The Structure of Group C^*-algebras of the Generalized Dixmier Groups

By

Takahiro Sudo*

Abstract

In this paper we first analyze the algebraic structure of group C^*-algebras of the generalized Dixmier groups, and next consider that of group C^*-algebras of some Lie semi-direct products with multi-diagonal or diagonal actions. As an application, we estimate the stable rank and the connected stable rank of these C^*-algebras in terms of groups. Also, we show that some of these group C^*-algebras have no nontrivial projections.

§1. Introduction

Group C^*-algebras provide many important examples in some topics of the theory of C^*-algebras such as their representation theory, K-theory, extension theory, etc. (cf. [1], [2], [22]). The (algebraic) structure of group C^*-algebras in this paper means their composition series with well understood subquotients. The structure of group C^*-algebras for some connected Lie groups was examined by some mathematicians (cf. [5], [14], [18], [21] and [23]). In particular, the author [18] analyzed the structure of group C^*-algebras of the Lie semi-direct products $\mathbb{C}^n \rtimes_{\alpha} \mathbb{R}$ (we often omit the action’s symbol α). However, the structure of group C^*-algebras for general Lie groups is still mysterious. On the other hand, the stable rank theory of C^*-algebras was initiated by M. A. Rieffel [12], who raised an interesting problem of determining the stable rank of group C^*-algebras of Lie groups in terms of groups. See [15], [18], [19] and [20] for some partial answers of this problem.

*Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
e-mail: sudo@math.u-ryukyu.ac.jp
This paper is organized as follows. First of all, we consider the structure of group C^*-algebras of the generalized Dixmier groups. For analysis of their subquotients we use a Green’s result [5, Corollary 15], a corollary of Green’s imprimitivity theorem [6, Corollary 2.10], a Dixmier-Douady’s result (cf. [4, Chapter 10]), and some techniques of Connes’ foliation C^*-algebras ([2], [9]). These known results are used frequently in this paper. As a corollary, we estimate the stable rank and the connected stable rank of these group C^*-algebras. Moreover, it is shown that these group C^*-algebras have no nontrivial projections. We next investigate the case of Lie semi-direct products of C^n by connected Lie groups with multi-diagonal actions. Finally, we analyze the case of Lie semi-direct products of the product groups $\mathbb{R}^n \times C^n$ by connected Lie groups with diagonal actions.

Notation. Let G be a Lie group, $C^*(G)$ its (full) group C^*-algebra (cf. [4, Part II]), and \hat{G}_1 the space of all 1-dimensional representations of G. Denote by $\mathfrak{A} \rtimes_\alpha G$ the C^*-crossed product of a C^*-algebra \mathfrak{A} by G with an action α (we often omit the symbol α), (cf. [1]). Denote by $C_0(X)$ the C^*-algebra of all continuous complex-valued functions on a locally compact T_2-space X vanishing at infinity. Set $C_0(X) = C(X)$ when X is compact. We say that an action of G on X is wandering if any compact set of X is wandering under the action [5]. Let $\mathbb{K} = \mathbb{K}(H)$ be the C^*-algebra of all compact operators on a separable Hilbert space H.

Denote by $\text{sr}(\mathfrak{A})$, $\text{csr}(\mathfrak{A})$ the stable rank and the connected stable rank of a C^*-algebra \mathfrak{A} respectively [12]. \lor, \land respectively mean the maximum and the minimum. Set $\dim_{\mathbb{C}}(X) = \lceil \dim(X)/2 \rceil + 1$ where $\dim X$ is the covering dimension of a space X and $\lfloor x \rfloor$ means the greatest integer with $\lfloor x \rfloor \leq x$. Let \mathbb{R}^+ be the space of all nonzero positive real numbers, and \mathbb{T}^k the k-torus group (or space).

Basic formulas of stable ranks.

(F1): For an exact sequence $0 \rightarrow \mathfrak{J} \rightarrow \mathfrak{A} \rightarrow \mathfrak{A}/\mathfrak{J} \rightarrow 0$ of C^*-algebras,

\[
\text{sr}(\mathfrak{J}) \lor \text{sr}(\mathfrak{A}/\mathfrak{J}) \leq \text{sr}(\mathfrak{A}) \leq \text{sr}(\mathfrak{J}) \lor \text{sr}(\mathfrak{A}/\mathfrak{J}) \lor \text{csr}(\mathfrak{A}/\mathfrak{J}), \quad \text{csr}(\mathfrak{A}) \leq \text{csr}(\mathfrak{J}) \lor \text{csr}(\mathfrak{A}/\mathfrak{J}).
\]

(F2): For the C^*-tensor product $\mathfrak{A} \otimes \mathbb{K}$ for a C^*-algebra \mathfrak{A},

\[
\text{sr}(\mathfrak{A} \otimes \mathbb{K}) = 2 \land \text{sr}(\mathfrak{A}), \quad \text{csr}(\mathfrak{A} \otimes \mathbb{K}) \leq 2 \land \text{csr}(\mathfrak{A}).
\]

(F3): $\text{sr}(C_0(X)) = \dim_{\mathbb{C}} X^+$, where X^+ means the one-point compactification of a locally compact T_2-space X, and
\[csr(C_0(\mathbb{R})) = 2, \quad csr(C_0(\mathbb{R}^2)) = 1, \quad \text{and} \quad csr(C_0(\mathbb{R}^n)) = [(n + 1)/2] + 1, \quad n \geq 3. \]

See [10], [12] and [15] for (F1), (F2) and (F3).

\section{Group C^*-algebras of the Generalized Dixmier Groups}

First of all, we review the structure of the generalized Heisenberg groups. Let H_{2n+1} be the real $(2n + 1)$-dimensional generalized Heisenberg group of all the matrices:

\[g = (c, b, a) = \begin{pmatrix} 1 & a & c \\ 0^t_n & I_n & b' \\ 0 & 0 & 1 \end{pmatrix} \]

with $c \in \mathbb{R}$, $b = (b_1, \ldots, b_n)$, $a = (a_1, \ldots, a_n)$, $0_n = (0, \ldots, 0) \in \mathbb{R}^n$, where I_n means the $n \times n$ identity matrix and $0_n^t, b'$ respectively mean the transposes of $0_n, b$. The group H_{2n+1} is a simply connected nilpotent Lie group isomorphic to the semi-direct product $\mathbb{R}^{n+1} \rtimes_{\alpha} \mathbb{R}^n$ with the action α defined by $\alpha_c(b) = (c + \sum_{i=1}^n a_ib_i, b)$. It is obtained by definition of crossed products and the Fourier transform that

\[C^*(H_{2n+1}) \cong C^*(\mathbb{R}^{n+1}) \rtimes_{\alpha} \mathbb{R}^n \cong C_0(\mathbb{R}^{n+1}) \rtimes_{\bar{\alpha}} \mathbb{R}^n \]

where $\bar{\alpha}(l, m) = (l, (m_i + a_il))$ for $l \in \mathbb{R}$, $m = (m_i) \in \mathbb{R}^n$. Since $\{0\} \times \mathbb{R}^n$ is fixed under $\bar{\alpha}$ and closed in \mathbb{R}^{n+1}, the following exact sequence is obtained:

\[0 \to C_0((\mathbb{R} \setminus \{0\}) \times \mathbb{R}^n) \times \mathbb{R}^n \to C_0(\mathbb{R}^{n+1}) \times \mathbb{R}^n \to C_0(\mathbb{R}^{2n}) \to 0. \]

Moreover, $\bar{\alpha}$ on $(\mathbb{R} \setminus \{0\}) \times \mathbb{R}^n$ is free and wandering. Green’s result [5] implies that

\[C_0((\mathbb{R} \setminus \{0\}) \times \mathbb{R}^n) \times \mathbb{R}^n \cong C_0(((\mathbb{R} \setminus \{0\}) \times \mathbb{R}^n)/\mathbb{R}^n) \otimes \mathbb{K}(L^2(\mathbb{R}^n)) \cong C_0(\mathbb{R} \setminus \{0\}) \otimes \mathbb{K} \]

where the orbit space $((\mathbb{R} \setminus \{0\}) \times \mathbb{R}^n)/\mathbb{R}^n$ is homeomorphic to $\mathbb{R} \setminus \{0\}$.

We now give the following definition:

Definition. Denote by D_{6n+1} the real $(6n + 1)$-dimensional generalized Dixmier group defined by the semi-direct product $\mathbb{C}^{2n} \rtimes_\beta H_{2n+1}$ with the action β as follows:

\[\beta_g(z, z') = ((e^{ia_1}z_1, (e^{ib_1}z_{n+1})), \quad z = (z_i)_{i=1}^n, z' = (z_{n+i})_{i=1}^n \in \mathbb{C}^n, g \in H_{2n+1}, \]

\[\beta_g = \begin{pmatrix} e^{ia_1} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & e^{ia_n} & 0 \end{pmatrix} \otimes \begin{pmatrix} e^{ib_1} & 0 \\ \vdots & \ddots \\ 0 & \cdots & e^{ib_n} \end{pmatrix} \in GL_{2n}(\mathbb{C}). \]
The group D_{6n+1} is a simply connected solvable Lie group of non type I. When $n = 1$, D_7 is said to be the Dixmier group [3]. It is obtained by the Fourier transform that

$$C^*(D_{6n+1}) \cong C^*(C^{2n}) \rtimes_{\hat{\beta}} H_{2n+1} \cong C_0(C^{2n}) \rtimes_{\hat{\beta}} H_{2n+1},$$

where $\hat{\beta}(w, w') = ((e^{-i\varphi}w_1), (e^{-i\varphi}w_{n+1}))$ for $w = (w_1), w' = (w_{n+1}) \in C^n$. Since the origin $0_{2n} \in C^{2n}$ is fixed under $\hat{\beta}$ and closed in C^{2n}, we have that

$$0 \to C_0(C^{2n} \setminus \{0_{2n}\}) \rtimes H_{2n+1} \to C_0(C^{2n}) \rtimes H_{2n+1} \to C^*(H_{2n+1}) \to 0.

Moreover, since the subspace $C \setminus \{0\}$ in each direct factor of C^{2n} is $\hat{\beta}$-invariant and closed in $C^{2n} \setminus \{0_{2n}\}$, it is obtained that

$$0 \to C_0(X_1) \rtimes H_{2n+1} \to C_0(C^{2n} \setminus \{0_{2n}\}) \rtimes H_{2n+1} \to \bigoplus_{n+1} C_0(C \setminus \{0\}) \rtimes H_{2n+1} \to 0

where X_1 means the complement of the disjoint union $\sqcup_{2n} C \setminus \{0\}$ of all $C \setminus \{0\}$ in $C^{2n} \setminus \{0_{2n}\}$. Since the direct products of either $C \setminus \{0\}$ or $\{0\}$ in direct factors of C^{2n}, homeomorphic to $(C \setminus \{0\})^k$ for $2 \leq k \leq 2n-1$ are invariant under $\hat{\beta}$, the following exact sequences ($2 \leq k \leq 2n - 1$) are obtained inductively:

$$0 \to C_0(X_k) \rtimes H_{2n+1} \to C_0(X_{k-1}) \rtimes H_{2n+1}

\to \bigoplus_{1 \leq i_1 < \cdots < i_k \leq 2n} C_0(C \setminus \{0\})^k \rtimes H_{2n+1} \to 0

with $X_{k-1} = \sqcup_{2n} (C \setminus \{0\})^k$ and $X_{2n-1} = (C \setminus \{0\})^{2n}$, where $\bigoplus_{1 \leq i_1 < \cdots < i_k \leq 2n}$ means the combination $\binom{2n}{k}$-direct sum. Since $\hat{\beta}$ on $(C \setminus \{0\})^k$ is the multi-rotation, $C_0((C \setminus \{0\})^k) \rtimes H_{2n+1}$ is isomorphic to $C_0(\mathbb{R}^k_+ \otimes C(\mathbb{T}^k)) \rtimes H_{2n+1}$. Moreover, the action β on \mathbb{T}^k is transitive. Thus Green’s result [6] implies that

$$C(\mathbb{T}^k) \rtimes H_{2n+1} \cong C(H_{2n+1}/(H_{2n+1})) \rtimes H_{2n+1} \cong C^*((H_{2n+1})_{1_k}) \otimes \mathbb{K}(L^2(\mathbb{T}^k))$$

where $(H_{2n+1})_{1_k}$ is the stabilizer of $1_k \in \mathbb{T}^k$.

Summing up the above argument, the following theorem is obtained:

Theorem 2.1. The C^*-algebra $C^*(D_{6n+1})$ has a finite composition series $(\mathcal{J}_j)_{j=1}^{2n+1}$ with each subquotient $\mathcal{J}_{2n+1-k}/\mathcal{J}_{2n-k}$ isomorphic to $C^*(H_{2n+1})$ for $k = 0$, and

$$\bigoplus_{1 \leq i_1 < \cdots < i_k \leq 2n} C_0(\mathbb{R}^k_+ \otimes C^*((H_{2n+1})_{1_k}) \otimes \mathbb{K}(L^2(\mathbb{T}^k))) \quad \text{for } 1 \leq k \leq 2n.$$

We next analyze the structure of group C^*-algebras of the stabilizers $(H_{2n+1})_{1_k}$ in the following. Note that $D_{6n+1} = (C^n \times C^n) \rtimes_{\hat{\beta}} H_{2n+1}$.
Case 1. First suppose that 1_k is contained in $\mathbb{C}^n \times \{0_n\}$. Then we may have that $(H_{2n+1})_{1_n}$ is isomorphic to $\mathbb{R}^{n+1} \rtimes_{\alpha} (\mathbb{Z}^k \times \mathbb{R}^{n-k})$. It is obtained by the Fourier transform that

$$C^*((H_{2n+1})_{1_n}) \cong C^*(\mathbb{R}^{n+1}) \rtimes_{\alpha} (\mathbb{Z}^k \times \mathbb{R}^{n-k}) \cong C_0(\mathbb{R}^{n+1}) \rtimes_{\hat{\alpha}} (\mathbb{Z}^k \times \mathbb{R}^{n-k}),$$

where $\hat{\alpha}(l, m) = (l, (m_i + a_i l)_{i=1}^k)$ for $l \in \mathbb{R}, m = (m_i) \in \mathbb{R}^n, a \in \mathbb{Z}^k \times \mathbb{R}^{n-k}$. Since $\{0\} \times \mathbb{R}^n$ is fixed under $\hat{\alpha}$ and closed in \mathbb{R}^{n+1}, the following exact sequence is obtained:

$$0 \rightarrow C_0(\mathbb{R} \setminus \{0\}) \times \mathbb{R}^n \rtimes (\mathbb{Z}^k \times \mathbb{R}^{n-k}) \rightarrow$$

$$C_0(\mathbb{R}^{n+1}) \rtimes_{\hat{\alpha}} (\mathbb{Z}^k \times \mathbb{R}^{n-k}) \rightarrow C_0(\mathbb{T}^k \times \mathbb{R}^{2n-k}) \rightarrow 0.$$

Moreover, the action of $\mathbb{Z}^k \times \mathbb{R}^{n-k}$ on $(\mathbb{R} \setminus \{0\}) \times \mathbb{R}^n$ is free and wandering, so that Green’s result [6] implies that

$$C_0((\mathbb{R} \setminus \{0\}) \times \mathbb{R}^n) \rtimes (\mathbb{Z}^k \times \mathbb{R}^{n-k})$$

$$\cong C_0(\mathbb{R} \setminus \{0\} \times \mathbb{R}^n) \rtimes (\mathbb{Z}^k \times \mathbb{R}^{n-k}) / (\mathbb{Z}^k \times \mathbb{R}^{n-k}) \otimes \mathbb{K}(L^2(\mathbb{Z}^k \times \mathbb{R}^{n-k})).$$

Furthermore, since the orbit of the point $(l, m) \in (\mathbb{R} \setminus \{0\}) \times \mathbb{R}^n$ is parameterized with the point $(l, (m_i \text{ mod } l)_{i=1}^k)$, the orbit space $((\mathbb{R} \setminus \{0\}) \times \mathbb{R}^n) / (\mathbb{Z}^k \times \mathbb{R}^{n-k})$ has the fiber structure whose base space is $\mathbb{R} \setminus \{0\}$ and fibers are \mathbb{T}^k. This orbit space splits into the product space $(\mathbb{R} \setminus \{0\}) \times \mathbb{T}^k$ since any orbit in $(\mathbb{R} \setminus \{0\}) \times \mathbb{R}^n$ has the same type.

Case 2. Next suppose that 1_k is contained in $\{0_n\} \times \mathbb{C}^n$. Then the stabilizer $(H_{2n+1})_{1_n}$ is isomorphic to $(\mathbb{R} \times (\mathbb{Z}^k \times \mathbb{R}^{n-k})) \rtimes_{\hat{\alpha}} \mathbb{R}^n$. By the Fourier transform,

$$C^*((H_{2n+1})_{1_n}) \cong C^*(\mathbb{R} \times (\mathbb{Z}^k \times \mathbb{R}^{n-k})) \rtimes_{\hat{\alpha}} \mathbb{R}^n \cong C_0(\mathbb{R} \times (\mathbb{T}^k \times \mathbb{R}^{n-k})) \rtimes_{\hat{\alpha}} \mathbb{R}^n,$$

where $\hat{\alpha}(l, m) = (l, (e^{im_i + a_i l})_{i=1}^k)_{i=1}^n, (m_i)_{i=k+1}^n) \in \mathbb{T}^k \times \mathbb{R}^{n-k}, l \in \mathbb{R}, a \in \mathbb{R}^n$. Since $\{0\} \times \mathbb{T}^k \times \mathbb{R}^{n-k}$ is fixed under $\hat{\alpha}$ and closed in $\mathbb{R} \times \mathbb{T}^k \times \mathbb{R}^{n-k}$, the following exact sequence is obtained:

$$0 \rightarrow C_0(\mathbb{R} \setminus \{0\} \times \mathbb{T}^k \times \mathbb{R}^{n-k}) \times \mathbb{R}^n \rightarrow$$

$$C_0(\mathbb{R} \times \mathbb{T}^k \times \mathbb{R}^{n-k}) \rtimes_{\hat{\alpha}} \mathbb{R}^n \rightarrow C_0(\mathbb{T}^k \times \mathbb{R}^{2n-k}) \rightarrow 0.$$

Moreover, the above ideal is decomposed into $\oplus 2 C_0(\mathbb{R}_+ \times \mathbb{T}^k \times \mathbb{R}^{n-k}) \times \mathbb{R}^n$ since two connected components of $(\mathbb{R} \setminus \{0\}) \times \mathbb{T}^k \times \mathbb{R}^{n-k}$ are $\hat{\alpha}$-invariant, and each direct factor is assumed to be the C^*-algebra of continuous fields over \mathbb{R}_+ with the fibers $C_0(\mathbb{T}^k \times \mathbb{R}^{n-k}) \times \mathbb{R}^n$, and denoted by $C_0(\mathbb{R}_+, \cup_{\mathbb{R}_+} C_0(\mathbb{T}^k \times \mathbb{R}^{n-k}) \rtimes_{\hat{\alpha}} \mathbb{R}^n$.
The action $\hat{\alpha}$ on $\mathbb{T}^k \times \mathbb{R}^{n-k}$ is transitive. Thus, it is obtained by Green's result [4] that

$$C_0(\mathbb{T}^k \times \mathbb{R}^{n-k}) \times_{\hat{\alpha}} \mathbb{R}^n \cong C_0(\mathbb{R}^n/(\mathbb{R}^n_{(l,m)})) \times \mathbb{R}^n$$

$$\cong C^*((\mathbb{R}^n_{(l,m)}) \otimes \mathbb{K}(L^2(\mathbb{T}^k \times \mathbb{R}^{n-k}))) \cong C(\mathbb{T}^k) \otimes \mathbb{K}$$

where $(\mathbb{R}^n_{(l,m)})$ is the stabilizer of (l,m), isomorphic to \mathbb{Z}^k. Since the cohomology group $H^3(\mathbb{R}, \mathbb{Z})$ vanishes, it is obtained by [4] that $C_0(\mathbb{R}+, \cup_{\mathbb{R}^+} C_0(\mathbb{T}^k \times \mathbb{R}^{n-k}) \times \mathbb{R}^n) \cong C_0(\mathbb{R} \times \mathbb{T}^k) \otimes \mathbb{K}$.

Case 3. We consider the other cases such that 1_k is not contained in $\mathbb{C}^n \times \{0_n\}$ and $(0_n) \times \mathbb{C}^n$. We may assume that $(H_{2n+1})_{1_k} \cong (\mathbb{R} \times \mathbb{Z}^{k_1} \times \mathbb{R}^{n-k_1}) \times (\mathbb{Z}^{k_2} \times \mathbb{R}^{n-k_2})$ for $k = k_1 + k_2$, where $1 \leq k_1 = k_2 \leq n$, or $1 \leq k_1 < k_2 \leq n$, or $n \geq k_1 > k_2 \geq 1$. In each case, it is obtained by the Fourier transform that

$$C^*((H_{2n+1})_{1_k}) \cong C^*(\mathbb{R} \times \mathbb{Z}^{k_1} \times \mathbb{R}^{n-k_1}) \times_{\hat{\alpha}} (\mathbb{Z}^{k_2} \times \mathbb{R}^{n-k_2})$$

$$\cong C_0(\mathbb{R} \times \mathbb{T}^{k_1} \times \mathbb{R}^{n-k_1}) \times_{\hat{\alpha}} (\mathbb{Z}^{k_2} \times \mathbb{R}^{n-k_2})$$

where the action $\hat{\alpha}$ is defined by $\hat{\alpha}_a(\ell, m) = (l, (e^{i(m_j+a_jl)})_{j=1}^{k_1})$ for $(\ell, m) = (l, (e^{im_j})_{j=1}^{k_1}, (m_j)_{j=k_1+1}^{n-k_1}) \in \mathbb{R} \times \mathbb{T}^{k_1} \times \mathbb{R}^{n-k_1}, a \in \mathbb{Z}^{k_1} \times \mathbb{R}^{n-k_2}$. Since $(\mathbb{R} \setminus \{0\}) \times \mathbb{T}^{k_1} \times \mathbb{R}^{n-k_2}$ is fixed under $\hat{\alpha}$ and closed in $\mathbb{R} \times \mathbb{T}^{k_1} \times \mathbb{R}^{n-k_1}$, it follows that

$$0 \to C_0((\mathbb{R} \setminus \{0\}) \times \mathbb{T}^{k_1} \times \mathbb{R}^{n-k_1}) \times (\mathbb{Z}^{k_2} \times \mathbb{R}^{n-k_2})$$

$$\to C_0(\mathbb{R} \times \mathbb{T}^{k_1} \times \mathbb{R}^{n-k_1}) \times (\mathbb{Z}^{k_2} \times \mathbb{R}^{n-k_2}) \to C_0(\mathbb{T}^k \times \mathbb{R}^{2n-k}) \to 0.$$

The above ideal is decomposed into $\bigoplus C_0(\mathbb{R}+, \cup_{\mathbb{R}^+} C_0(\mathbb{T}^{k_1} \times \mathbb{R}^{n-k_1}) \times (\mathbb{Z}^{k_2} \times \mathbb{R}^{n-k_2})$ since two connected components of $(\mathbb{R} \setminus \{0\}) \times \mathbb{T}^{k_1} \times \mathbb{R}^{n-k_1}$ are $\hat{\alpha}$-invariant. Then each direct factor of the above decomposition is regarded as the C^*-algebra of continuous fields over \mathbb{R}^+ with the fibers $C_0(\mathbb{T}^{k_1} \times \mathbb{R}^{n-k_1}) \times_{\theta} (\mathbb{Z}^{k_2} \times \mathbb{R}^{n-k_2})$, and denoted by

$$C_0(\mathbb{R}+, \cup_{\theta \in \mathbb{R}^+} C_0(\mathbb{T}^{k_1} \times \mathbb{R}^{n-k_1}) \times_{\theta} (\mathbb{Z}^{k_2} \times \mathbb{R}^{n-k_2})),$$

where the action θ corresponds to the restriction of $\hat{\alpha}$ to $(\theta) \times \mathbb{T}^{k_1} \times \mathbb{R}^{n-k_1}$. Since each direct factor of $\mathbb{Z}^{k_2} \times \mathbb{R}^{n-k_2}$ acts on one of direct factors of $\mathbb{T}^{k_1} \times \mathbb{R}^{n-k_1}$ componentwise, each fiber is isomorphic to one of the following tensor products:

$$\begin{align*}
(\otimes^{k_1} C(\mathbb{T}) \times_{\theta} \mathbb{Z}) & \otimes (\otimes^{n-k_1} C_0(\mathbb{R}) \times \mathbb{R}) & k_1 = k_2 \\
(\otimes^{k_1} C(\mathbb{T}) \times_{\theta} \mathbb{Z}) & \otimes (\otimes^{k_2-k_1} C_0(\mathbb{R}) \times \mathbb{Z}) \otimes (\otimes^{n-k_2} C_0(\mathbb{R}) \times \mathbb{R}) & k_1 < k_2 \\
(\otimes^{k_2} C(\mathbb{T}) \times_{\theta} \mathbb{Z}) & \otimes (\otimes^{k_1-k_2} C(\mathbb{T}) \times \mathbb{R}) \otimes (\otimes^{n-k_2} C_0(\mathbb{R}) \times \mathbb{R}) & k_1 > k_2,
\end{align*}$$
which is also proved by considering correspondence between generators of each fiber and those of tensor products. The above tensor factors have the following isomorphisms:

\[C_0(\mathbb{R}) \times \mathbb{R} \cong \mathbb{K}, \quad C_0(\mathbb{R}) \times \mathbb{Z} \cong C(T) \otimes \mathbb{K}, \quad C(T) \times \mathbb{R} \cong C(T) \otimes \mathbb{K} \]

since each action is the shift, and \(C(T) \rtimes_\theta \mathbb{Z} \cong \mathfrak{A}_\theta \) is the irrational or rational rotation algebra. Thus, each fiber is isomorphic to one of the following:

\[
\begin{align*}
\otimes^n \mathfrak{A}_\theta & \text{ for } k = 2n, \text{ and } (\otimes^k \mathfrak{A}_\theta) \otimes \mathbb{K} \text{ for } k = 2k_1 < 2n - 2, \\
(\otimes^{k_1} \mathfrak{A}_\theta) \otimes C(T^{k_2-k_1}) \otimes \mathbb{K} & \text{ for } k_1 < k_2, \\
(\otimes^{k_2} \mathfrak{A}_\theta) \otimes C(T^{k_1-k_2}) \otimes \mathbb{K} & \text{ for } k_1 > k_2.
\end{align*}
\]

Summing up the above argument, the following theorem is deduced:

Theorem 2.2. The group \(C^*\)-algebras \(C^*(H_{2n+1})_{1+k} \) of the stabilizers \((H_{2n+1})_{1+k}\) have the following decompositions:

\[0 \to \mathfrak{L}_k \to C^*((H_{2n+1})_{1+k}) \to C(T^k) \otimes C_0(\mathbb{R}^{2n-k}) \to 0 \]

for \(0 \leq k \leq 2n \) and \(\mathfrak{L}_k \) is isomorphic to

\[
\begin{align*}
C_0(\mathbb{R} \setminus \{0\}) \otimes \mathbb{K} & \text{ for } k = 0, \text{ and } C_0((\mathbb{R} \setminus \{0\}) \times T) \otimes \mathbb{K} \text{ for } k = 1, \\
C_0((\mathbb{R} \setminus \{0\}) \times T^k) \otimes \mathbb{K} & \text{ or} \\
C_0(\mathbb{R} \setminus \{0\}, \cup_{\theta \in \mathbb{R} \setminus \{0\}} ((\otimes^n \mathfrak{A}_\theta) \otimes C(T^{2n}) \otimes \mathbb{K})) & \text{ for } 2 \leq k \leq n, \\
C_0(\mathbb{R} \setminus \{0\}, \cup_{\theta \in \mathbb{R} \setminus \{0\}} ((\otimes^n \mathfrak{A}_\theta) \otimes C(T^{2n}) \otimes \mathbb{K})) & \text{ for } n + 1 \leq k \leq 2n - 1, \\
C_0(\mathbb{R} \setminus \{0\}, \cup_{\theta \in \mathbb{R} \setminus \{0\}} \otimes^n \mathfrak{A}_\theta) & \text{ for } k = 2n
\end{align*}
\]

with \(s_1 \geq 1, s_2 \geq 0, 2s_1 + s_2 = k \).

Remark. Let \(\Gamma \) be the discrete central subgroup of both \(H_{2n+1} \) and \(D_{6n+1} \) defined by

\[
\Gamma = \left\{ \begin{pmatrix} 1 & 0 & 2\pi k \\ 0 & I_n & 0 \\ n & 0_n & 1 \end{pmatrix} : k \in \mathbb{Z} \right\}.
\]

Then \(D_{6n+1}/\Gamma \cong \mathbb{C}^{2n} \rtimes (H_{2n+1}/\Gamma) \). If \(H_{2n+1} \) is replaced by \(H_{2n+1}/T \) in the above theorem, then \(C^*(H_{2n+1}/T)_{1+k} \cong (\otimes_{\mathbb{Z} \setminus \{0\}} C(T^k) \otimes \mathbb{K}) \oplus C_0(T^k \times \mathbb{R}^{2n-k}) \) for \(0 \leq k \leq 2n \). It follows that \(C^*(D_{6n+1}/\Gamma) \) is of type I while \(C^*(D_{6n+1}) \) is of non type I (cf. [3]).
Taking a refinement of the composition series of Theorems 2.1 and 2.2, we obtain

Theorem 2.3. There exists a finite composition series \(\{ R_j \}_{j=1}^K \) of \(C^*(D_{6n+1}) \) with its subquotients \(R_j/R_{j-1} \) given by \(C_0(\mathbb{R}^{2n}) \) for \(j = K \), and

\[
\begin{cases}
C_0(\mathbb{R}) \otimes \mathbb{K}, & \text{or } C_0(\mathbb{T}_k \times \mathbb{R}^{2n}) \otimes \mathbb{K}, \text{ or } C_0(\mathbb{T}_k \times \mathbb{R}^{k+1}) \otimes \mathbb{K}, \text{ or } \\
C_0(\mathbb{R}^1) \otimes \mathbb{K} \otimes C_0(\mathbb{R} \setminus \{ 0 \}), & \text{or } \\
\cup_{\theta \in \mathbb{R} \setminus \{ 0 \}} ((\otimes^s \mathbb{A}_\theta) \otimes C(\mathbb{T}^{s^2}) \otimes \mathbb{K})
\end{cases}
\]

for \(1 \leq j \leq K - 1 \) with \(1 \leq k \leq 2n, s_1 \geq 1, s_2 \geq 0, 2s_1 + s_2 = k \).

Remark. The \(C^* \)-tensor product \((\otimes^s \mathbb{A}_\theta) \otimes C(\mathbb{T}^{s^2}) \) is isomorphic to the crossed product \(C(\mathbb{T}^{s^1} \times \mathbb{T}^{s^2}) \times \mathbb{Z}^{s^1} \) which is a special case of noncommutative tori. We see that \(C^*(D_{6n+1}) \) has \(\mathbb{K} \) and \(\mathbb{K} \otimes (\otimes^s \mathbb{A}_\theta) \) for \(\theta \) irrational as simple subquotients (cf. [6], [11]).

Applying (F1), (F2), (F3) to the composition series of Theorem 2.3, it follows that

Corollary 2.4. For the group \(C^* \)-algebra \(C^*(D_{6n+1}) \), it holds that

\[\text{sr}(C^*(D_{6n+1})) = n + 1 = \dim_{\mathbb{C}}(D_{6n+1})_{1}^{\wedge}, \quad \text{and} \quad 2 \leq \text{csr}(C^*(D_{6n+1})) \leq n + 1. \]

Proof. Note that Theorem 2.3 implies that the space \((D_{6n+1})_{1}^{\wedge} \) of all 1-dimensional representations of \(D_{6n+1} \) is homeomorphic to \(\mathbb{R}^{2n} \). By Theorem 2.3 and (F2), it is obtained that \(\text{sr}(R_j/R_{j-1}) \leq 2 \) and \(\text{csr}(R_j/R_{j-1}) \leq 2 \) for \(1 \leq j \leq K - 1 \). Inductively applying (F1) to the composition series of Theorem 2.3, \(\text{sr}(R_j) \leq 2 \) and \(\text{csr}(R_j) \leq 2 \) for \(1 \leq j \leq K - 1 \). Therefore, it is obtained by (F1) and (F3) that

\[\text{sr}(C_0(\mathbb{R}^{2n})) = n + 1 \leq \text{sr}(C^*(D_{6n+1})) \leq 2 \vee \text{sr}(C_0(\mathbb{R}^{2n})) \]
\[\vee \text{csr}(C_0(\mathbb{R}^{2n})) = n + 1, \]
\[\text{csr}(C^*(D_{6n+1})) \leq 2 \vee \text{csr}(C_0(\mathbb{R}^{2n})) = n + 1. \]

On the other hand, note that \(D_{6n+1} \) is isomorphic to \(([\mathbb{R}^{4n}] \times \mathbb{R}^{n+1}) \times \mathbb{R}^n \), where \((z, z', g) \mapsto ((z, z'), (c, b), a) \). Thus, \(C^*(D_{6n+1}) \cong (C_0([\mathbb{R}^{4n}] \times \mathbb{R}^{n+1}) \times \mathbb{R}^n) \). By using Connes’ Thom isomorphism for K-groups of \(C^* \)-algebras (cf. [2], [22]), \(K_1(C^*(D_{6n+1})) \cong K_0(\mathbb{C}) \cong \mathbb{Z} \). By Hassan’s result [7], \(\text{csr}(C^*(D_{6n+1})) \geq 2 \). \(\square \)

Remark. For \(D_{6n+1}/\Gamma \) with \(\Gamma \) in the remark of Theorem 2.2, it is obtained that

\[\text{sr}(C^*(D_{6n+1}/\Gamma)) = n + 1 = \dim_{\mathbb{C}}(D_{6n+1}/\Gamma)_{1}^{\wedge}, \quad \text{csr}(C^*(D_{6n+1}/\Gamma)) \leq n + 1. \]
It follows from the composition series of Theorem 2.3 that

Corollary 2.5. The group $C^*\text{algebra } C^*(D_{6n+1})$ has no nontrivial projections.

Proof. Notice that if a nontrivial projection exists in a C^*-algebra, its image in any quotient is a nontrivial projection or zero. On the other hand, each subquotient of $C^*(D_{6n+1})$ has no nontrivial projections since each subquotient K_j/\mathfrak{K}_{j-1} $(1 \leq j \leq K)$ has a commutative C^*-algebra on a noncompact connected space as a tensor factor.

Remark. There exist nontrivial projections in K and $K \otimes (\otimes^s \mathfrak{M}_\theta)$ for θ irrational.

§3. The Lie Semi-direct Products of \mathbb{C}^n by Connected Lie Groups with Multi-diagonal Actions

Let G be a connected Lie group defined by the semi-direct product $\mathbb{C}^n \rtimes \alpha N$ with N a connected Lie group. The action α is also a Lie group homomorphism from N to $GL_n(\mathbb{C})$. Denote by \mathfrak{d} the differential of α from the Lie algebra \mathfrak{N} of N to the Lie algebra $M_n(\mathbb{C})$ of all $n \times n$ matrices over \mathbb{C}. Moreover, suppose that the action α is induced from the following commutative diagram:

$$
\begin{array}{ccc}
N & \longrightarrow & N/\mathfrak{N} \\
exp & & \exp \\
\mathfrak{N} & \longrightarrow & \mathfrak{N}/[\mathfrak{N}, \mathfrak{N}] \\
\exp & & \exp \\
& & GL_n(\mathbb{C}) \\
& & M_n(\mathbb{C})
\end{array}
$$

where \exp means the exponential map, and $[N, N]$, $[\mathfrak{N}, \mathfrak{N}]$ mean the commutators of N and \mathfrak{N} respectively. Then N/\mathfrak{N} isomorphic to $\mathbb{R}^{l-m} \times \mathbb{T}^m$ and $\mathfrak{N}/[\mathfrak{N}, \mathfrak{N}]$ isomorphic to \mathbb{R}^l for some $l \geq 0$ and $0 \leq m \leq l$. First suppose that α is a complex 1-dimensional, multi-diagonal action of the form:

$$
\alpha_t = \begin{pmatrix}
\ldots & 0 \\
\ldots & \lambda_n t_n
\end{pmatrix} \in GL_n(\mathbb{C})
$$

with $t = ((t_1)_i^{n-m}, (e^{it_j})_{j=n-m+1}^n) \in \mathbb{R}^{n-m} \times \mathbb{T}^m$, $\lambda_i \in \mathbb{C}$ $(1 \leq i \leq n-m)$, $\lambda_j \in i\mathbb{R}$ $(n-m+1 \leq j \leq n)$. We may assume that $\lambda_k = 0$ for $1 \leq k \leq n_0$, $\lambda_k \not\in i\mathbb{R}$ for $n_0 + 1 \leq k \leq n_1$, and $\lambda_k \in i(\mathbb{R} \setminus \{0\})$ for $n_1 + 1 \leq k \leq n$ with $n_0, n_1 \geq 0$. Note that if the action α of N is diagonal on \mathbb{C}^n, it reduces to that of N/\mathfrak{N} automatically.

Under the above situation, the following theorem is obtained:
Theorem 3.1. Let G be a Lie semi-direct product of \mathbb{C}^n by a connected Lie group N with a complex 1-dimensional, multi-diagonal action. Then $C^*(G)$ has a finite composition series $\{J_i\}_{i=1}^{n+1}$ with $J_{n-n_0-k+1}/J_{n-n_0-k}$ isomorphic to $C_0(\mathbb{C}^{n_0}) \otimes C^*(N)$ for $k = 0$, and

$$
\oplus_{n_0+1 \leq i_1 < \cdots < i_k \leq n} \begin{cases} C_0(\mathbb{C}^{n_0} \times \mathbb{T}^k) \otimes \mathbb{K} & \text{for } 1 \leq k \leq n-n_0 \\ C_0(\mathbb{C}^{n_0} \times \mathbb{T}^{n_1} \times \mathbb{R}^{k_2}) \otimes C^*(N_{l_k}) \otimes \mathbb{K} & \end{cases}
$$

with $0 \leq n_0 \leq n$ and $k_2 \geq 1$, $k = k_1 + k_2$, where \mathbb{C}^{n_0} is the fixed point subspace of \mathbb{C}^n under the action of N, and the first alternative corresponds to that the action of N on invariant subspaces $(\mathbb{C} \setminus \{0\})^k$ of \mathbb{C}^n is free and wandering.

Proof. Since the action of N on \mathbb{C}^{n_0} is trivial, it follows that

$$C^*(G) \cong C^*(\mathbb{C}^n) \rtimes_\alpha N \cong C_0(\mathbb{C}^n) \rtimes_\alpha N \cong C_0(\mathbb{C}^{n-n_0}) \otimes (C_0(\mathbb{C}^{n-n_0}) \rtimes N)$$

where $\alpha_\alpha(z_i) = (e^{\lambda_{i+1}}z_i)$ for $(z_i) \in \mathbb{C}^n$. By the same argument before Theorem 2.1, we obtain a finite composition series $\{J_i\}_{i=1}^{n-n_0+1}$ of $C_0(\mathbb{C}^{n-n_0}) \rtimes N$ with subquotients $J_{n-n_0-k+1}/J_{n-n_0-k}$ isomorphic to $C^*(N)$ for $k = 0$, and

$$\oplus_{n_0+1 \leq i_1 < \cdots < i_k \leq n} C_0((\mathbb{C} \setminus \{0\})^k) \rtimes_\alpha N \text{ for } 1 \leq k \leq n-n_0.$$

For $0 \leq k_1 \leq n_1$ and $0 \leq k_2 = l_1 + l_2 \leq n - n_0 - n_1$ with $k = k_1 + k_2$, the action of N on each direct factor of $(\mathbb{C} \setminus \{0\})^{k_1}$ is free and wandering, and that on $(\mathbb{C} \setminus \{0\})^{k_2}$ is the multi-rotation by \mathbb{R}^{l_2}, and that on $(\mathbb{C} \setminus \{0\})^{l_1}$ is the multi-rotation by \mathbb{T}^{l_1}. If $k_2 = 0$, it is obtained by Green’s result [5] that

$$C_0((\mathbb{C} \setminus \{0\})^k) \rtimes_\alpha N \cong C_0((\mathbb{C} \setminus \{0\})^k/N) \otimes \mathbb{K} \cong C(\mathbb{T}^k) \otimes \mathbb{K},$$

where the orbit space $(\mathbb{C} \setminus \{0\})^k/N$ is homeomorphic to \mathbb{T}^k. Next suppose $k_2 \geq 1$. Note that for the restriction of the action of N to $(\mathbb{C} \setminus \{0\})^{k_1}$, the crossed product of $C_0((\mathbb{C} \setminus \{0\})^{k_1})$ by N has the same structure for whether $\lambda_{ij} \not\in i\mathbb{R}$ ($1 \leq j \leq k_1$) are real or not. Thus we may assume that all λ_{ij} ($1 \leq j \leq k_1$) are real. Then the action of N on the circle direction of each direct factor of $(\mathbb{C} \setminus \{0\})^{k_1}$ is trivial, and that on the radius direction of each direct factor of $(\mathbb{C} \setminus \{0\})^{k_2}$ is also trivial. Hence it follows that

$$C_0((\mathbb{C} \setminus \{0\})^k) \rtimes_\alpha N \cong C_0(\mathbb{T}^{k_1} \times \mathbb{R}^{k_2}) \otimes (C_0(\mathbb{R}^{k_1} \rtimes \mathbb{T}^{k_2}) \rtimes N).$$

Since the action of N on $\mathbb{R}^{k_1} \rtimes \mathbb{T}^{k_2}$ is transitive, it follows by Green’s theorem [4] that

$$C_0(\mathbb{R}^{k_1} \times \mathbb{T}^{k_2}) \rtimes N \cong C_0(N_{l_k}) \rtimes N \cong C^*(N_{l_k}) \otimes \mathbb{K}$$

where N_{l_k} is the stabilizer of $1_k \in \mathbb{R}^{k_1} \times \mathbb{T}^{k_2}$. □
Remark. If \(N = [N, N] \) in the above setting, then \(C^*(G) \cong C_0(\mathbb{C}^n) \otimes C^*(N) \). Even if \(N \) is nilpotent, the structure of \(C^*(N_{1_k}) \) is still mysterious.

In the above setting, if \(G \) is a Lie semi-direct product of \(\mathbb{R}^n \) by a connected Lie group \(N \) with a real 1-dimensional, multi-diagonal action \((\lambda_i \in \mathbb{R}) \), it is obtained that

Theorem 3.2. If \(G \) is a Lie semi-direct product of \(\mathbb{R}^n \) by a connected Lie group \(N \) with a real 1-dimensional, multi-diagonal action \((\lambda_i \in \mathbb{R}) \), then \(C^*(G) \) has a finite composition series \(\{C_j\}_{j=1}^{n} \) with \(C_{n-n_0-k+1}/C_{n-n_0-k} \) isomorphic to \(C_0(\mathbb{R}^{n_0}) \otimes C^*(N) \) for \(k = 0 \), and

\[
\oplus_{n_0+1 \leq i_1, \ldots, i_k \leq n} C_0(\mathbb{R}^{n_0}) \otimes (\oplus^k \mathbb{K}) \quad \text{for} \quad 1 \leq k \leq n - n_0.
\]

Proof. Since the action of \(\mathbb{R} \) on \(\mathbb{R} \) is trivial or the translation, and that of \(T \) on \(\mathbb{R} \) is trivial, the action of \(N \) on each direct factor of \((\mathbb{R} \setminus \{0\})^k \) is free and wandering. Thus Green’s result [5] implies that \(C_0((\mathbb{R} \setminus \{0\})^k) \rtimes N \cong C_0((\mathbb{R} \setminus \{0\})^k/N) \otimes \mathbb{K} \cong \oplus^k \mathbb{K} \).

As a special case of Theorem 3.1, let \(N = H_{2n+1} \) and \(G = \mathbb{C}^{2n} \rtimes \beta H_{2n+1} \).

We assume that the action \(\beta \) on \(\mathbb{C}^{2n} \) is the diagonal sum:

\[
\beta_g = \begin{pmatrix}
 e^{\lambda_1 b_1} & 0 & & \\
 & \ddots & & \\
 & & e^{\lambda_n b_n} & \\
 0 & & 0 & e^{\mu_1 a_1} \\
 & \ddots & & \\
 & & 0 & e^{\mu_n a_n}
\end{pmatrix} \in GL_{2n}(\mathbb{C})
\]

with \(g = (c, b, a) \in H_{2n+1}, \lambda_i, \mu_i \in \mathbb{C} \ (1 \leq i \leq n) \). Then it follows that

Proposition 3.3. If the action of \(H_{2n+1} \) on \(\mathbb{C}^{2n} \) is given as above, then group \(C^* \)-algebras of the stabilizers \((H_{2n+1})_{1_k} \) \((0 \leq k \leq 2n)\) are isomorphic to the \(C^* \)-algebras of continuous fields over \(\mathbb{R} \) with the following fibers:

\[
\begin{align*}
 C_0(\mathbb{T}^{p+2q} \times \mathbb{R}^{2n-k}) \quad \theta = 0 \quad & \text{for} \ 0 \leq p + 2q \leq k, \theta \in \mathbb{R} \\
 C(\mathbb{T}^p) \otimes (\oplus^q \mathbb{A}_g) \otimes \mathbb{K} \quad \theta \neq 0 \quad & \text{for} \ \theta \in \mathbb{R}.
\end{align*}
\]

Proof. For \(1_k \in (\mathbb{R}^{m_1} \times \mathbb{T}^{m_2}) \times (\mathbb{R}^{l_1} \times \mathbb{T}^{l_2}) \subset \mathbb{C}^{n} \times \mathbb{C}^{n} \) and \(k = m_1 + m_2 + l_1 + l_2 \), and \(m_i, l_i \geq 0 \ (i = 1, 2) \), we may assume that

\[
(H_{2n+1})_{1_k} \cong (\mathbb{R} \times \{0_{m_1}\}) \times \mathbb{Z}^{m_2} \times \mathbb{R}^{n-m_1-m_2} \rtimes \alpha (\{0_{l_1}\} \times \mathbb{Z}^{l_2} \times \mathbb{R}^{n-l_1-l_2}).
\]

By the Fourier transform,

\[
C^*((H_{2n+1})_{1_k}) \cong C_0(\mathbb{R} \times \mathbb{R}^{m_2} \times \mathbb{R}^{n-m_1-m_2}) \rtimes \alpha(\mathbb{Z}^{l_2} \times \mathbb{R}^{n-l_1-l_2}).
\]
Since the subspace \(\{0\} \times T^{m_2} \times \mathbb{R}^{n-m_1-m_2} \) is fixed under \(\hat{a} \), it is obtained that

\[
0 \rightarrow C_0((\mathbb{R} \setminus \{0\}) \times T^{m_2} \times \mathbb{R}^{n-m_1-m_2}) \times_{\hat{a}} (\mathbb{Z}^2 \times \mathbb{R}^{n-l_1-l_2}) \\
\rightarrow C_0(\mathbb{R} \times T^{m_2} \times \mathbb{R}^{n-m_1-m_2}) \times_{\hat{a}} (\mathbb{Z}^2 \times \mathbb{R}^{n-l_1-l_2}) \\
\rightarrow C_0(T^{m_2+l_2} \times \mathbb{R}^{2n-k}) \rightarrow 0.
\]

By the similar reasons as before Theorem 2.2, the ideal in the above exact sequence is isomorphic to the 2-direct sum \(\oplus^2 C_0(\mathbb{R}_+ \cup \theta \in \mathbb{R}^+) (C(T^2) \otimes (\otimes^q \mathbb{A}_\theta) \otimes \mathbb{K}) \), where \(q \geq 0 \) is the cardinal number of the intersection \(\{m_1 + 1, \ldots, m_1 + m_2\} \cap \{l_1 + 1, \ldots, l_1 + l_2\} \), and \(p = m_2 + l_2 - 2q \geq 0 \).

Combining Proposition 3.3 with Theorem 3.1, it is obtained that

Theorem 3.4. Let \(G \) be a Lie semi-direct product of \(\mathbb{C}^{2n} \) by \(H_{2n+1} \) with a complex 1-dimensional, multi-diagonal action. Then \(C^*(G) \) has a finite composition series \(\{\mathcal{J}_j\}_{j=1}^K \) with \(\mathcal{J}_j/\mathcal{J}_{j-1} \) isomorphic to \(C_0(\mathbb{C}^{n_0} \times \mathbb{R}^{2n}) \) for \(j = K \), and \(C_0(\mathbb{C}^{n_0} \times (\mathbb{R} \setminus \{0\})) \otimes \mathbb{K} \) for \(j = K-1 \), and

\[
\begin{cases}
C_0(\mathbb{C}^{n_0} \times \mathbb{T}^k) \otimes \mathbb{K}, & \text{or} \\
C_0(\mathbb{C}^{n_0} \times \mathbb{T}^{k_1+m_2+l_2} \times \mathbb{R}^{2n-k_1}) \otimes \mathbb{K}, & \text{or} \\
C_0(\mathbb{C}^{n_0} \times \mathbb{T}^{k_1} \times \mathbb{R}^{k_2}) \otimes \mathbb{K} \otimes C_0(\mathbb{R}_+ \cup \theta \in \mathbb{R}^+) (C(T^2) \otimes (\otimes^q \mathbb{A}_\theta) \otimes \mathbb{K}) & \text{for } 1 \leq k \leq n - n_0 \text{ with } 0 \leq n_0 \leq n \text{ and } k_2 \geq 1, \ k = k_1 + k_2.
\end{cases}
\]

Remark. In the above statement, \(\otimes^q \mathbb{A}_\theta \) is regarded as a noncommutative torus of the form \(C(T^2) \rtimes_{\Theta} \mathbb{Z}^q \), where \(\Theta \) is the multi-rotation by the same angle \(\theta \) (cf. [13]).

As a corollary, it follows from the same argument of Corollary 2.4 that

Corollary 3.5. Under the same situation with Theorem 3.4, it is obtained that

\[
\text{sr}(C^*(G)) = n_0 + n + 1 = \dim_{\mathbb{C}} \hat{G}_1, \quad \text{and} \quad \text{csr}(C^*(G)) \leq n_0 + n + 1.
\]

To compute the stable rank and the connected stable rank of \(C^*(G) \) in Theorem 3.1, we need to compute the stable ranks of \(C^*(N) \). Fortunately, if \(N \) is a simply connected, nilpotent Lie group, then \(\text{sr}(C^*(N)) = \dim_{\mathbb{C}} \hat{N}_1 \) ([19]). Furthermore, this formula is extended to the connected case ([20]). On the other hand, it is obtained that
Proposition 3.6. Let \(\mathfrak{A} \) be a \(C^* \)-algebra of continuous fields over a locally compact \(T_2 \)-space \(X \) with fibers \(\mathbb{K}(H_x) \) on separable Hilbert spaces \(H_x \), \(x \in X \). Then \(\mathfrak{A} \) has continuous trace, and it is stable, i.e. \(\mathfrak{A} \cong \mathfrak{A} \otimes \mathbb{K} \).

Remark. By local triviality of continuous fields [4, Theorem 10.8.8], \(\mathfrak{A} \) in the statement is assumed to be an inductive limit of \(C_0(X_k) \otimes \mathbb{K} \) with \(\{X_k\}_{k=1}^{\infty} \) open subspaces of \(X \). This implies that \(\mathfrak{A} \) satisfies Fell’s condition ([4, Definition 10.5.7]). If necessary, by using Hjelmborg and Rørdam’s result [8, Corollary 4.1], the latter claim is obtained.

Combining [16, Theorem 3] with the above proposition and (F1), it follows that

Proposition 3.7. If \(N \) is a connected nilpotent Lie group, then

\[
\text{csr}(C^*(N)) \leq 2 \lor \text{csr}(C_0(\hat{N}_1)) = ([\dim \hat{N}_1 + 1]/2) + 1.
\]

Proof. If \(N \) is simply connected, we use the structure of \(C^*(N) \) in [19], Proposition 3.6 and (F1). Also, the inequality in the statement is valid in the connected case because if \(N \) is connected, then \(C^*(N) \) is regarded as a quotient of \(C^*(\hat{N}) \) of the universal covering group \(\hat{N} \) of \(N \), so that the structure of \(C^*(N) \) is inherited from that of \(C^*(\hat{N}) \).

Applying the above estimates and (F1-F3) to Theorem 3.1, it is obtained that

Corollary 3.8. In Theorem 3.1, if \(N \) is nilpotent, then

\[
\begin{align*}
\text{sr}(C^*(G)) &= \dim_{\mathbb{C}} \hat{G}_1 & &\text{if } \dim \hat{G}_1 \text{ is even,} \\
\dim_{\mathbb{C}} \hat{G}_1 &\leq \text{sr}(C^*(G)) \leq \dim_{\mathbb{C}} \hat{G}_1 + 1 & &\text{if } \dim \hat{G}_1 \text{ is odd, and} \\
\text{csr}(C^*(G)) &\leq 2 \lor \text{csr}(C_0(\hat{G}_1)) = ([\dim \hat{G}_1 + 1]/2) + 1.
\end{align*}
\]

Proof. In Theorem 3.1, notice that \(C_0(\mathbb{C}^{n_0}) \otimes C^*(N) \cong C^*(\mathbb{C}^{n_0} \times N) \), and \(\mathbb{C}^{n_0} \times N \) is a connected, nilpotent Lie group. By Theorem 3.1, \(\hat{G}_1 \) is homeomorphic to the product space \(\mathbb{C}^{n_0} \times \hat{N}_1 \). Thus it follows from the rank estimates given above that

\[
\begin{align*}
\text{sr}(C_0(\mathbb{C}^{n_0}) \otimes C^*(N)) &= \dim_{\mathbb{C}} (\mathbb{C}^{n_0} \times \hat{N}_1) = \dim_{\mathbb{C}} \hat{G}_1, \\
\text{csr}(C_0(\mathbb{C}^{n_0}) \otimes C^*(N)) &\leq 2 \lor \text{csr}(C_0(\mathbb{C}^{n_0} \times \hat{N}_1)) = ([\dim \hat{G}_1 + 1]/2) + 1.
\end{align*}
\]

On the other hand, it is obtained that
Corollary 3.9. In Theorem 3.1, if N is a Lie semi-direct product $\mathbb{R}^m \rtimes \mathbb{R}$, then the same conclusion as Corollary 3.8 is obtained.

Proof. If $N = \mathbb{R}^m \rtimes \mathbb{R}$, the rank estimates of Corollary 3.8 hold for $C^*(N)$ ([18]).

Remark. As an example, let M_5 the Mautner group defined by the Lie semi-direct product $\mathbb{C}^2 \ltimes \mathbb{R}$ with $\gamma_t(z_1, z_2) = (e^{it}z_1, e^{it}z_2)$ for $t \in \mathbb{R}$, $z_1, z_2 \in \mathbb{C}$, and an irrational number π. Then $M_5/[M_5, M_5] \cong \mathbb{R}$. Define γ by the Lie semi-direct product of \mathbb{C} by M_5. If the action of M_5 on \mathbb{C} is nontrivial, then $\text{sr}(\mathbb{C}^*(\gamma)) = 2$ and $\text{csr}(\mathbb{C}^*(\gamma)) = 2$ (cf. [18]). If the action is trivial, these stable ranks of $\mathbb{C}^*(\gamma)$ are 2 or 3.

The complex multi-dimensional case.

Next suppose that $G = \mathbb{C}^s \ltimes \alpha (\mathbb{R}^{n-m} \times \mathbb{T}^m)$ with α a complex multi-dimensional, multi-diagonal action on a direct sum $\mathbb{C}^s = \bigoplus_{i=1}^n \mathbb{C}^s_i$, that is,

$$\alpha_t = (\oplus_{i=1}^{n-m} \alpha_i(t)) \oplus (\oplus_{j=n-m+1}^n \alpha_j(e^{it})) = \begin{pmatrix} \alpha_1(t_1) & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \alpha_n(e^{it_n}) \end{pmatrix} \in GL_n(\mathbb{C})$$

with $t = ((t_1)_{i=1}^{n-m}, (e^{it})_{j=n-m+1}^n) \in \mathbb{R}^{n-m} \times \mathbb{T}^m$, where $\alpha_i (1 \leq i \leq n-m)$ and $\alpha_i (n-m+1 \leq i \leq n)$ are Lie actions of \mathbb{R}, \mathbb{T} on \mathbb{C}^s_i respectively. Then G is isomorphic to the direct product $(\Pi_{i=1}^{n-m} (\mathbb{C}^s_i \ltimes \alpha_i, \mathbb{R})) \times (\Pi_{j=n-m+1}^n (\mathbb{C}^s_j \ltimes \alpha_j, \mathbb{T}))$. Then

$$\mathbb{C}^s(\gamma) \cong (\bigotimes_{i=1}^{n-m} \mathbb{C}^s(\mathbb{C}^s_i \ltimes \alpha_i, \mathbb{R})) \otimes (\bigotimes_{j=n-m+1}^n \mathbb{C}^s(\mathbb{C}^s_j \ltimes \alpha_j, \mathbb{T})).$$

By [18], the structure of $\mathbb{C}^s(\mathbb{C}^s_i \ltimes \alpha_i, \mathbb{R})$ is obtained from extensions by $\{R_{i,j}/ R_{i,j-1}\}_{j=1}^{K_i}$ isomorphic to $C_0(\mathbb{R}^{2u_i+1})$ for $j = K_i$, and

$$C_0(\mathbb{R}^{2u_i+v_i} \times \mathbb{T}^{w_i}) \otimes \mathbb{K}, \text{ or } C_0(\mathbb{R}^{2u_i+v_i}) \otimes \mathbb{K} \otimes \mathbb{A}_{o_{i,j}}$$

for $1 \leq j \leq K_i - 1$ with $u_i, v_i, w_i, o_{i,j} \geq 0$.

Thus we now consider the structure of $\mathbb{C}^s(\mathbb{C}^s_j \ltimes \alpha_j, \mathbb{T})$. Then it is obtained that

Proposition 3.10. Let $G = \mathbb{C}^n \ltimes \alpha \mathbb{T}$. Then there exists a finite composition series $\{I_j\}_{j=1}^{n-n_0+1}$ of $\mathbb{C}^s(\gamma)$ with $I_{n-n_0+1-k} \cong I_{n-n_0-k}$ isomorphic to $C_0(\mathbb{C}^{n_0} \times \mathbb{T})$ for $k = n - n_0 + 1$, and

$$\oplus_{1 \leq i_1 < \cdots < i_k \leq n-n_0} (C_0(\mathbb{C}^{n_0} \times \mathbb{R}_+^k \times \mathbb{T}^{k-1}) \otimes \mathbb{K}) \text{ for } 1 \leq k \leq n-n_0,$$

where \mathbb{C}^{n_0} is the fixed point subspace under the action of \mathbb{T}.

built up by a finite number of extensions by subquotients. Otherwise, we have the contradiction against compactness of orbits under α. Then we may have the diagonal sum $\alpha(e^t) = \sum_{k=1}^{n_0} e^{i\theta_k t}$ with $\theta_k = 0$ for $1 \leq k \leq n_0$ with some $0 \leq n_0 \leq n$ and $\theta_k \in \mathbb{R} \setminus \{0\}$ for $n_0 + 1 \leq k \leq n$, where $\theta_k (n_0 + 1 \leq k \leq n)$ are linearly dependent over \mathbb{Q}. Then $C^*(\mathbb{C}^n \rtimes_\alpha \mathbb{T})$ is isomorphic to $C_0(\mathbb{C}^n) \otimes C_0(\mathbb{C}^{n-n_0} \rtimes \mathbb{T})$. Moreover, by the same way as Theorem 3.1, the tensor product on the right side has a finite composition series $\mathcal{J}_k^{n-n_0+1}$ such that

$$\mathcal{J}_{n-n_0+1-k}/\mathcal{J}_{n-n_0-k} \cong \bigoplus_{1 \leq i_1 < \cdots < i_k \leq n-n_0} (C_0(\mathbb{C}^{n} \setminus \{0\})^k \times \mathbb{T}).$$

Each direct factor $C_0(\mathbb{C}^{n} \setminus \{0\})^k \times \mathbb{T}$ splits into $C_0(\mathbb{R}^k) \otimes (C(\mathbb{T}^k) \rtimes \mathbb{T})$. Since \mathbb{T}^k is homeomorphic to $\mathbb{T}^{k-1} \times \mathbb{T}$ and an orbit of \mathbb{T} is compatible with the action of \mathbb{T}, it follows that $C(\mathbb{T}^k) \rtimes \mathbb{T} \cong C(\mathbb{T}^{k-1}) \otimes (C(\mathbb{T}) \rtimes \mathbb{T}) \cong C(\mathbb{T}^{k-1}) \otimes \mathbb{K}$. \hfill \Box

Remark. The structure of group C^*-algebras of Lie semi-direct products $\mathbb{R}^n \rtimes_\alpha \mathbb{T}$ is obtained similarly by taking quotients of group C^*-algebras of $\mathbb{C}^n \rtimes_\beta \mathbb{T}$ with $\beta = \alpha + ia$.

The following theorem is obtained from the above argument:

Theorem 3.11. Let $G = \mathbb{C}^n \rtimes_\alpha (\mathbb{R}^{n-m} \times \mathbb{T}^m)$ with α a complex multi-dimensional, multi-diagonal action. Then there exists a finite composition series $\{\mathcal{J}_j\}_{j=1}^K$ of $C^*(G)$ with $\mathcal{J}_j/\mathcal{J}_{j-1}$ isomorphic to $C_0(\mathbb{R}^{2u+n-m} \times \mathbb{Z}^m) = C_0(\tilde{G}_1)$ for $j = K$, and

$$\begin{align*}
C_0(\mathbb{R}^{2u_j+v_j} \times \mathbb{T}^{w_j}) \otimes \mathbb{K} \quad &\text{or} \\
C_0(\mathbb{R}^{2u_j+v_j} \times \mathbb{T}^{w_j}) \otimes \mathbb{K} \otimes (\bigotimes_{i=1}^{k_j} \mathfrak{A}_{\theta_i}) \quad &\text{or} \\
C_0(\mathbb{R}^{2u_j+v_j} \times \mathbb{T}^{w_j}) \otimes \mathbb{K} \otimes (\bigotimes_{i=1}^{k_j} \mathfrak{A}_{\theta_i}) \quad &\text{for } 1 \leq j \leq K - 1
\end{align*}$$

with $u, u_j, v_j, w_j \geq 0, 1 \leq k_j \leq n-1$, and $\mathfrak{A}_{\theta_i} \cong C(\mathbb{T}^{l_i}) \times \mathbb{Z}$ a noncommutative torus.

Proof. Note that $C^*(G)$ splits into the tensor product of $C_0(\mathbb{C}^n) \times \mathbb{R}$ ($1 \leq i \leq n-m$) and $C_0(\mathbb{C}^n) \rtimes \mathbb{T}$ ($n-m+1 \leq i \leq n$). Each tensor factor is built up by a finite number of extensions by subquotients $\{\mathcal{R}_{i,j}/\mathcal{R}_{i,j-1}\}_{j=1}^{K_i}$ given above. Then $C^*(G)$ is built up by a finite number of extensions by subquotients $\bigotimes_{i=1}^{n} (\mathcal{R}_{i,j}/\mathcal{R}_{i,j-1})$. \hfill \Box

Remark. This theorem is a generalization for the case $n = 1, m = 0$ obtained in [18]. If \mathbb{C}^* is replaced by \mathbb{R}^n, the structure of $C^*(G)$ of $G =$
If the action of N is nontrivial. Then by the same argument as in the proof of Corollary 3.8, the proof is complete.

Remark. The same result as above can be deduced in the case of Lie semi-direct products of \mathbb{R}^n by connected nilpotent Lie groups or $\mathbb{R}^m \times \mathbb{R}$ (cf. Remark of Theorem 3.11).

§4. The Lie Semi-direct Products of $\mathbb{R}^n \times \mathbb{C}^o$ by Connected Lie Groups with Diagonal Actions

Let $G = (\mathbb{R}^n \times \mathbb{C}^o) \times_{\alpha} (\mathbb{R}^{n-m} \times \mathbb{T}^m)$ with a diagonal action α. We may assume that α_g for $g = ((g_i)_{i=1}^{n-m}, (z^m_j)_{j=m+1}^{n}) \in \mathbb{R}^{n-m} \times \mathbb{T}^m$ is defined by the diagonal sum:

$$
\begin{pmatrix}
 e^{i(\sum_{j=1}^{n-m} g_{1j})} & 0 & \cdots & 0 \\
 0 & e^{i(\sum_{j=1}^{n-m} w_{1j} g_{1j})} & \cdots & 0 \\
 \vdots & \ddots & \ddots & \vdots \\
 0 & \cdots & e^{i(\sum_{j=1}^{n-m} w_{uj} g_{uj})}
\end{pmatrix}
$$

with $g_{kj} \in \{g_i\}_{i=1}^{n-m}$ for $0 \leq j \leq p_k \leq n - m$ ($1 \leq k \leq u$), and $w_{kj} \in \mathbb{C}$, $g_{ki} \in \{g_i\}_{i=1}^{n}$ for $0 \leq j \leq q_k \leq n$ ($1 \leq k \leq v$). If $g_{kij} \in \{g_i\}_{i=n-m+1}^{n}$, then $w_{kij} = i$. Thus, we may assume that the action of $\mathbb{R}^{n-m} \times \mathbb{T}^m$ on each direct factor is nontrivial. Then
Theorem 4.1. Let G be a Lie semi-direct product $(\mathbb{R}^n \times \mathbb{C}^u) \rtimes_\alpha (\mathbb{R}^{n-m} \times \mathbb{T}^m)$ with a diagonal action α. Then $C^*(G)$ has a finite composition series

$$\{J_j\}_{j=1}^K$$

such that

$$J_j/J_{j-1} \cong \begin{cases} C_0(\mathbb{R}^{u+n-m} \times \mathbb{C}^v \times \mathbb{Z}^m) & \text{for } j = K, \\ C_0(\mathbb{R}^{p_j} \times \mathbb{T}^0 \times \mathbb{Z}^0 \times \Omega_j) \otimes \mathbb{K}, & \text{or} \\ C_0(\mathbb{R}^{p_j} \times \mathbb{T}^0 \times \mathbb{Z}^0) \otimes \mathbb{A}_\alpha_j \otimes \mathbb{K} & \text{for } 1 \leq j \leq K-1 \end{cases}$$

with $p_j, q_j, r_j \geq 0$, where the fixed point subspace under $\hat{\alpha}$ is homeomorphic to $\mathbb{R}^u \times \mathbb{C}^v$, each Ω_j is an orbit subspace on whose preimage $\hat{\alpha}$ is wandering, and \mathbb{A}_α_j is a higher dimensional noncommutative torus.

Proof. By the similar argument as before Theorem 2.1, we obtain a finite composition series $\{J_j\}_{j=1}^{u+v+u+1}$ of $C^*(G)$ with subquotients J_j/J_{j-1} isomorphic to

$$\oplus_{1 \leq k_1 < \cdots < k_u \leq u} \oplus_{1 \leq l_1 < \cdots < l_m \leq m} (C_0((\mathbb{R} \setminus \{0\})^{u_j} \times (\mathbb{C} \setminus \{0\})^{v_j} \times (\mathbb{R}^{n-m} \times \mathbb{T}^m))$$

with $u_j, v_j \geq 0$. From the analysis of actions of $\mathbb{R}^{n-m} \times \mathbb{T}^m$ on $\mathbb{C} \setminus \{0\}$ in the previous section, each direct factor is isomorphic to the direct sum of tensor products

$$\oplus 2^{\nu_j} (C_0(\mathbb{T}^{v_j1} \times \mathbb{R}^{+}) \otimes (C_0(\mathbb{R}^{u_j+v_j1} \times \mathbb{T}^{v_j2} \times (\mathbb{C} \setminus \{0\})^{v_j-v_j1-v_j2}) \times (\mathbb{R}^{n-m} \times \mathbb{T}^m))$$

with $0 \leq v_j1 + v_j2 \leq v_j$, where $\mathbb{R}^{n-m} \times \mathbb{T}^m$ acts on direct factors of $\mathbb{R}^{u_j+v_j1}$ by translation, on those of \mathbb{T}^{v_j2} by rotation and on those of $(\mathbb{C} \setminus \{0\})^{v_j-v_j1-v_j2}$ transitively. Put $X_j = \mathbb{R}^{u_j+v_j1} \times \mathbb{T}^{v_j2} \times (\mathbb{C} \setminus \{0\})^{v_j-v_j1-v_j2}$. Note that if a direct factor of $\mathbb{R}^{n-m} \times \mathbb{T}^m$ acts on X_j trivially, $C_0(X_j) \times (\mathbb{R}^{n-m} \times \mathbb{T}^m)$ has the tensor factor $C_0(\mathbb{R})$ or $C_0(\mathbb{Z})$. Thus we assume that each direct factor of $\mathbb{R}^{n-m} \times \mathbb{T}^m$ acts on X_j nontrivially.

Suppose that the action of $\mathbb{R}^{n-m} \times \mathbb{T}^m$ on X_j is wandering. We can analyze the orbit space $\Omega_j = X_j/(\mathbb{R}^{n-m} \times \mathbb{T}^m)$ under the action of $\mathbb{R}^{n-m} \times \mathbb{T}^m$, and every orbit in this subspace has the same type. Thus X_j is homeomorphic to the product space of Ω_j and an orbit. Thus, Green’s result [6] implies that $C_0(\Omega_j) \rtimes (\mathbb{R}^{n-m} \times \mathbb{T}^m)$ is isomorphic to

$$C_0(\Omega_j) \otimes C^*((\mathbb{R}^{n-m} \times \mathbb{T}^m)/(\mathbb{R}^{n-m} \times \mathbb{T}^m)_{1_{u_j+v_j}}) \rtimes (\mathbb{R}^{n-m} \times \mathbb{T}^m) \cong C_0(\Omega_j) \otimes C^*((\mathbb{R}^{n-m} \times \mathbb{T}^m)_{1_{u_j+v_j}}) \otimes \mathbb{K}$$

where $(\mathbb{R}^{n-m} \times \mathbb{T}^m)_{1_{u_j+v_j}}$ is the stabilizer of $1_{u_j+v_j} \in (\mathbb{R} \setminus \{0\})^{u_j} \times (\mathbb{C} \setminus \{0\})^{v_j}$, and it is isomorphic to a product group of either \mathbb{R}, \mathbb{T} or \mathbb{Z}.

Next suppose that the action of $\mathbb{R}^{n-m} \times T^m$ on X_j is not wandering. Then $X_j = T^{v_2}$. If the action is 1-dimensionally multi-diagonal, then

$$C(X_{j}) \rtimes (\mathbb{R}^{n-m} \times T^m) = C(T^v) \rtimes (\mathbb{R}^{n-m} \times T^m) \cong (\otimes^{n-m} C(T) \rtimes \mathbb{R}) \otimes (\otimes^m C(T) \rtimes T) \cong C(T^{n-m}) \otimes K.$$

If the action is multi-dimensionally multi-diagonal, then

$$C(X_{j}) \rtimes (\mathbb{R}^{n-m} \times T^m) = C(\Pi_{k=1}^{n} T^{l_k}) \rtimes (\mathbb{R}^{n-m} \times T^m) \cong (\otimes^{n-m} C(T) \rtimes \mathbb{R}) \otimes (\otimes_{k=m+1}^{n} C(T) \rtimes T)$$

with $\sum_{k=1}^{n} l_k = v_2$. Moreover, each direct factor $C(T^{l_k}) \rtimes \mathbb{R}$ is assumed to be a foliation C^*-algebra. Thus $C(T^{l_k}) \rtimes \mathbb{R} \cong (C(T^{l_k-1}) \rtimes \mathbb{R}) \rtimes \mathbb{K}$, where $C(T^{l_k-1}) \rtimes \mathbb{R}$ is a special case of higher dimensional noncommutative tori, say \mathfrak{A}_Θ (cf. [2], [18]). For other direct factors, it is obtained that $C(T^{l_k}) \rtimes T \cong C(T^{l_k-1}) \rtimes (C(T) \rtimes T) \cong C(T^{l_k-1}) \rtimes \mathbb{K}$ since the action of T on T^{l_k} is periodic. More generally, since dimension of stabilizers of points of X_j is fixed, $C(X_{j}) \rtimes (\mathbb{R}^{n-m} \times T^m)$ is also assumed to be a foliation C^*-algebra. If the action of $\mathbb{R}^{n-m} \times T^m$ on X_j is transitive, we obtain the same conclusion as the case of wandering actions. The other cases can be treated the similar way as the case of multi-dimensionally multi-diagonal actions. In fact, since the action on each direct factor of X_j is explicitly given, we can find an invariant torus T^{v_j} transversal to every orbits under $\mathbb{R}^{n-m} \times T^m$ such that $C(X_{j}) \rtimes (\mathbb{R}^{n-m} \times T^m) = C(T^{v_j}) \rtimes (\mathbb{R}^{n-m} \times T^m)$ is isomorphic to $C(T^{v_j}) \rtimes (\mathbb{R}^{n-m} \times T^m) \rtimes (\mathbb{R}^{n-m} \times T^m)$ for some $n_1, n_2, n_3 \geq 0$, where $C(T^{v_j}) \rtimes \mathbb{Z}^{n_3}$ is a special case of \mathfrak{A}_Θ.

Remark. The proof of this theorem suggests that each Ω_j is also homeomorphic to a product space $T^{k_j} \times \mathbb{R}^{s_j} \times \mathbb{Z}^{t_j}$ for some $k_j, s_j, t_j \geq 0$.

Similarly, it is obtained that

Theorem 4.2. Let G be a Lie semi-direct product of $\mathbb{R}^n \times \mathbb{C}^v$ by a connected Lie group N with a diagonal action. Then there exists a finite composition series $\{J_j\}_{j=1}^K$ of $C^*(G)$ such that

$$J_j/J_{j-1} \cong \begin{cases} C_0(\mathbb{R}^{q_j} \times \mathbb{C}^{r_j}) \otimes C^*(N) & \text{for } j = K, \\ C_0(\mathbb{R}^{p_j} \times T^{s_j} \times \mathbb{Z}^{r_j} \times \Omega_j) \otimes C^*(N_{q_j}) \otimes \mathbb{K} & \text{or} \\ C_0(\mathbb{R}^{p_j} \times T^{r_j} \times \mathbb{Z}^{s_j}) \otimes C^*_r(W_j) \otimes \mathbb{K} & \text{for } 1 \leq j \leq K - 1 \end{cases}$$

with $p_j, q_j, r_j \geq 0$, where $\mathbb{R}^{q_j} \times \mathbb{C}^{r_j}$ is the fixed point subspace under the dual action of N, each Ω_j is an orbit subspace on whose preimage the dual action of
N is wandering, and N_{z_j} means the stabilizer of a point z_j of an N-invariant subspace of $\mathbb{R}^n \times \mathbb{C}^v$, and $C^*_r(W_j)$ means the reduced C^*-algebra of a reduced groupoid W_j associated with orbits on an N-invariant torus.

Proof. Note that a diagonal action of N is reduced to that of $N/[N,N]$. Thus we can use the setting of Theorem 4.1. It suffices to consider the crossed product $C_0(X_j) \rtimes N$. If X_j is the fixed point subspace under the action of N, it is homeomorphic to $\mathbb{R}^{u_0} \times \mathbb{C}^{v_0}$. Then $C_0(X_j) \rtimes N \cong C_0(\mathbb{R}^{u_0} \times \mathbb{C}^{v_0}) \otimes C^*(N)$. If the action of N on X_j is wandering,

$$C_0(X_j) \rtimes N \cong C_0(X_j/N) \otimes (C^*(N/N_{z_j}) \rtimes N) \cong C_0(\Omega_j) \otimes C^*(N_{z_j}) \otimes K$$

where N_{z_j} is the stabilizer of $z_j \in X_j$ and $\Omega_j = X_j/N$. If the action of N on X_j is not wandering, it follows from some techniques of foliation C^*-algebras that

$$C_0(X_j) \rtimes N \cong C^*_r(X_j \rtimes N) \cong C^*_r(W_j) \otimes K$$

where $C^*_r(X_j \rtimes N)$ means the reduced (foliation) C^*-algebra of the groupoid $X_j \rtimes N$ arising from the action of N of X_j, and $C^*_r(W_j)$ means the reduced C^*-algebra of the reduced groupoid W_j of $X_j \rtimes N$ (cf. [9]).

Remark. If $N = [N,N]$ in the above setting, then $C^*(G) \cong C_0(\mathbb{R}^n \times \mathbb{C}^v) \otimes C^*(N)$.

Corollary 4.3. In Theorem 4.2, if N is a connected, nilpotent Lie group, or a Lie semi-direct product $\mathbb{R}^n \rtimes \mathbb{R}$, then the same rank estimates as in Corollary 3.8 hold.

Example 4.4. Let G be a Lie semi-direct product of $\mathbb{R}^n \times \mathbb{C}^v$ by the Mautner group M_5 with a diagonal action. Note that $M_5/[M_5, M_5] \cong \mathbb{R}$. Then $C^*(G)$ has a finite composition series $\{\mathcal{J}_j\}_{j=1}^K$ with each subquotient $\mathcal{J}_j/\mathcal{J}_{j-1}$ isomorphic to

$$\begin{cases} C_0(\mathbb{R}^{u_0} \times \mathbb{C}^{v_0}) \otimes C^*(M_5) & \text{for } j = K, \\ C_0(\mathbb{R}^{p_1+2u_j} \times \mathbb{T}^{q_j}) \otimes C^*(\mathbb{C}^2) \otimes K & \text{or} \\ C_0(\mathbb{R}^{p_1+2u_j}) \otimes (C^*(\mathbb{T}^{q_j}) \rtimes M_5) & \text{for } 1 \leq j \leq K-1 \end{cases}$$

where the second, third cases respectively correspond to that the action of $M_5/[M_5, M_5]$ is free, the multi-rotation on an invariant subspace of $\mathbb{R}^n \times \mathbb{C}^v$. Moreover,

$$C^*(\mathbb{T}^{q_j}) \rtimes M_5 \cong \begin{cases} C^*(\mathbb{T}^{q_j}) \rtimes (\mathbb{C}^2 \rtimes \mathbb{R}) \cong C_0(\mathbb{T}^{q_j} \times \mathbb{C}^2) \rtimes \mathbb{R}, \\ C^*_r(\mathbb{T}^{q_j} \times M_5) \cong C^*_r(\mathbb{T}^{q_j} \times \mathbb{C}^2 \rtimes \mathbb{Z}) \otimes K \end{cases}$$
with \(C^*(\mathbb{T}^q \times C^2 \times \mathbb{Z}) \cong C_0(\mathbb{T}^q \times C^2) \times \mathbb{Z} \), where the lower isomorphism is obtained by some techniques of foliation \(C^* \)-algebras (cf. [9]). In the upper case, since \(\mathbb{T}^q \times \{0\} \) is invariant under the action of \(\mathbb{R} \), it is obtained that

\[
0 \to C_0(\mathbb{T}^q \times (C^2 \setminus \{0\})) \rtimes \mathbb{R} \to C_0(\mathbb{T}^q \times C^2) \rtimes \mathbb{R} \to C(\mathbb{T}^q) \times \mathbb{R} \to 0
\]

with the quotient isomorphic to \((C(\mathbb{T}^q)^{-1} \times \mathbb{Z}) \otimes \mathbb{K} \), and

\[
0 \to C_0(\mathbb{T}^q \times (C \setminus \{0\})) \rtimes \mathbb{R} \to C_0(\mathbb{T}^q \times (C^2 \setminus \{0\})) \rtimes \mathbb{R}
\]

\[
\to \oplus^2 C_0(\mathbb{T}^q \times (C \setminus \{0\})) \rtimes \mathbb{R} \to 0
\]

where two direct factors of the quotient, and the ideal are respectively isomorphic to

\[
\left\{ C_0(\mathbb{R}_+) \otimes (C(\mathbb{T}^q)^{+1}) \rtimes \mathbb{R}) \cong C_0(\mathbb{R}_+) \otimes (C(\mathbb{T}^q) \times \mathbb{Z}) \otimes \mathbb{K}
\right. \\
\left. C_0(\mathbb{R}_+^2) \otimes (C(\mathbb{T}^q)^{+2}) \rtimes \mathbb{R}) \cong C_0(\mathbb{R}_+^2) \otimes (C(\mathbb{T}^q+1) \times \mathbb{Z}) \otimes \mathbb{K}
\right.
\]

(cf. [18]). On the other hand, the structure of \(C^*(M_5) \) is given by [18]. Moreover, \(C^*(G) \) has no nontrivial projections.

Acknowledgement

The author would like to thank the referee for some suggestions for revision.

References