ほ場に散在する被害稲わらでのいもち病菌の生存

高崎登美雄・横山佐太正・藤吉 幸（福岡県立農業試験場）

最近の稲作の収穫はほとんどが自脱型コンバイインで行われ、その稲わらは切断等されては場一面に放置される事例が多くなった。ほ場における被害稲わらでのいもち病菌の生存については、これまでにも報告(1975-1976)はあるが、従前の稲わら処分の方法と今日とは大きく異なっている。そこで、被害稲わら上でのいもち病菌の生存について、1975-77年において実験したので、その概要を報告する。

実験材料および方法

実験材料の穂首いもちは、1975年は3月下旬野積み稲わらより、他の年次は稲作期間に採取し、室内に保存して用いた。ほ場における稲わらの処分されている状態を想定して、3〜4cmの長さの穂首いもちはガラス製に入れ、これを傾斜である地面および土中（深さ2cmに埋没）に秋季と春季処理した。対照区としては室内（乾燥状態で保存）、1976年の秋季処理からは野外（ガラス製を木の枝につつ、風雨にさらす）の区を設けた。処理した穂首いもも病菌の生死は穂首いもを適宜に取り出し、分生胞子形成の有無によって判定した。分生胞子の形成は穂首いも水道水で洗浄後、小管ビン（直径1cm、長さ9cm）に3本まで入れて温室とし、25℃に3日間で行った。分生胞子形成の有無や量は、この小管ビンにネオエスタチン5,000倍液0.5mlを注入し、超音波洗浄機で形成した分生胞子を洗い落し、この数0.02μm中の分生胞子数によって了した。

実験結果

1975年と1976年の秋季に処理した実験は第1、2表に示した。第1表によると、地面区での分生胞子の形成は処理後77日目までみられ、105日目からは認められなかった。また、77日目の形成度は室内区に比し、非常によく少なかった。土中区の分生胞子は28日目にわずかに形成し、77日目以降では認められなかった。同じ処理区の反復である第2表では、面土中とも調査を開始した処理後97日目に、すでに分生胞子の形成は認めなかった。しかしながら、室内および野外区の穂首いもは185日目においても多数の分生胞子を形成した。

第3表は早春の2月下旬に処理した結果であるが、これによると室内区では処理後52日目までは室内および野外区より多くの分生胞子を形成し、全部調査である95日目まで分生胞子が認められた。土中区での分生胞子

<table>
<thead>
<tr>
<th>第1表</th>
<th>穂首いもとの分生胞子形成量</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査時期</td>
<td>処理後日数</td>
</tr>
<tr>
<td>1975. 12. 23</td>
<td>28日目</td>
</tr>
<tr>
<td>1976. 2. 10</td>
<td>77</td>
</tr>
</tbody>
</table>

注）1975. 11. 25、処理 (3反復の平均)

<table>
<thead>
<tr>
<th>第2表</th>
<th>穂首いもとの分生胞子形成量</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査時期</td>
<td>処理後日数</td>
</tr>
<tr>
<td>1977. 3. 7</td>
<td>97日目</td>
</tr>
<tr>
<td>↓</td>
<td>23</td>
</tr>
<tr>
<td>↓</td>
<td>4. 8</td>
</tr>
<tr>
<td>↓</td>
<td>21</td>
</tr>
<tr>
<td>↓</td>
<td>5. 12</td>
</tr>
<tr>
<td>↓</td>
<td>6. 3</td>
</tr>
</tbody>
</table>

注）1976. 11. 30、処理 (2反復の平均)

<table>
<thead>
<tr>
<th>第3表</th>
<th>穂首いもとの分生胞子形成量</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査時期</td>
<td>処理後日数</td>
</tr>
<tr>
<td>1977. 3. 23</td>
<td>23日目</td>
</tr>
<tr>
<td>↓</td>
<td>4. 8</td>
</tr>
<tr>
<td>↓</td>
<td>21</td>
</tr>
<tr>
<td>↓</td>
<td>5. 12</td>
</tr>
<tr>
<td>↓</td>
<td>6. 3</td>
</tr>
</tbody>
</table>

注）1977. 2. 28、処理 (2反復の平均)

<table>
<thead>
<tr>
<th>第4表</th>
<th>穂首いもとの分生胞子形成量</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査時期</td>
<td>処理後日数</td>
</tr>
<tr>
<td>1975. 4. 12</td>
<td>10日目</td>
</tr>
<tr>
<td>↓</td>
<td>22</td>
</tr>
<tr>
<td>↓</td>
<td>5. 1</td>
</tr>
<tr>
<td>↓</td>
<td>12</td>
</tr>
<tr>
<td>↓</td>
<td>24</td>
</tr>
<tr>
<td>↓</td>
<td>6. 3</td>
</tr>
<tr>
<td>↓</td>
<td>11</td>
</tr>
<tr>
<td>↓</td>
<td>24</td>
</tr>
</tbody>
</table>

注）1975. 4. 2、処理 (3反復の平均)
第5表 稲穂いちもちの分生孢子形成量
(1976)

<table>
<thead>
<tr>
<th>検査 周期</th>
<th>処理後</th>
<th>検査</th>
<th>処理</th>
<th>処理</th>
<th>検査</th>
<th>処理</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976. 4. 22</td>
<td>20</td>
<td>3,288</td>
<td>6,749</td>
<td>1,348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 1</td>
<td>29</td>
<td>4,958</td>
<td>8,892</td>
<td>2,096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 12</td>
<td>40</td>
<td>1,322</td>
<td>6,043</td>
<td>582</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 25</td>
<td>53</td>
<td>1,769</td>
<td>1,901</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 5</td>
<td>64</td>
<td>3,288</td>
<td>147</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 15</td>
<td>74</td>
<td>2,480</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注 1976. 4. 2, 処理 (2 反復の平均)

の形成を約52日目までであった。4月上旬処理の結果が第4、5表である。検査区の分生孢子の塗布は1975年と1976年とも処理後60日目まで実施し、70日目ごろには確認できなかった。また、土中区の分生孢子の形成は1975年が29日目、1976年が53日目までであった。

考察

土中区における稲穂いちもちの分生孢子形成は、概して処理時期にかかわらず処理後40〜80日目には、まだ面区では80〜110日目には認めず、死滅したものと考えられる。しかし、面区の場合、1977年の2月下旬処理の結果からみるとかなり長期に発生するものと予想される。

このような生存の短縮の要因については明らかでない。

いちもち病の第1次伝染源としてみると、地面に放置されている必ずもし実験によれば、北海道では春季までに死滅するであろうが(23)、乾燥の試験で田村(19)、未見(24)は観察期間まで生存している。筆者らの実験で、秋季に地上に散布または土中にある切断被害部を1のいちもち病菌が3月上旬までには死滅するような結果であった。鰐口らの6月下旬まで生存することを示し、このことはは場における被害の二段階の要因の異なりにあるものと推定される。

したがって、収穫作業によりばら面に散在している被害部ではいちもちの第1次伝染源にならないものと考えられる。しかし、切断されていないかが院みられた被害部や春季に散布される被害部で、土中に埋没すればほとんど問題でないと考えられるが、面地に散在する一部の被害部では第1次伝染源になる可能性もある。

引用文献

1) 岐阜市歩・井田正男・吉田政治・井口 咲(1938) 農事改良資料130: 1-91。 2) 伊藤・昭(1935) 豊上93: 166。 3) 藤平安(1928) 豊病報告29: 99-117。 4) 木田平七(1928) 農林省種苗中心研究事業部報告36: 1-130。

暖地におけるイネいちもち病の防除体系について

岩橋 育彦・岡田 大（宮崎県総合農業試験場）

はじめに

近年、いちもち病防除薬剤としての粒剤の開発が進められ、その特性を生かした活用場面は、ますます増大する傾向である。当然、粒剤の活用により、従来の粉剤や液剤を主体とした防除とは異なる体系が考えられる。防除剤の作成上、あるいは航空散布や地上一斉散布など、防除手段への影響も少なくないと考えられる。このような実情に対応するために、粒剤を活用したいちもち病防除体系についての検討をはじめたが、試験では稲苗期のイネいちもち防除に対する粒剤の活用方法について検討した結果の概要を報告する。

試験方法ならびに結果

試験1. 1976年に粒剤の施用をテストされた田中地区における稲作について検討した。品種コンピュータをベンレートT水和剤で慣行態下で密度を管理を行った。3月28日に苗
箱に irradi, 4月20日に田植機（K式S-200A型）で移植した。1区13.5m^2の3連関で、アズナで区画した。薬剤の施用法には、フジン田植を4月10日（田植前1日前）の1.5株に1箱75gを手挾きで散布、本薬剤はフジ
ン粒剤及びストレート粒剤を5月20日（稲実生初発21日）に10aあたり4kg散布、対照としてヒノヒザ粒剤と5月25日と5月5日には10aあたり3kgを散布した。6月1, 10, 20, 25日には、径50cmの区画について稲実生の発生率を調べた。試験は場における稲実生の発生は、発生期が6月1日、その後急激に発病が見られ、出穂期に多発病となり、稲実生も多発であった。なお、出穂期は7月13日、収穂期は1月17日であった。

試験の結果は第1表のとおりである。すなわち、フジ
ン粒剤の施用による防除効果は、田植後約60日後の
6月中旬には顕著な発病抑制効果がみられ、同剤の本
田施用に優れた効果があったが、6月17日以降には発病が