E.

Proof. We represent $H^{n-1}(V-K, \mathcal{O}_{k,i})$ by the $(n-1)$-th cohomology group of the complex,

$$\cdots \to \mathcal{F}_{(0,n-1)}(V-K) \xrightarrow{\delta_{n-2}} \mathcal{F}_{(0,n-2)}(V-K) \xrightarrow{\delta_{n-3}} \cdots$$

Since the range of δ_{n-2} is closed by Proposition 5.1 and $\mathcal{F}_{(0,n-1)}(V-K)$ is a Fréchet nuclear space, we have the exact sequence

$$(5.3) \quad 0 \to \text{im} \delta_{n-2} \to \text{ker} \delta_{n-1} \to \text{ker} \delta_{n-1}/\text{im} \delta_{n-2} \to 0$$

where all the spaces are Fréchet nuclear spaces. Since the tensoring by $\hat{\boxtimes} E$ is an exact functor (see Theorem 6.5 of [I]), we have the following exact sequence:

$$(5.4) \quad 0 \to (\text{im} \delta_{n-2}) \hat{\boxtimes} E \to (\text{ker} \delta_{n-1}) \hat{\boxtimes} E \to H^{n-1}(V-K, \mathcal{O}_{k,i}) \hat{\boxtimes} E \to 0.$$
\[\ker(\tilde{\sigma}_{n-1} \otimes 1_E) = [f \otimes v \in \mathcal{F}_{(n-1)}(V-K) \hat{\otimes} E; \tilde{\sigma}_{n-1}f = 0] \\
= (\ker(\tilde{\sigma}_{n-1}) \hat{\otimes} E). \]

By Proposition 43.9 of F. Treves [7], we also have \(\text{im} (\tilde{\sigma}_{n-2} \otimes 1_E) = (\text{im} \tilde{\sigma}_{n-2}) \hat{\otimes} E \). Since \(H^{n-1}(V-K, \mathcal{E}_{k,1}) \) can be represented by the \((n-1)\)-th cohomology group of the complex \((\mathcal{F}_{\omega^2}, (V-K, E), \mathcal{E}) \) and \(\mathcal{F}_{\omega^2}, (V-K, E) \cong \mathcal{F}_{\omega^2}, (V-K) \hat{\otimes} E \) and \(\mathcal{E} = \tilde{\sigma} \hat{\otimes} 1_E \), we have \(H^{n-1}(V-K, \mathcal{E}_{k,1}) \cong H^{n-1}(V-K, \mathcal{E}_{k,1}) \hat{\otimes} E \).

Theorem 5.7. Let \(E \) be a Fréchet space and \(K \) be a compact set in \(\mathfrak{M}' \). Then \(H^n_{\mathfrak{K}}(V, \mathcal{E}_{k,1}) \cong L(\mathcal{Q}_{k,1}(K), E) \).

Proof. By Proposition 50.5 of F. Treves [7], we have \(L(\mathcal{Q}_{k,1}(K), E) \cong \left[\mathcal{Q}_{k,1}(K) \right]' \hat{\otimes} E \). Propositions 5.5 and 5.6 show that \(\left[\mathcal{Q}_{k,1}(K) \right]' \hat{\otimes} E \cong H^{n-1}(V-K, \mathcal{E}_{k,1}) \), for \(n \geq 2 \). Thus we have \(H^n_{\mathfrak{K}}(V, \mathcal{E}_{k,1}) \cong L(\mathcal{Q}_{k,1}(K), E) \), for \(n \geq 2 \).

If \(n = 1 \), \(H^1(W, \mathcal{E}_{k,1}) = 0 \) for any open set \(W \) in \(Q^{k,1} \) satisfying the condition (i) of Definition 5.1 of [I] (Theorem 5.11 of [I]). Consider the dual complex,

\[
0 \rightarrow \mathcal{F}_{(n,0)}(W) \xrightarrow{\tilde{\delta}} \mathcal{F}_{(n,1)}(W) \rightarrow 0 \\
\downarrow \quad \downarrow \\
0 \leftarrow \mathcal{F}_{(n,0)}'(W) \leftarrow \mathcal{F}_{(n,0)}(W) \leftarrow 0.
\]

Then the range of \(\tilde{\delta} (= \mathcal{F}_{(n,0)}'(W)) \) is closed, therefore the range of \(-\tilde{\delta}\) is closed and

\[
\mathcal{E}_{k,1}(W) \cong \left[H^1_k(W, \mathcal{Q}_{k,1}) \right]'.
\]

The mapping \(\rho \) of the exact sequence

\[
0 \rightarrow H^k(K, \mathcal{E}_{k,1}) \xrightarrow{\delta} H^1_k(V-K, \mathcal{Q}_{k,1}) \xrightarrow{\rho} H^1_k(V, \mathcal{Q}_{k,1}) \rightarrow 0
\]

is continuous since it is induced by the continuous injection of \(\mathcal{F}'(V-K) \) into \(\mathcal{F}'(V) \). Therefore the dual sequence

\[
0 \rightarrow \mathcal{E}_{k,1}(V) \xrightarrow{\delta} \mathcal{E}_{k,1}(V-K) \xrightarrow{\delta^*} \mathcal{Q}_{k,1}(K) \rightarrow 0
\]

is exact. Since all the spaces of the above sequence are Fréchet nuclear, we have the exact sequence.
where we used the fact that \(\mathcal{O}_{\mathcal{K},i}(W, E) \cong \mathcal{O}_{\mathcal{K},i}(W) \otimes E \) for an open set \(W \) in \(Q^{k,i} \) \((6.6) \) of \([I]\)) and the tensoring \(\otimes E \) is an exact functor (Theorem 6.5 of \([I]\)). Thus we have

\[
H^p_k(V, \mathcal{O}_{\mathcal{K},i}) \cong \mathcal{O}_{\mathcal{K},i}(V - K, E) \otimes [\mathcal{O}_{\mathcal{K},i}(K)]' \otimes E
\]

for \(n = 1 \).

Corollary 5.8. Let \(\Omega \) be an open set in \(\prod_{i=1}^{j} D^{v_i} \). Then \(E^* \mathcal{R}_{\mathcal{K},i}(\Omega) \cong L(\mathcal{O}_{\mathcal{K},i}(\Omega), E) / L(\mathcal{O}_{\mathcal{K},i}(\partial \Omega), E) \).

Proof. The corollary follows from Proposition 6.10 of \([I]\) and Theorem 5.7.

Without changing the proof of Theorem 5.7, we can prove the following theorem, which corresponds to Theorem 5.12 of \([I]\) in the scalar valued case.

Theorem 5.9. Let \(K \) be a compact set in \(Q^{k,i} \), and \(V \) be an \(\mathcal{O}_{\mathcal{K},i} \)-pseudoconvex domain containing \(K \). Suppose \(H^p(K, \mathcal{O}_{\mathcal{K},i}) = 0 \) for \(p \geq 1 \). Then we have

\[
H^p_k(V, \mathcal{O}_{\mathcal{K},i}) \cong L(\mathcal{O}_{\mathcal{K},i}(K), E).
\]

Remark 5.10. We can also prove \(H^p_k(V, \mathcal{O}_{\mathcal{K},i}) = 0 \) for \(p \neq n \), for a compact set \(K \) satisfying the condition of the above theorem, in the same way as Theorem 6.8 of \([I]\).

References

