Vanishing Theorems on Complete Kähler Manifolds

By

Takeo OHSAWA*

§ 0. Introduction

Let \(X \) be a complex manifold of dimension \(n \) and let \(E \) be a holomorphic vector bundle over \(X \). We shall here try to continue the study on the vanishment of the sheaf cohomology groups \(H^q(X, \mathcal{O}(E)) \) which has been performed by Kodaira [10], [11], Grauert–Riemenschneider [5], Andreotti–Vesentini [1], [2], Nakano [14], [15], Kazama [9], and others.

The purpose of the present paper is to study the cohomology groups on complete Kähler manifolds. Although the spirit is the same as in [1] and [14], we restrict ourselves to \(L^2 \)-cohomology groups' and aim at finding a proper subspace of \(L^2 \)-forms for which \(\partial \)-equation is solvable. We shall prove the following theorem.

L^2-vanishing theorem (cf. Theorem 2.8). Let \(X \) be a complete Kähler manifold of dimension \(n \), let \((E, h)\) be a hermitian bundle over \(X \), and let \(\sigma \) be a \(d \)-closed semipositive \((1, 1)\)-form on \(X \). Assume that the curvature form for \(h \) is equal to or greater than \(\sigma \). Then, for any \(\partial \)-closed \(\mathbb{E} \)-valued \((n, q)\)-form \(f \) which is square integrable with respect to \(\sigma \) (for the definition see Section 2), we can find an \(\mathbb{E} \)-valued \((n, q-1)\)-form \(g \) which is square integrable with respect to \(\sigma \) satisfying \(\partial g = f \). Here \(q \geq 1 \).

This is a generalization of theorem 1.5 in [16]. We apply it here to obtain the following two vanishing theorems.

Received January 16, 1982.

* Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.
Theorem (cf. Theorem 3.1). Let X be a compact Kähler manifold, let Y be an analytic space, let $f: X \to Y$ be a holomorphic map, and let (E, h) be a hermitian bundle over X. Assume that the curvature form for h is equal to or greater than the pull-back of a Kähler metric on Y. Then,

$$H^q(Y, f_* \mathcal{O}(K_X \otimes E)) = 0, \quad \text{for } q \geq 1.$$

Here K_X denotes the canonical bundle of X and $f_* \mathcal{O}(K_X \otimes E)$ denotes the direct image sheaf of $\mathcal{O}(K_X \otimes E)$.

Theorem (cf. Theorem 4.5). Let X be a 1-convex manifold with maximal compact analytic set A, and let $E \to X$ be a holomorphic vector bundle. Assume that the restriction of E to A is Nakano-semipositive. Then

$$H^q(X, \mathcal{O}(K_X \otimes E)) = 0, \quad \text{for } q \geq 1.$$

Fortunately these theorems have applications. Namely, Theorem 3.1 provides a simple proof of Fujita’s semipositivity theorem [3] for relative canonical sheaves, and Theorem 4.5 establishes the converse statement to Laufer’s theorem \mathbb{P}^1 as an exceptional set [13].

The author is very grateful to Prof. K. Diederich who let him work at Gesamthochschule Wuppertal during the preparation of this paper. Sections 4 and 5 were added in Wuppertal. He also thanks the referee for pointing out several mistakes.

§ 1. Preliminaries

Let X be a complex manifold of dimension n with a hermitian metric ω, and let $E \to X$ be a holomorphic vector bundle with a hermitian metric h along the fibers. We say (E, h) a hermitian bundle over X. We shall regard ω as a $(1, 1)$-form on X, and h as a C^∞ section of $\text{Hom}(E, E^*)_\omega$. We denote by $C^{\omega,p,q}(X, E)$ the space of E-valued (p, q)-forms on X whose supports are compact. The length of $f \in C^{\omega,p,q}(X, E)$ with respect to ω and h is denoted by $||f||$. Let dv be the volume form on X with respect to ω and set

$$||f||^2 = \left(\int_X |f|^2 dv \right)^{1/2},$$
which is the usual L^2-norm. The L^2-norm $\|f\|$ determines a hermitian inner product in $C_0^{\mathfrak{g}}(X, E)$ which we denote by (f, g). Let $\langle f, g \rangle$ be the pointwise inner product with respect to ω and η. Then,

$$(f, g) = \int_X \langle f, g \rangle dv.$$

When we need to be more precise, we write η and ω explicitly, e.g. $\langle f, g \rangle_\eta$ or $\langle f, g \rangle_{\eta, \omega}$. Let $L^{p,q}(X, E, \omega, \eta)$ be the completion of $C_0^{\mathfrak{g}}(X, E)$ with respect to the above norm. Then, by the theorem of Riesz–Fischer, $L^{p,q}(X, E, \omega, \eta)$ is naturally identified with the space of E-valued integrable (p, q)-forms.

Proposition 1.1. Let ω_1 and ω_2 be two hermitian metrics satisfying $\omega_1 \geq \omega_2$. Then,

$$\|f\|_{\omega_1} \leq \|f\|_{\omega_2} \text{ for } f \in C_0^{\mathfrak{g}}(X, E).$$

Proof. Let $x \in X$ be any point, and represent ω_1 and ω_2 at x as follows:

$$\begin{cases}
\omega_1 = \sum_{i=1}^n \sigma_i \bar{\sigma}_i \\
\omega_2 = \sum_{i=1}^n \lambda_i \sigma_i \bar{\sigma}_i, \quad \lambda_i > 0.
\end{cases}$$

Let f_x denote the value of f at x. We set

$$f_x = \sum_{i_1 < \ldots < i_p} f_{x_{i_1} \ldots i_p j_1 \ldots j_q} \sigma_{i_1} \ldots \sigma_{i_p} \wedge \bar{\sigma}_{j_1} \ldots \wedge \bar{\sigma}_{j_q}.$$

Then,

$$\begin{cases}
|f_x|_{\omega_1}^2 = \sum_{i_1 < \ldots < i_p} \sum_{j_1 < \ldots < j_q} |f_{x_{i_1} \ldots i_p j_1 \ldots j_q}|^2 \\
|f_x|_{\omega_2}^2 = \sum_{i_1 < \ldots < i_p} \sum_{j_1 < \ldots < j_q} \lambda_{i_1} \ldots \lambda_{i_p} \lambda_{j_1} \ldots \lambda_{j_q} |f_{x_{i_1} \ldots i_p j_1 \ldots j_q}|^2.
\end{cases}$$

Since

$$dv_{\omega_1} = \frac{1}{\lambda_{i_1} \ldots \lambda_p} dv_{\omega_2} \text{ at } x,$$

we have

$$|f_x|_{\omega_1}^2 dv_{\omega_1} = \sum_{i_1 < \ldots < i_p} \sum_{j_1 < \ldots < j_q} \frac{\lambda_{i_1} \ldots \lambda_p \lambda_{j_1} \ldots \lambda_q}{\lambda_{i_1} \ldots \lambda_p} |f_{x_{i_1} \ldots i_p j_1 \ldots j_q}|^2 dv_{\omega_2}.$$
Thus, if \(p = n \), then \(\lambda_1, \ldots, \lambda_p \) and \(\lambda_n \) cancel each other so that
\[
|f_x|_{a_1}^2 \, dv_{a_1} = \sum_{j_1 < \cdots < j_q} \lambda_{j_1} \cdots \lambda_{j_q} |f_{x_{j_1} \cdots x_{j_q}}| \, dv_{a_2},
\]
Since \(\lambda > 1 \), we obtain from (7),
\[
|f_x|_{a_1}^2 \, dv_{a_1} \leq |f_x|_{a_2}^2 \, dv_{a_2},
\]
Therefore,
\[
||f||_{a_1} \leq ||f||_{a_2}.
\]
Q. E. D.

As usual we denote by \(\partial \) the exterior differentiation with respect to the conjugate of the local coordinates of X and by \(\theta \) the adjoint of \(\partial \) with respect to the inner product of \(L_{k,q}^p(X, E, \omega, h) \). We denote by \(L(=L_a) \) the multiplication of \(\sqrt{-1} \omega \) from the left and by \(A(=A_a) \) the adjoint to \(L \). Let \(\Theta \) be the curvature form for \(h \). Recall that \(\Theta = \partial h^{-1} \partial \) and that \(\Theta \) is a \(\text{Hom}(E, E) \)-valued \((1, 1)\)-form. Thus the left multiplication by \(\Theta \), which we denote by \(e(\Theta) \), operates on \(L_{k,q}^p(X, E, \omega, h) \). The following facts are basic for our purpose.

Proposition 1.2 (cf. [17]). If \(\omega \) is a Kähler metric on \(X \), then
\[
||\partial f||^2 + ||\theta f||^2 \geq (\sqrt{-1}e(\Theta)Af, f),
\]
for any \(f \in C_{k,q}^5(X, E) \), where \(q \geq 1 \).

Proposition 1.3 (cf. Theorem 1.1 in [18]). If \(\omega \) is a complete hermitian metric on \(X \), then \(C_{k,q}^5(X, E) \) is dense in the space \(\{f \in L_{k,q}^p(X, E, \omega, h) ; \partial f \in L_{k-q+1}^p(X, E, \omega, h), \theta f \in L_{k-q+1}^p(X, E, \omega, h)\} \) with respect to the norm \(||f|| + ||\partial f|| + ||\theta f|| \).

§ 2. L^2–Vanishing Theorem

Let \(X, \omega, E \) and \(h \) be as in Section 1.

Definition 2.1. Let \(\Theta \) be a \(\text{Hom}(E, E) \)-valued \((1, 1)\)-form on \(X \). \(\Theta \) is said to be semipositive (positive) if \(\Theta \) satisfies
\[
\langle \Theta(u), u \rangle_h(\xi, \xi) \geq 0 \quad (\text{resp.} > 0)
\]
for any $u \in E$ and $\xi \in TX$ with $u \neq 0$ and $\xi \neq 0$. Here TX denotes the holomorphic tangent bundle of X.

Given two $\text{Hom}(E, E)$-valued $(1, 1)$-forms Θ_1 and Θ_2, we denote $\Theta_1 \geq \Theta_2$ if $\Theta_1 - \Theta_2$ is semipositive. A scalar $(1, 1)$-form is identified with a $\text{Hom}(E, E)$-valued $(1, 1)$-form when we compare it with $\text{Hom}(E, E)$-valued forms.

Proposition 2.2. Let Θ be a semipositive $\text{Hom}(E, E)$-valued C^∞ $(1, 1)$-form. Then,

$$<\sqrt{-1} \epsilon(\Theta) Af, f>_E \geq 0,$$

for any $f \in C^\infty_0(X, E)$.

Proof. The reader is referred to [17].

Definition 2.3. Given a C^∞ semipositive $(1, 1)$-form σ on X, we set

$$L^{\sigma}_{-q}(X, E, \sigma, h) := \{ f \in L^{\sigma}_{-q}(X, E, \omega + \sigma, h); \lim_{\epsilon \to 0} ||f||_{\omega + \sigma} exists \},$$

and $||f||_{\omega} := \lim_{\epsilon \to 0} ||f||_{\omega + \sigma}$, for $f \in L^{\sigma}_{-q}(X, E, \sigma, h)$.

Proposition 2.4. $L^{\sigma}_{-q}(X, E, \sigma, h)$ and $||f||_{\omega}$ do not depend on the choice of the metric ω.

Proof. Let ω' be another hermitian metric on X and let K be any compact subset of X. Then, for any $\epsilon > 0$, we can find $\delta > 0$ so that $\epsilon \omega' + \sigma \geq \delta \omega + \sigma$ on K. Hence, in virtue of Proposition 1.1, we have

$$\int_K |f|^2_{\epsilon \omega' + \sigma} dv_{\epsilon \omega' + \sigma} \leq \int_K |f|^2_{\delta \omega + \sigma} dv_{\delta \omega + \sigma}.$$

From (14) we observe that if $\lim_{\epsilon \to 0} ||f||_{\omega + \sigma}$ exists, then $||f||_{\omega' + \sigma}$ is bounded by $\lim_{\epsilon \to 0} ||f||_{\omega + \sigma}$. Therefore, $\lim_{\epsilon \to 0} ||f||_{\omega' + \sigma} \leq \lim_{\epsilon \to 0} ||f||_{\omega + \sigma}$, which implies independence of $L^{\sigma}_{-q}(X, E, \sigma, h)$ and $||f||_{\omega}$ from the metric ω.

Q.E.D.

Clearly $L^{\sigma}_{-q}(X, E, \sigma, h)$ is a Hilbert space with norm $||f||_{\omega}$ which
we write $||f||$ when there is no fear of confusion.

Definition 2.5.

\[
\begin{align*}
N^n_q(X, E, \sigma, h) & := \{ f \in L^n_q(X, E, \sigma, h) ; \bar{\partial} f = 0 \}, \\
R^n_q(X, E, \sigma, h) & := \{ f \in L^n_q(X, E, \sigma, h) ; \text{there exist } g \in L^{n-1}_{n,q}(X, E, \sigma, h) \text{ satisfying } \bar{\partial} g = f \}, \\
H^n_q(X, E, \sigma, h) & := N^n_q(X, E, \sigma, h)/R^n_q(X, E, \sigma, h).
\end{align*}
\]

Definition 2.6. X is called a complete Kähler manifold if there exists a complete Kähler metric on X.

Proposition 2.7. Let ω be a complete Kähler metric on X. Then,

\[||\bar{\partial} f||^2 + ||\theta f||^2 \geq (\sqrt{-1}e(\Theta_k)\Lambda f, f), \]

for any $f \in L^n_q(X, E, \omega, h)$ such that $\bar{\partial} f \in L^{n-1}_{n,q}(X, E, \omega, h)$ and $\theta f \in L^{n-1}_{n,q}(X, E, \omega, h)$.

Proof is immediate from Proposition 1.2 and Proposition 1.3.

Theorem 2.8. Let X be a complete Kähler manifold, let (E, h) be a hermitian bundle over X, and let σ be a d-closed semipositive $(1, 1)$-form on X. If $\Theta_k \geq \sigma$, then

\[H^n_q(X, E, \sigma, h) = 0, \text{ for } q \geq 1. \]

Proof. Let $f \in N^n_q(X, E, \sigma, h)$. We have to find $g \in L^{n-1}_{n,q}(X, E, \sigma, h)$ satisfying $\bar{\partial} g = f$. We first fix a complete Kähler metric ω on X and prove that for each $\varepsilon > 0$ there exists $g_\varepsilon \in L^{n-1}_{n,q}(X, E, \sigma + \varepsilon \omega, h)$ such that $\bar{\partial} g_\varepsilon = f$ and $||g_\varepsilon|| \leq C_q||f||$, where C_q is a constant depending only on q. In virtue of Hahn–Banach’s theorem, the existence of such g_ε is assured by the following estimate:

\[|\langle f, u \rangle_{\varepsilon \omega + \sigma}|^2 \leq C_q^2 ||f||^2 (||\bar{\partial} u||^2 + ||\theta u||^2), \]

for any $u \in L^n_q(X, E, \varepsilon \omega + \sigma, h)$ belonging to the domains of $\bar{\partial}$ and θ.

Let $\varphi \in C^{0,\sigma}_q(X, E)$ and let δ be a positive number less than ε. By Cauchy–Schwarz inequality we have

\[|\langle \varphi, u \rangle_{\varepsilon \omega + \sigma}|^2 \leq (e(\varepsilon \omega + \sigma)A_{\varepsilon \omega + \sigma} \varphi, \varphi)_{\varepsilon \omega + \sigma} (e(\delta \omega + \sigma)A_{\delta \omega + \sigma} u, u)_{\delta \omega + \sigma}. \]
Let $x \in X$ be any point. We express φ, $\sigma + \varepsilon \omega$ and $\sigma + \delta \omega$ at x as follows:

\begin{align}
\varphi &= \sum_{i_1 < \cdots < i_q} \varphi_{i_1 \cdots i_q} \tau_1 \wedge \cdots \wedge \tau_n \wedge \bar{\tau}_1 \wedge \cdots \wedge \bar{\tau}_q \\
\sigma + \varepsilon \omega &= \sum_{i=1}^{n} \tau_i \bar{\tau}_i \\
\sigma + \delta \omega &= \sum_{i=1}^{n} \lambda_i \tau_i \bar{\tau}_i, \quad 0 < \lambda_i < 1.
\end{align}

Then we have

\begin{equation}
\left< e(\varepsilon \omega + \sigma) A_{\varepsilon \omega + \sigma} \varphi, \varphi \right>_{\varepsilon \omega + \sigma} d\nu_{\varepsilon \omega + \sigma} = \sum_{i_1 < \cdots < i_q} \frac{\left| \varphi_{i_1 \cdots i_q} \right|^2}{\lambda_i} d\nu_{\varepsilon \omega + \sigma}
\end{equation}

and

\begin{equation}
\left< \varphi, \varphi \right>_{\varepsilon \omega + \sigma} d\nu_{\varepsilon \omega + \sigma} = \sum_{i_1 < \cdots < i_q} \frac{\left| \varphi_{i_1 \cdots i_q} \right|^2}{\prod_{a=1}^{q} \lambda_a} d\nu_{\varepsilon \omega + \sigma}.
\end{equation}

Comparing (19) and (20) we have

\begin{equation}
\left< e(\varepsilon \omega + \sigma) A_{\varepsilon \omega + \sigma} \varphi, \varphi \right>_{\varepsilon \omega + \sigma} d\nu_{\varepsilon \omega + \sigma} \leq q \left< \varphi, \varphi \right>_{\varepsilon \omega + \sigma} d\nu_{\varepsilon \omega + \sigma}.
\end{equation}

Therefore,

\begin{equation}
\int_{X} \left< e(\varepsilon \omega + \sigma) A_{\varepsilon \omega + \sigma} f, f \right>_{\varepsilon \omega + \sigma} d\nu_{\varepsilon \omega + \sigma} \leq q \| f \|^2.
\end{equation}

Hence,

\begin{equation}
\| (f, u)_{\varepsilon \omega + \sigma} \|^2 \leq q \| f \|^2 (\varepsilon(\delta \omega + \sigma) A_{\varepsilon \omega + \sigma} u, u)_{\varepsilon \omega + \sigma}.
\end{equation}

Letting $\delta \to 0$, we have

\begin{equation}
\| (f, u)_{\varepsilon \omega + \sigma} \|^2 \leq q \| f \|^2 (\varepsilon(\sigma) A_{\varepsilon \omega + \sigma} u, u)_{\varepsilon \omega + \sigma}.
\end{equation}

By Proposition 2.2 and the assumption that $\Theta_n \geq \sigma$, we have

\begin{equation}
\left(\sqrt{-1} \varepsilon(\sigma) A_{\varepsilon \omega + \sigma} u, u \right) \leq \left(\sqrt{-1} \varepsilon(\Theta_n) A_{\varepsilon \omega + \sigma} u, u \right).
\end{equation}

Note that $\varepsilon \omega + \sigma$ is a complete Kähler metric on X so that by Proposition 2.7 we have

\begin{equation}
\left(\sqrt{-1} \varepsilon(\Theta_n) A_{\varepsilon \omega + \sigma} u, u \right) \leq \| \partial u \|^2 + \| \bar{\partial} u \|^2.
\end{equation}

Combining (26) with (24) and (25) we obtain (16).

Thus, there exists $g_e \in L^{n+1, -1}(X, E, \varepsilon \omega + \sigma, h)$ satisfying $\delta g_e = f$ and $\| g_e \| \leq q \| f \|$. Note that $\| g_e \|_{\varepsilon \omega + \sigma} \leq \| g_e \|$ for $\varepsilon < 1$ so that we can choose
a subsequence of \(\{g_\varepsilon\}_{\varepsilon > 0} \) converging weakly in \(L^{n, \varepsilon - 1}(X, E, \omega + \sigma, h) \). Let the weak limit be \(g \). Then we have \(\partial g = f \). Moreover,

\[
\lim_{\varepsilon \searrow 0} ||g||_{L^{n, \varepsilon + \sigma}} \leq \lim_{\varepsilon \searrow 0} ||g_\varepsilon|| \leq q||f||.
\]

Therefore \(g \in L^{n, \varepsilon - 1}(X, E, \sigma, h) \). \(\Box \) Q. E. D.

Let us show several examples of (noncompact) complete Kähler manifolds.

Example 1. \(\mathbb{C}^n \) is a complete Kähler manifold.

Example 2. Every Stein manifold is a complete Kähler manifold. More generally, a Kähler manifold provided with a \(C^\infty \) exhaustive plurisubharmonic function is a complete Kähler manifold.

Example 3. Given a complete Kähler manifold \(X \),

i) every closed submanifold is a complete Kähler manifold.

ii) Complements of discrete sets are complete Kählerian.

The author does not know whether complements of closed analytic subsets of complete Kähler manifolds are complete Kählerian or not.

Example 4. Let \(D \) be a bounded domain with a smooth pseudo-convex boundary in a Kähler manifold. Then, \(D \) is a complete Kähler manifold.

§ 3. A Generalization of Kodaira's Vanishing Theorem

Let \(Y \) be a paracompact analytic space over \(\mathbb{C} \). By a hermitian metric on \(Y \), we mean a hermitian metric \(\sigma \) defined on the regular points of \(Y \) satisfying the following property: for any point \(y \in Y \), there exist a neighbourhood \(U \), a holomorphic embedding \(\iota: U \to \mathbb{C}^N \) for some \(N \), and a \(C^\infty \) positive \((1, 1)\)-form \(\bar{\sigma} \) defined on a neighbourhood of \(\iota(U) \) for which \(\sigma = \iota^*\bar{\sigma} \) on the regular points of \(U \). We say \(\sigma \) is a Kähler metric if we can choose \(\bar{\sigma} \) to be \(d\)-closed. For any holomorphic map \(f: X \to Y \) from a complex manifold \(X \), \(f^*\sigma \) is extended uniquely to a \(C^\infty \) semipositive \((1, 1)\)-form on \(X \). We shall not distinguish \(f^*\sigma \) from its extension.
Theorem 3.1. Let X be a compact Kähler manifold, let $f: X \to Y$ be a holomorphic map to an analytic space Y with a Kähler metric σ, and let (E, h) be a hermitian bundle over X. Assume that $\Theta \leq f^* \sigma$, then

$$H^q(Y, f_* \mathcal{O}(K_X \otimes E)) = 0, \text{ for } q \geq 1.$$

Before going into the proof we note the following

Lemma 3.2. Let $\pi: X \to Y$ be a holomorphic map between complex manifolds X and Y provided with hermitian metrics ω_X and ω_Y, respectively. Then, for any form α on Y,

$$| (\pi^* \alpha) \rangle \omega_X + \pi^* \omega_Y \leq | \alpha \rangle \omega_Y,$$

at any point $x \in X$.

Proof is trivial.

Proof of Theorem 3.1. Let $\mathcal{V} = \{V_i\}_{i \in I}$ be a finite system of Stein open subsets covering of Y and let $\{c_{i_0 \ldots i_q}\}$ be a q-cocycle of $f^* \mathcal{O}(K_X \otimes E)$ associated to $\mathcal{V}(q \geq 1)$. We set

$$c_{i_0 \ldots i_q} = f^* c_{i_0 \ldots i_q}.$$

Then $\{c_{i_0 \ldots i_q}\}$ is a q-cocycle of $\mathcal{O}(K_X \otimes E)$ associated to the covering $\{f^{-1}(V_i)\}_{i \in I}$. We regard $c_{i_0 \ldots i_q}$ as holomorphic n-forms on $f^{-1}(V_{i_0} \cap \ldots \cap V_{i_q})$ with values in E. Let $\{p_i\}$ be a partition of unity associated to \mathcal{V}. We define E-valued $(n, q-k)$-forms $b_{i_0 \ldots i_{k-1}}$ on $V_{i_0} \cap \ldots \cap V_{i_{k-1}}$ in such a way that

$$b_{i_0 \ldots i_{k-1}} = \sum_{i_k = l} f^* p_{i_k} \left(\partial \left(\sum_{i_{k+1} = l} f^* p_{i_{k+1}} \left(\ldots \partial \sum_{i_q = l} f^* p_{i_q} \cdot c_{i_0 \ldots i_q} \right) \right) \right).$$

Then we have

$$\sum_{a=0}^{k-1} (-1)^a \partial b_{i_0 \ldots i_a \ldots i_{k-1}} = 0,$$

and in particular we can define an E-valued $\bar{\partial}$-closed (n, q)-form b on X by $b = \partial b$. By Lemma 3.2 $| \partial p_i |_\sigma$ are bounded above. Let ω be a Kähler metric on X. Then, again by Lemma 3.2, for any $\varepsilon > 0$, $| \partial (f^* p_i) |_{\omega + f^* \sigma}$ are bounded above by $| \partial p_i |_\sigma$. Since $c_{i_0 \ldots i_q}$ are $(n, 0)$-
forms with values in E, $|c^*_{i_0...i_q}|_{\mathcal{E}_{i_0}+...+\mathcal{F}_{i_q}}$ are independent of ε. Therefore,

\begin{equation}
\begin{cases}
 b \in L^{n,q}(X, E, f^*\sigma, h) \\
 b_{i_0...i_q} \in L^{n,q-1}(V_{i_0} \cap ... \cap V_{i_q}, E, f^*\sigma, h).
\end{cases}
\tag{31}
\end{equation}

Thus, in virtue of Theorem 2.8, there exists $a \in L^{n,q-1}(X, E, f^*\sigma, h)$ satisfying $\partial a = b$. Let $c^* = b_i - a$. Then we have

\begin{equation}
\begin{cases}
 c^* \in L^{n,q-1}(f^{-1}(V_i), E, f^*\sigma, h), \\
 \partial c^*_i = 0, \\
 \partial b_{ij} = c^*_i - c^*_j.
\end{cases}
\tag{32}
\end{equation}

Since V_i are Stein open sets, $f^{-1}(V_i)$ are complete Kähler manifolds. Hence we can apply Theorem 2.8 to $f^{-1}(V_i)$ and find $a_i \in L^{n,q-2}(f^{-1}(V_i), E, f^*\sigma, h)$ such that $c^*_i = \partial a_i$. Let $c^*_i = b_{ij} - a_i - a_j$. Then we have

\begin{equation}
\begin{cases}
 c^*_{ij} \in L^{n,q-2}(f^{-1}(V_i \cap V_j), E, f^*\sigma, h), \\
 \partial c^*_i = 0, \\
 \partial b_{ijk} = c^*_{ij} + c^*_k + c^*_j.
\end{cases}
\tag{33}
\end{equation}

We can continue this process until we obtain E-valued holomorphic n-forms $c^*_{i_0...i_q}$ on $f^{-1}(V_{i_0} \cap ... \cap V_{i_q-1})$ satisfying

\begin{equation}
 c^*_{i_0...i_q} = \sum_{\alpha=0}^{q} (-1)^{\alpha} c^*_{\alpha...i_q}.
\tag{34}
\end{equation}

We put

\begin{equation}
 c^*_{i_0...i_q-1} = f^*c^*_{i_0...i_{q-1}},
\tag{35}
\end{equation}

where $c^*_{i_0...i_q}$ are sections of $\mathcal{F}_*\mathcal{O}(K_X \otimes E)$ over $V_{i_0} \cap ... \cap V_{i_{q-1}}$. (34) implies that

\begin{equation}
 c_{i_0...i_q} = \sum_{\alpha=0}^{q} (-1)^{\alpha} c_{\alpha...i_q},
\tag{36}
\end{equation}

where \mathcal{O} is a sheaf of sections of $K_X \otimes \mathcal{O}(K_Y)$.

Corollary 3.3 (cf. Fujita [3]). Let $\pi: X \to Y$ be a surjective holomorphic map with connected fibers from a compact Kähler manifold X to a nonsingular curve Y. Then, every quotient invertible sheaf of $\pi_*\omega_{X/Y}$ is of nonnegative degree. Here we put $\omega_{X/Y} = \mathcal{O}(K_X \otimes \pi^*K_Y)$.

Proof. Let

\begin{equation}
0 \to \mathcal{F} \to \pi_*\omega_{X/Y} \to \mathcal{L} \to 0
\tag{37}
\end{equation}
be an exact sequence of coherent analytic sheaves over Y. Let \mathcal{L} be an invertible sheaf of positive degree over Y, then we have the following exact sequence:

$$
\begin{align*}
\text{(38)} & \quad H^1(Y, \mathcal{O}_Y) \otimes \pi_#(\mathcal{O}_X) \otimes \mathcal{L} \\
& \rightarrow H^1(Y, \mathcal{O}_Y) \\
& \rightarrow H^1(Y, \mathcal{O}_Y) \otimes \mathcal{L} \\
& \rightarrow H^2(Y, \mathcal{O}_Y) \otimes \mathcal{L}.
\end{align*}
$$

Since $\dim Y = 1$, we have $H^2(Y, \mathcal{O}_Y) = 0$. On the other hand, by Theorem 3.3,

$$
\text{(39)} \quad H^1(Y, \mathcal{O}_Y) \otimes \pi_#(\mathcal{O}_X) \otimes \mathcal{L} = 0.
$$

Here we used the assumption that the fibers of π are connected. Hence $H^1(Y, \mathcal{O}_Y) \otimes \pi_#(\mathcal{O}_X) \otimes \mathcal{L}$ also vanishes. Therefore \mathcal{L} cannot be an invertible sheaf of negative degree. Otherwise $H^1(Y, \mathcal{O}_Y) \otimes \pi_#(\mathcal{O}_X) \otimes \mathcal{L} = 0$, which contradicts that $H^1(Y, \mathcal{O}_Y) \otimes \mathcal{L} \cong H^0(Y, \mathcal{O}_Y) \cong \mathbb{C}$. Q.E.D.

§ 4. A Vanishing Theorem on 1-Convex Manifolds

Let X be a 1-convex manifold, i.e. X is connected and there exists a C^∞ exhaustive function which is strictly plurisubharmonic outside a compact subset of X. The following fact is first due to Grauert [4]: there is a compact analytic subset $A \subset X$ and a proper holomorphic map π from X onto a Stein space \hat{X} such that π_{X-A} is biholomorphic. If A is everywhere of positive dimension, A is called the maximal compact analytic set. By the fundamental work of Hironaka [6], [7], there is a complex manifold \tilde{X} obtained from \hat{X} by a succession of blowing up along nonsingular centers, such that the induced bimeromorphic map $\pi': \tilde{X} \to X$ is holomorphic. \tilde{X} can be chosen so that

(I) $\pi \circ \pi'$ is biholomorphic on $\tilde{X} - \pi'^{-1}(A)$.

(II) $\pi'^{-1}(A)$ is a divisor with normal crossings whose irreducible components $\{\tilde{A}_i\}_{i=1}^\nu$ are nonsingular.

(III) There exist ν tuple of positive integers (p_1, \ldots, p_ν) so that the line bundle $\sum_{j=1}^\nu p_j[\tilde{A}_j]$ is very ample.

Set $\tilde{A} = \sum_{j=1}^\nu p_j\tilde{A}_j$ and denote the support of \tilde{A} by $|\tilde{A}|$. Since $[\tilde{A}]^*$ is very ample there is a metric \tilde{a} along the fibers of $[\tilde{A}]^*$ such that
the curvature form θ_δ gives a Kähler metric on X. On $X - |\delta|$, δ is given by a positive C^∞ function ϕ satisfying

\[(40) \partial \bar{\partial} (-\log \phi) = \theta_\delta\]

and that

\[(41) \log \phi + |s|^2 \text{ is } C^\infty \text{ on } X, \text{ where } s \text{ is a canonical section of } [\delta].\]

Via π' we shall identify ϕ with a function on $X - A$. Let φ be a C^∞ plurisubharmonic exhaustive function on X which is strictly plurisubharmonic outside A.

Proposition 4.1. $X - A$ is a complete Kähler manifold.

Proof. Let $V := \{x \in X - A; \log \phi(x) > 0\}$. Then, $V \cup A$ is a neighbourhood of A in X. Let ρ be a C^∞ function on X such that $0 \leq \rho \leq 1$ on X, $\rho = 0$ on $X - V$ and $\rho = 1$ on a neighbourhood of A. Then, for sufficiently large K, $\partial \bar{\partial} (K \varphi - \log (1 + \rho \log \phi))$ is a complete Kähler metric on $X - A$.

Q. E. D.

Definition 4.2. Let Y be an analytic space which is isomorphic to an analytic subset of a domain Ω in \mathbb{C}^n and let h be a C^∞ matrix-valued function on Y with values in $r \times r$ positive definite hermitian matrices. We say that h has semipositive curvature if there is a C^∞ extension \tilde{h} of h to a neighbourhood of Y in Ω such that $\Theta_{\tilde{h}} := \partial \bar{\partial} (\tilde{h}^{-1} \partial \bar{\partial} \tilde{h})$ is semipositive (cf. Definition 2.1).

Proposition 4.3. Let $\pi: Y' \to Y$ be a holomorphic map between analytic spaces and let h be a matrix-valued function on Y with semipositive curvature. Then, $\pi^* h$ has semipositive curvature, too.

Proof is trivial.

Definition 4.4. Let Y be an analytic space and let (E, h) be a hermitian bundle over Y. (E, h) is said to be Nakano-semipositive if for any local representation h_i of h as a C^∞ matrix-valued function, h_i has semipositive curvature.

Theorem 4.5. Let X be a 1-convex manifold with maximal com-
pact analytic subset A and let (E, h) be a hermitian bundle over X. Assume that $(E|_A, h|_A)$ is Nakano-semipositive. Then,

$$H^q(X, \mathcal{O}(K_X \otimes E)) = 0, \quad \text{for } q \geq 1.$$

Proof. First we shall prove that the hermitian bundle $(E|_{X-A}, h(1+\rho \log \phi) e^{-L\phi})$ is Nakano-semipositive for sufficiently large L. Note that by Proposition 4.3 $(\pi^*E|_{\tilde{A}^1}, \pi^*h|_{\tilde{A}^1})$ is Nakano-semipositive. Since $|\tilde{A}|$ is a divisor with normal crossings, it is clear that

$$\langle \theta_{\pi^*h}(u), u \rangle_{\pi^*h} (\xi, \bar{\xi}) \geq 0,$$

for any $\xi \in \left(\sum_{j=1}^{\nu} \mathcal{T}A_j \right)_x$ and $u \in E_x$ at any point $x \in |\tilde{A}|$. Here, $\mathcal{T}A_j$ are regarded as subspaces of $T\tilde{X}$ and

$$\left(\sum_{j=1}^{\nu} \mathcal{T}A_j \right)_x := \{ v \in T_x \tilde{X} : \text{there exist } v_j \in T_x \mathcal{T}A_j, 1 \leq j \leq \nu \} \text{ such that } v = \sum v_j \}.$$

We put $\sum_{j=1}^{\nu} \mathcal{T}A_j := \bigcup_{x \in |\tilde{A}|} (\sum_{j=1}^{\nu} \mathcal{T}A_j)_x$.

Let $x \in |\tilde{A}|$ be any point, let (z_1, \ldots, z_n) be a local coordinate on a neighbourhood U of x such that $z_1 \cdots z_k = 0$ is a local equation of $|\tilde{A}|$, and let η denote an element of $T\tilde{X}$. Then, $\sum \mathcal{T}A_j$ is locally defined by the following two equations:

$$\left\{ \begin{array}{l}
\eta (z_1, \ldots, z_k) = 0 \\
z_1 \cdots z_k = 0.
\end{array} \right.$$

Hence we infer from (42) that

$$\langle \theta_{\pi^*h}(u), u \rangle_{\pi^*h} (\eta, \bar{\eta}) \geq -K |\eta|^2 |u|^2 \left(\frac{|\eta (z_1, \ldots, z_k)|}{|\eta|} + |z_1 \cdots z_k| \right)$$

on U, where K depends on $\theta_{\mathcal{O}_X}$, h and the choice of (z_1, \ldots, z_n). We compare the right hand terms of (45) with $\theta_{(1+\rho \log \phi)}$ (cf. Proposition 4.1). Since $\log \phi = \infty$ on $|\tilde{A}|$, there is a neighbourhood W of $|\tilde{A}|$ such that

$$-\partial \bar{\partial} \log (1+\log \phi) \geq \frac{-\partial \bar{\partial} \log \phi}{2 \log \phi} + \frac{\partial \phi \partial \phi}{2 \phi^2 (\log \phi)^2}$$

on $W - |\tilde{A}|$. We can find a C^∞ function λ on U and negative integers n_i such that $\phi = |z_1^{n_1} \cdots z_k^{n_k}|^2 \lambda$. Shrinking W if necessary we obtain
\[
\frac{\partial \phi \partial \phi}{\phi^2 (\log \phi)^2} + \frac{-\partial \log \phi}{\log \phi} = \frac{1}{2 (\log \phi)^2} \left(\sum_{i=1}^{n} \frac{\partial z_i}{z_i} + \frac{\partial \lambda}{\lambda} \right) \left(\sum_{i=1}^{n} \frac{\partial z_i}{z_i} + \frac{\partial \lambda}{\lambda} \right) + \frac{-\partial \delta \log \phi}{\log \phi} \geq \frac{1}{2 (\log \phi)^2} \left(\sum_{i=1}^{n} \frac{\partial z_i}{z_i} \right) \left(\sum_{i=1}^{n} \frac{\partial z_i}{z_i} \right) + \frac{-\partial \delta \log \phi}{2 \log \phi}, \text{ on } W \cap U - |\tilde{A}|.
\]

Hence
\[
<\Theta_{x^{*h}(1+\rho \log \phi)}(u), u>_x(\eta, \eta) \leq -K|\eta|^2 |u|^2 \left(|\eta(z_1, \ldots, z_k)| + |z_1, \ldots, z_k| \right)
+ \frac{1}{4 (\log \phi)^2} \left(\sum_{i=1}^{n} \frac{\eta(z_i)}{z_i} \right) \left(\sum_{i=1}^{n} \frac{\eta(z_i)}{z_i} \right) |u|^2
+ \frac{1}{4 \log \phi} |\eta|^2 |u|^2, \text{ on } W \cap U - |\tilde{A}|.
\]

From (48) it is easy to see that
\[
<\Theta_{x^{*h}(1+\rho \log \phi)}(u), u>_x(\eta, \eta) \geq 0,
\]
on \(W \cap U - |\tilde{A}|\), where we possibly shrink \(U\) and \(W\). Thus, by compactness argument \((E|_{X-A}, \theta(1+\rho \log \phi)e^{-L\phi})\) is Nakano-semipositive for sufficiently large \(L\). We set \(\phi = (1+\rho \log \phi)e^{-L\phi}\). Then, by Theorem 2.8, we have
\[
H^{n-q}(X-A, E, \Theta_\phi, h\Phi^q) = 0, \quad \text{for } q \geq 1.
\]

We are going to deduce from (50) that \(H^q(X, \phi(K_X \otimes E)) = 0\) for \(q \geq 1\). Let \(f\) be any \(C^\infty E\)-valued \(\delta\)-closed \((n, q)\)-form on \(X\). Since any power of \(\log \phi\) is locally square integrable on \(X\), we may assume that \(\tilde{f} \in L^{n,q}(X-A, E, \Theta_\phi, h\Phi^q)\), if necessary replacing \(\phi\) by a more rapidly increasing function. Hence we can find \(g \in L^{n,q-1}(X-A, E, \Theta_\phi, h\Phi^q)\) such that \(\tilde{\delta} g = f\). If \(q = 1\) we are done, since \(g\) is then locally square integrable on \(X\) and in view of the equality \(\tilde{\delta} g = f\) on \(X-A\), \(g\) is extended to a \(C^\infty\) \(n\)-form with values in \(E\). Let \(q \geq 2\). Then we choose a locally finite covering \(\{U_i\}_{i=1}^N\) of \(X\) by Stein open sets and define \(\{f_i\}_{i=1}^N\), \(\{g_i\}_{i=1}^N\) and \(\{u_i\}_{i=1}^N\) inductively as follows. Let \(u_i\) be a \(C^\infty (E\text{-valued}) (n, q-1)\)-form on \(U_i\) such that \(\tilde{\delta} u_i = f_i\). We set \(f_i = g - u_i\). Since \(\tilde{\delta} f_i = 0\) and \(f_i \in L^{n,q-1}(U_i-A, E, \Theta_\phi, h\Phi^q)\), (where we possibly shrink \(U_i\) and replace \(\phi\) again), we can find \(g_i \in L^{n,q-2}(U_i-A, E, \Theta_\phi, h\Phi^q)\) such that \(\tilde{\delta} g_i = f_i\). Assume that \(\{f_i\}_{i=1}^N\)
\{g_{i_1 \cdots i_k}\} and \{u_{i_1 \cdots i_k}\} are already determined in such a way that
\[
\sum_{a=1}^{k} (-1)^a g_{i_1 \cdots i_a \cdots i_{k+1}} + \sum_{a=1}^{k} (-1)^a u_{i_1 \cdots i_a \cdots i_{k+1}} = 0,
\]
(51)
\[\partial f_{i_1 \cdots i_k} = 0,\]
\[u_{i_1 \cdots i_k}\text{ are } C^\infty \text{ on } U_{i_1} \cap \cdots \cap U_{i_k}\]
\[f_{i_1 \cdots i_k} \in L^{n,q-k}(U_{i_1} \cap \cdots \cap U_{i_k} - \mathbf{A}, \mathbf{E}, \Theta_\phi, h\Phi^\phi),\]
\[g_{i_1 \cdots i_k} \in L^{n,q-k-1}(U_{i_1} \cap \cdots \cap U_{i_k} - \mathbf{A}, \mathbf{E}, \Theta_\phi, h\Phi^\phi).\]

If \(k \leq q - 2\), we set \{f_{i_1 \cdots i_{k+1}}\}, \{g_{i_1 \cdots i_{k+1}}\} and \{u_{i_1 \cdots i_{k+1}}\} as follows. First we take \(u_{i_1 \cdots i_{k+1}}\) to be \(C^\infty\) and that
\[\sum_{a=1}^{k+1} (-1)^{a+1} u_{i_1 \cdots i_a \cdots i_{k+1}} = 0.
\]
(52)

Then we set
\[f_{i_1 \cdots i_{k+1}} = \sum_{a=1}^{k+1} (-1)^{a+1} g_{i_1 \cdots i_a \cdots i_{k+1}} + u_{i_1 \cdots i_{k+1}}.
\]
(53)

We have \(\partial f_{i_1 \cdots i_{k+1}} = 0\) and may assume that \(f_{i_1 \cdots i_{k+1}} \in L^{n,q-k-1}(U_{i_1} \cap \cdots \cap U_{i_{k+1}} - \mathbf{A}, \mathbf{E}, \Theta_\phi, h\Phi^\phi).\) Hence we can find \(g_{i_1 \cdots i_{k+1}} \in L^{n,q-k-2}(U_{i_1} \cap \cdots \cap U_{i_{k+1}} - \mathbf{A}, \mathbf{E}, \Theta_\phi, h\Phi^\phi)\) such that \(\partial g_{i_1 \cdots i_{k+1}} = f_{i_1 \cdots i_{k+1}}.\) By the inductive assumption we have
\[\partial (\sum_{a=1}^{k+1} (-1)^a g_{i_1 \cdots i_a \cdots i_{k+1}}) + \sum_{a=1}^{k+1} (-1)^a u_{i_1 \cdots i_a \cdots i_{k+1}} = 0.
\]
(54)

Therefore, for any \(k\) with \(1 \leq k \leq q - 1\), we have inductively determined \{f_{i_1 \cdots i_k}\}, \{g_{i_1 \cdots i_k}\} and \{u_{i_1 \cdots i_k}\} satisfying (51). Note that in particular \(g_{i_1 \cdots i_{q-1}}\) are square integrable forms on \(U_{i_1} \cap \cdots \cap U_{i_{q-1}}\) such that \(\partial (\sum_{a=1}^{q-1} (-1)^a g_{i_1 \cdots i_a \cdots i_{q-1}})\) are \(C^\infty\) on \(U_{i_1} \cap \cdots \cap U_{i_{q-1}}.\) Hence there exist \(C^\infty\) forms \(v_{i_1 \cdots i_{q-1}}\) on \(U_{i_1} \cdots U_{i_{q-1}}\) such that
\[\sum_{a=1}^{q-1} (-1)^a g_{i_1 \cdots i_a \cdots i_{q-1}} = \sum_{a=1}^{q-1} (-1)^a v_{i_1 \cdots i_a \cdots i_{q-1}}.
\]
(55)

Taking \(\partial\) of both sides in (55) we have
\[\sum_{a=1}^{q-1} (-1)^a (u_{i_1 \cdots i_a \cdots i_{q-1}} + \partial v_{i_1 \cdots i_a \cdots i_{q-1}}) = 0.
\]
(56)

Therefore, we can find \(v_{i_1 \cdots i_{q-2}}\) such that
\[u_{i_1 \cdots i_{q-1}} + \partial v_{i_1 \cdots i_{q-1}} = \sum_{a=1}^{q-1} (-1)^a v_{i_1 \cdots i_a \cdots i_{q-1}},\]
whence we obtain
\[\partial u_{i_1 \cdots i_{q-1}} = \sum_{a=1}^{q-1} (-1)^a \partial v_{i_1 \cdots i_a \cdots i_{q-1}}.
\]
(58)

Continuing this process we arrive at the equality
Thus we obtain a C^∞ form $g = u_i - \partial u_i = \bar{v}_i - \partial v_i$ on X such that $\bar{\partial} g = f$.

Q. E. D.

Corollary 4.6 (Laufer [12], Kato [8]). Let X be a 1-convex manifold of dimension 2 with maximal compact analytic set A, and let $L \to X$ be a line bundle. Assume that $K_X \mathcal{L} | A_i$ is of nonnegative degree for every irreducible component A_i of A. Then $H^1(X, \mathcal{O}(L)) = 0$.

§ 5. A Sufficient Condition for Rationality of Isolated Singularities

Let (X, x) be a germ of an analytic space X for which x is an isolated singular point. (X, x) is said to be rational if for any resolution of singularity $\pi: \hat{X} \to X$, $R^q\pi_* \mathcal{O}_{\hat{X}}$ vanishes for $q \geq 1$. Here $R^q\pi_* \mathcal{O}_{\hat{X}}$ denotes the higher direct image sheaves of $\mathcal{O}_{\hat{X}}$. Note that the property that $R^q\pi_* \mathcal{O}_{\hat{X}} = 0$ for $q \geq 1$ is independent of the choice of the resolution. (cf. Hironaka [6]). We can state a condition for the rationality of (X, x) in terms of the maximal compact analytic set of \hat{X}.

Theorem 5.1. Let the notation be as above and let A be the maximal compact analytic subset of \hat{X}. Assume that $K_{\hat{X}, A}$ has a metric h along the fibers for which $(K_{\hat{X}, A}, h)$ is Nakano-semipositive. Then (X, x) is rational.

Proof is immediate from Theorem 4.5.

As an application we obtain the following

Proposition 5.2. Let X be an analytic space of dimension 3 with an isolated singularity at x. Let $\pi: \hat{X} \to X$ be a resolution of singularity. Suppose that $A = \pi^{-1}(x)$ is isomorphic to \mathbb{P}^1 and that the normal bundle of A splits into line bundles whose chern classes are either $(-1, -1), (-2, 0)$, or $(-3, 1)$. Then, (X, x) is a rational singularity.
The following proposition was suggested by A. Fujiki.

Proposition 5.3. Let X be an analytic space of dimension 3 with a rational isolated singularity at x. Let $\pi : \tilde{X} \to X$ be a resolution of the singularity. Suppose that $A = \pi^{-1}(x)$ is isomorphic to \mathbb{P}^1 and that the degree of $K_{\tilde{X}/A}$ is zero. Then there exist a neighbourhood U of x and a nowhere-zero holomorphic 3-form defined on $U - \{x\}$.

Proof is standard.

Combining Proposition 5.2 with Proposition 5.3 we obtain the converse of the following

Theorem 5.4 (Theorem 4.1 in Laufer [13]). Let X be an analytic space of dimension $n \geq 3$ with an isolated singularity at x. Suppose that there exists a nowhere zero holomorphic n-form ω on $X - x$. Let $\pi : \tilde{X} \to X$ be a resolution. Suppose that $A = \pi^{-1}(x)$ is 1-dimensional and irreducible. Then A is isomorphic to \mathbb{P}^1 and $n = 3$. Also, the normal bundle of A splits into line bundles whose Chern classes are $(-1, -1)$, $(-2, 0)$, or $(-3, 1)$.

References

Added in proof. Combining Proposition 5.3 with a result of M. Reid (Minimal models of canonical 3-folds, Proc. Sympos. Algebraic and Analytic Varieties (Tokyo, June 1981), Sympos. in Math, vol. 1, Kinokuniya, Tokyo and North-Holland, Amsterdam), Proposition 5.2 is strengthened so that we can conclude that (X, x) is a hypersurface singularity with defining equation $z_0 = f(z_1, z_2, z_3)$. The author is grateful to Dr. M. Tomari for informing Reid's result to him.