ON BEHAVIORS OF CELLULAR AUTOMATA
WITH RULE 27

Tatsuro SATO

(Received 28 February 1995, and revised 8 August 1995)

1. Introduction

Let m be a positive integer. A finite cellular automaton $CA-27(m)$ has states 0 or 1 and works on a linear array of m cells with the triplet local transition rule f. The rule f is defined as follows:

\[
\begin{array}{cccccccc}
111 & 110 & 101 & 100 & 011 & 010 & 001 & 000 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}
\]

and the rule number 27 is decided according to

\[2^4 + 2^3 + 2^1 + 2^0 = 27.\]

The global transition function δ of $CA-27(m)$ is given by

\[\delta(x) = f(x_0,x_1,x_2)f(x_1,x_2,x_3) \cdots f(x_{m-1},x_m,x_{m+1})\]

for a configuration $x = x_1x_2 \cdots x_m$ of $CA-27(m)$, where x_i is a state of the ith cell $(1 \leq i \leq m)$. When x_0 and x_{m+1} are fixed for a and b ($a = 0$ or 1 and $b = 0$ or 1), $CA-27(m)$ has the boundary condition $a-b$. Since $CA-27(m)$ has 2^m possible configurations, each configuration reaches a stable state (that is, a fixed point or a limit cycle) after some transition steps. Let $h(x)$ be the least number of transition steps needed by a configuration x to fall into a stable state. Then the transient length H of $CA-27(m)$ is defined by $\text{Max}_x h(x)$.

One-dimensional finite cellular automata with a triplet local transition rule have been studied under fixed boundary conditions [1–3]. A lot of results have been reported under the boundary condition 0–0, especially in [1] and [2]. In [3] a study was made of limit cycles, regarding the changed states of each cell as a column vector; however, there was no reference to transition steps. Since the transient length is an important concept, the author has studied one-dimensional finite cellular automata with a triplet local transition rule having limit cycles of period length 3, and
transient lengths under the fixed boundary conditions. Above all, he has investigated \(CA-27(m) \) under the boundary condition 0–0 and 0–1 taking note of configurations after every three steps; this is a new approach to these problems. The main results are as follows:

- \(CA-27(m) \) with boundary condition 1–1 has a unique limit cycle of period length 2 and its transient length is \(2m - 3 \).
- \(CA-27(m) \) with boundary condition 1–0 has only two limit cycles of period length 2 and its transient length is \(2m - 4 \).
- \(CA-27(m) \) with boundary condition 0–1 has a unique limit cycle of period length 3 and its transient length is \(3m - 7 \).
- \(CA-27(m) \) with boundary condition 0–0 has a unique limit cycle of period length 6 and its transient length is \(3m - 7 \).

(Cf. Theorem 2.4, 2.5, 3.13, 4.8.)

2. Boundary condition 1–0 and 1–1

The notations used are as follows:

1. \(a^k = \underbrace{a \cdots a}_{k \text{-times}} \) (\(a = 0 \) or 1).

 Let \(A \) be a subsequence.

2. \(A^k = \underbrace{AA \cdots A}_{k \text{-times}} \).

3. \((A_l^m) \) : sequence composed of \(l \) bits taken from the right edge when some \(A \)'s are arranged.

LEMMA 2.1. For any configuration \(x \) of \(CA-27(m) \), there exists an integer \(k \) with \(0 \leq k \leq 4 \) such that

\[
\delta^k(x) = 111\ p,
\]

where \(p \) is a sequence with a length of \(m - 3 \).

Proof. We set \(\delta(x) = y \) and \(\delta(y) = z \).

1. When \(x_1 x_2 x_3 = 000 \).

 Since \(y_1 y_2 y_3 = 111 \), we have \(k = 1 \).

2. In the case \(x_1 x_2 x_3 = 001 \).

 If \(x_4 = 1 \), then \(y_1 y_2 y_3 y_4 = 1110 \). So we have \(k = 1 \).

 If \(x_4 = 0 \) and \(x_5 = 0 \), then \(y_1 y_2 y_3 y_4 = 11011 \) and \(z_1 z_2 z_3 z_4 z_5 = 00010 \). From 1, we have \(k = 3 \).
If $x_4 = 0$ and $x_5 = 1$, then $y_1y_2y_3y_4 = 1100$ and $z_1z_2z_3z_4 = 0011$. From the case of $x_4 = 1$, we have $k = 3$. Therefore $k = 1, 3$.

3. In the case $x_1x_2x_3 = 010$.
 If $x_4 = 0$, then $y_1y_2y_3y_4 = 0011$. From 2, we have $k = 2$.
 If $x_4 = 1$, then $y_1y_2y_3 = 000$. From 1, we have $k = 2$.
 Therefore we have $k = 2$.

4. In the case $x_1x_2x_3 = 011$.
 $y_1y_2y_3 = 010$ holds. From 3, we have $k = 3$.

5. In the case $x_1x_2x_3 = 100$.
 $y_1y_2y_3y_4 = 011$ holds. From 4, we have $k = 4$.

6. In the case $x_1x_2x_3 = 101$.
 If $x_4 = 0$, then $y_1y_2y_3 = 000$. From 1, we have $k = 2$.
 If $x_4 = 1$, then $y_1y_2y_3y_4 = 0010$. From 2, we have $k = 4$.
 Therefore we have $k = 2, 4$.

7. In the case $x_1x_2x_3 = 110$.
 If $x_4 = 0$, then $y_1y_2y_3y_4 = 0011$. From 2, we have $k = 2$.
 If $x_4 = 1$, then $y_1y_2y_3 = 000$. From 1, we have $k = 2$.
 Therefore we have $k = 2$.

8. In the case $x_1x_2x_3 = 111$.
 Obviously $k = 0$.

Thus, it is sufficient to study the behaviors of configurations $x = 111p$ for a sequence p with a length of $m - 3$.

Lemma 2.2. If $x = 111p$, then

$$
\delta^{2i}(x) = 1^{i+3}q \text{ for } 1 \leq i \leq m - 4,
$$

where q is a sequence with a length of $m - i - 3$.

Proof. (By induction on i.)

1. When we set $\delta(x) = y$ and $\delta(y) = z$, we have $y_1y_2y_3 = 000$ and $z_1z_2z_3 = 111$.
 If $y_4 = 0$, we have $z_4 = f(00y_5) = 1$. If $y_4 = 1$, then $x_4x_5 = 00$ from $y_4 = f(1x_4x_5) = 1$. So we have $y_5 = f(00x_6) = 1$. Hence $z_4 = f(011) = 1$.
 Since $z_1z_2z_3z_4 = 1^4$, the statement holds when $i = 1$.

2. Assume that the statement holds when $1 \leq i \leq m - 5$. When we set $\delta^{2i+1}(x) = u$ and $\delta(u) = v$, we have $u_1u_2\cdots u_{i+3} = 0^{i+3}$, $v_1v_2\cdots v_{i+3} = 1^{i+3}$ and $v_{i+4} = 1$ in the same way as 1. Since $\delta^{2(i+1)}(x) = v$ and $v_1v_2\cdots v_{i+4} = 1^{i+4}$, the statement holds for $i + 1$. □
LEMMA 2.3. For any configuration \(x \), there exists an integer \(k \) with \(0 \leq k \leq 2m - 4 \) such that
\[
\delta^k(x) = i^{m-1} a.
\]

Proof. From Lemma 2.1, there exists an integer \(k_1 \) (\(0 \leq k_1 \leq 4 \)) for \(x \) such that
\[
\delta^{k_1}(x) = 111p
\]
where \(q \) is a sequence with a length of \(m - 3 \). Let \(l = m - 4 \) in Lemma 2.2; it follows that
\[
\delta^{2(m-4)}(111p p) = i^{m-1} a.
\]
Since \(k_1 + 2(m-4) \leq 4 + 2m - 8 = 2m - 4 \), there exists an integer \(k \) (\(0 \leq k \leq 2m-4 \)) such that
\[
\delta^k(x) = i^{m-1} a.
\]

\(\square\)

THEOREM 2.4. CA–27(m) with boundary condition 1–1 has a unique limit cycle of period length 2 and its transient length is \(2m - 3 \).

Proof. First, for any configuration \(x \), from Lemma 2.3, we have
\[
\delta^k(x) = i^{m-1} a \quad \text{for} \quad 0 \leq k \leq 2m - 4.
\]
If \(a = 0 \), then \(\delta^k(x) = 1^{m-1} 0 \), so we have \(\delta(1^{m-1} 0) = 0^m \), \(\delta(0^m) = 1^m \) and \(\delta(1^m) = 0^m \). If \(a = 1 \), \(\delta^k(x) = 1^m \) holds. Therefore \(0^m \) and \(1^m \) make a limit cycle of period length 2. Thus, there exists a unique limit cycle of period length 2.

Next, as we have \(h(x) = k + 1 \leq 2m - 3 \) from the above discussion, the condition \(H \leq 2m - 3 \) holds. Let \(x = 10^{m-1} \), then \(\delta(x) = 01^{m-1} \), \(\delta(01^{m-1}) = 010^{m-2} \), \(\delta(010^{m-2}) = 001^{m-2} \) and \(\delta(001^{m-2}) = 1110^{m-3} \). Generally both \(\delta(1^l 0^{m-l}) = 0^l 1^{m-l} \) and \(\delta(0^l 1^{m-l}) = 1^l + 10^{m-l-1} \) hold for \(2 \leq l \leq m - 2 \) by \(f(110) = f(111) = 0 \) and \(f(000) = f(100) = f(001) = f(011) = 1 \). Then we have \(\delta^2(1110^{m-3}) = \delta^{2m-8}(1110^{m-3}) = 1^{m-10} \), \(\delta(1^{m-10}) = 0^m \) and \(h(1^{3} 0^{m-3}) = 2m - 7 \) by using the above repeatedly for \(1^3 0^{m-3} \).

Finally, we have \(h(x) = 4 + 2m - 7 = 2m - 3 = H \).

\(\square\)

THEOREM 2.5. CA–27(m) with boundary condition 1–0 has only two limit cycles of period length 2 and its transient length is \(2m - 3 \).
Proof. First, for any configuration x, from Lemma 2.3, we have

$$\delta^k(x) = 1^{m-1}a \quad \text{for} \quad 0 \leq k \leq 2m - 4.$$

If $a = 0$, that is $\delta^k(x) = 1^{m-1}0$, we have $\delta(1^{m-1}0) = 0^{m-1}1$ and $\delta(0^{m-1}1) = 1^{m-1}0$. If $a = 1$, then $\delta^k(x) = 1^m$, we have $\delta(1^m) = 0^m$ and $\delta(0^m) = 1^m$. Therefore both $1^{m-1}0$, $0^{m-1}1$ and 0^m, 1^m make limit cycles of period length 2. Hence, there exist only two limit cycles of period length 2.

Next, as we have $h(x) = k \leq 2m - 4$ from the above discussion, it holds that $H \leq 2m - 4$. Let $x = 10^{m-1}$, then we have $\delta^{2m-k}(x) = 1^{m-1}0$ and that $h(x) = 2m - 4 = H$ in a similar way to Theorem 2.4. □

3. Boundary condition 0–1

Lemma 3.1. (Common to both boundary conditions 0–1 and 0–0.)

For any configuration x of CA–27(m), there exists an integer k with $0 \leq k \leq 5$ such that

$$\delta^k(x) = 110p,$$

where p is a sequence with a length of $m - 3$.

Proof. We set $\delta(x) = y$, $\delta(y) = z$, $\delta(z) = u$ and $\delta(u) = v$.

1. In the case $x_1x_2x_3 = 000$.
 Since $y_1y_2y_3 = 111$, $z_1z_2z_3 = 100$, $u_1u_2u_3 = 011$ and $v_1v_2v_3 = 110$, we have $k = 4$.

2. In the case $x_1x_2x_3 = 001$.
 If $x_4 = 0$, then $y_1y_2y_3 = 110$ and we have $k = 1$.
 If $x_4 = 1$, then $y_1y_2y_3 = 111$. From 1, we have $k = 4$.
 Thus, we have $k = 1, 4$.

3. In the case $x_1x_2x_3 = 010$.
 If $x_4 = 0$, then $y_1y_2y_3y_4 = 1011$ and $z_1z_2z_3z_4 = 0010$. From 2, we have $k = 3$.
 If $x_4 = 1$, then $y_1y_2y_3 = 100$. From 1, we have $k = 3$.
 Therefore we have $k = 3$.

4. In the case $x_1x_2x_3 = 011$.
 From 1, we have $k = 1$.

5. In the case $x_1x_2x_3 = 100$.
 From 1, we have $k = 2$.

6. In the case $x_1x_2x_3 = 101$.
 If $x_4 = 0$, then $y_1y_2y_3 = 000$. From 1, we have $k = 5$.
 If $x_4 = 1$, then $y_1y_2y_3y_4 = 0010$. From 2, we have $k = 2$.
 Therefore we have $k = 2, 5$.
7. In the case $x_1x_2x_3 = 110$.
 Obviously $k = 0$.
8. In the case $x_1x_2x_3 = 111$.
 From 1, we have $k = 3$.

Thus, it is sufficient to first study the behaviors of configurations $x = 110p$ for a sequence p with a length of $m - 3$.

When $m = 3k + r$ ($r = 0, 1$ or 2), for a configuration x of $CA_{−27}(m)$, we set

$$x_{3i−2}x_{3i−1}x_{3i} = X_i \quad \text{for } 1 \leq i \leq k.$$

Then we have $x = X_1X_2 \cdots X_kx'$ for a sequence x'

$$x' = \begin{cases}
\varepsilon & (m = 3k) \\
x_m & (m = 3k + 1) \\
x_{m−1}x_m & (m = 3k + 2),
\end{cases}$$

where ε is an empty sequence. We use this rotation for a configuration of $CA_{−27}(m)$ from now on. When we set $A = 110$, $B = 010$ and $C = 000, 001, 011, 100, 101$ or 111, configurations $110p$ are divided into three cases as follows:

(a) $X_1 = A, X_i = A$ or B ($2 \leq i \leq k$) and $x' = \begin{cases}
\varepsilon & (m = 3k) \\
0 \text{ or } 1 & (m = 3k + 1) \\
01 \text{ or } 11 & (m = 3k + 2).
\end{cases}$

(b) $X_1 = A, X_i = A$ or B ($2 \leq i \leq k$) and $x' = 00$ or 10 ($m = 3k + 2$).

(c) $X_1 = A, X_j = A$ or B ($2 \leq j \leq i − 1$) and $X_i = C$ ($2 \leq i \leq k$).

We set $\Delta = \delta^3$ and define mappings F_1, F_2, F_3 and F as follows:

$$F_1(x_1x_2 \cdots x_9) = f(x_1x_2x_3)f(x_2x_3x_4) \cdots f(x_7x_8x_9)$$
$$F_2(x_1x_2 \cdots x_7) = f(x_1x_2x_3)f(x_2x_3x_4) \cdots f(x_5x_6x_7)$$
$$F_3(x_1x_2 \cdots x_5) = f(x_1x_2x_3)f(x_2x_3x_4)f(x_3x_4x_5)$$

and

$$F = F_3 \circ F_2 \circ F_1.$$
When \(y = \Delta(x) \), we have \(y = Y_1 Y_2 \cdots Y_k y' \),

\[
F(X_{i-1}X_iX_{i+1}) = Y_i \quad \text{for } 2 \leq i \leq k - 1
\]

and

\[
\Delta(x) = \begin{cases}
Y_1 F(X_1 X_2 X_3) F(X_2 X_3 X_4) \cdots F(X_{k-2} X_{k-1} X_k) Y_k & (m = 3k) \\
Y_1 F(X_1 X_2 X_3) F(X_2 X_3 X_4) \cdots F(X_{k-2} X_{k-1} X_k) Y_k y_m & (m = 3k + 1) \\
Y_1 F(X_1 X_2 X_3) F(X_2 X_3 X_4) \cdots F(X_{k-2} X_{k-1} X_k) Y_k y_{m-1} y_m & (m = 3k + 2)
\end{cases}
\]

First, we investigate case (a).

Lemma 3.2. When \(\Delta(x) = y \), \(X_1 = A \) and \(X_i = A \) or \(B \) (\(2 \leq i \leq k \)) for a configuration \(x \) of CA-27(m), and we define \(\bar{A} = B \) and \(\bar{B} = A \), then the following properties hold:
1. \(F(X_{i-1}X_iX_{i+1}) = \bar{X}_{i+1} \) (\(2 \leq i \leq k - 1 \)).
2. \(Y_1 = A \).
3. If \(m = 3k \), then \(Y_k = B \).
4. If \(m = 3k + 1 \) and \(x_m = 0 \), then \(Y_k y_m = A0 \).
5. If \(m = 3k + 1 \) and \(x_m = 1 \), then \(Y_k y_m = B0 \).
6. If \(m = 3k + 2 \) and \(x_{m-1} x_m = 01 \), then \(Y_k y_{m-1} y_m = A11 \).
7. If \(m = 3k + 2 \) and \(x_{m-1} x_m = 11 \), then \(Y_k y_{m-1} y_m = B11 \).

Proof. By direct calculations.

Proposition 3.3. For any configuration \(x \) of case (a), the following holds.
1. When \(m = 3k \) and \(k = 2l + r \) (\(r = 0 \) or \(1 \)), we have

\[
\Delta^{k-1}(x) = A^r(AB)^l.
\]

2. When \(m = 3k + 1 \) and \(k = 2l + r \) (\(r = 0 \) or \(1 \)), we have

\[
\Delta^k(x) = A^{1-r}(AB)^{l+r-1}A0.
\]

3. When \(m = 3k + 2 \) and \(k = 2l + r \) (\(r = 0 \) or \(1 \)), we have

\[
\Delta^k(x) = A^r(AB)^l11.
\]
Proof.
1. Let $x = AX_2X_3 \cdots X_k$, then the following holds:

$$\Delta^i(x) = \begin{cases}
 A\overline{X}_{i+2} \cdots \overline{X}_kB(AB)^{\frac{i-1}{2}} & (i : \text{odd}) \\
 AX_{i+2} \cdots X_k(AB)^\frac{i}{2} & (i : \text{even})
\end{cases} \quad (1 \leq i \leq k - 1).$$

By induction on i we have the following.

(a) When $i = 1$ or 2, we have $\Delta(x) = A\overline{X}_3 \cdots \overline{X}_kB$ and $\Delta^2(x) = AX_4 \cdots X_kAB$. So the statement holds when $i = 1$ or 2.

(b) Assume that the statement holds when $1 \leq i \leq k - 2$.

(1) When i is odd, then it follows that

$$\Delta^{i+1}(x) = AX_{i+3} \cdots X_kA(BA)^{\frac{i-1}{2}}B$$
$$= AX_{i+3} \cdots X_k(AB)^{\frac{i+1}{2}}.$$

(2) When i is even, then it follows that

$$\Delta^{i+1}(x) = A\overline{X}_{i+3} \cdots \overline{X}_k(BA)^\frac{i}{2}B$$
$$= A\overline{X}_{i+3} \cdots \overline{X}_kB(AB)^\frac{i}{2}.$$

Thus, the statement holds for $i + 1$.

Let $i = k - 1$, then we have

$$\Delta^{k-1}(x) = \begin{cases}
 ABA(AB)^{\frac{k-2}{2}} & (k - 1 : \text{odd}) \\
 A(AB)^{\frac{k-1}{2}} & (k - 1 : \text{even})
\end{cases}$$

$$= \begin{cases}
 (AB)^\frac{k}{2} & (k : \text{even}) \\
 A(AB)^{\frac{k-1}{2}} & (k : \text{odd}).
\end{cases}$$

Thus, we have $\Delta^{k-1}(x) = A^r(AB)^{k}$ when $k = 2l + r$ ($r = 0$ or 1).

2. Parts 2 and 3 are proved in a similar way. \hfill \square

Remarks.
1. When $m = 3k$, $k = 2l + r (r = 0$ or 1) and $X_k = A$, the configuration x reaches $A^r(AB)^l$ with just $m - 3$ steps.

2. When $m = 3k + 1$, $k = 2l + r (r = 0$ or 1) and $X = AX_2 \cdots X_kA$, the configuration x reaches $A^{1-r}(AB)^{l+r-1}A0$ with just $m - 1$ steps.

3. When $m = 3k + 2$, $k = 2l + r (r = 0$ or 1) and $X = AX_2 \cdots X_k01$, the configuration x reaches $A^r(AB)^l11$ with just $m - 2$ steps.
For each configuration x of case (b), we have that $\Delta(x)$ is a configuration of case (a) by direct calculations.

Finally, we investigate the configurations of case (c).

Lemma 3.4. We set $y = \delta^2(x)$. If $x_i x_{i+1} x_{i+2} x_{i+3} = 0111$, then $y_i y_{i+1} y_{i+2} y_{i+3} y_{i+4} = 0111$ for $0 \leq i \leq m - 3$.

Proof. Let $z = \delta(x)$ and $y = \delta(z)$, then we have $z_{i+1} z_{i+2} z_{i+3} = 011$ and $y_{i+1} y_{i+2} y_{i+3} = 011$. If $z_{i+4} = 0$, we have $y_{i+4} = f(00z_{i+5}) = 1$. If $z_{i+4} = 1$, we have $x_{i+4} x_{i+5} = 00$ for $z_{i+4} = f(1x_{i+4} x_{i+5}) = 1$. Since $z_{i+5} = f(00x_{i+6}) = 1$, we have $y_{i+4} = f(011) = 1$. Therefore, we have $y_{i+1} y_{i+2} y_{i+3} y_{i+4} = 0111$. □

Concerning F and Δ, the following lemma holds.

Lemma 3.5. (Common to both boundary conditions 0–1 and 0–0.)

1. When $X = A$ or B and $Y = A$ or B, it follows that

$$F(XYC) = \begin{cases} A & (C = 000, 001 \text{ or } 011) \\ B & (C = 100, 101 \text{ or } 111) \end{cases}$$

2. For $x = AX_2 X_3 \cdots X_{n+1} X_{n+3} \cdots X_k x'$ where $X_i = A$ or B ($2 \leq i \leq n + 1$),

 (a) if $C = 000, 001$ or 011, then

$$\Delta(x) = A X_3 X_4 \cdots X_{n+1} A 111 X'_{n+3} \cdots X_k x'';$$

 (b) if $C = 100$ or 101, then

$$\Delta^2(x) = A X_4 X_5 \cdots X_{n+1} A 111 X''_{n+3} \cdots X_k x''' .$$

Remark. When $n = 0$, $x = ACX_3 X_4 \cdots X_k x'$.

Proof.

1. The result is calculated directly.

2. By direct calculations using item 1 above, Lemma 3.2 item 1 and Lemma 3.4, we can obtain the results. □

Lemma 3.6. (Common to both boundary conditions 0–1 and 0–0.)

*For any configuration $x = AX_2 X_3 \cdots X_{n+1} 111 X_{n+3} \cdots X_k x'$ where $X_i = A$ or B ($2 \leq i \leq n + 1$), we have

$$\Delta^{2i}(x) = AX_{2i+2} \cdots X_{n+i} A 111 X'_{n+i+3} \cdots X_k x''',$$

for $1 \leq i \leq k - n - 2$.***
Proof. (By induction on \(i\).)
1. When \(i = 1\), \(\Delta^2(x) = AX_4 \cdots X_{n+1} AAA111 X'_{n+4} \cdots X'_{k}x''\) holds from Lemma 3.4 and Lemma 3.5 item 1. So the statement holds when \(i = 1\).
2. Assume that \(\Delta^{2i}(x) = AX_{2i+2} \cdots X_{n+1} A^{3i}111X'_{n+i+3} \cdots X'_{k}x''\). In the same way as for \(i = 1\), it follows that \(\Delta^{2i+2}(x) = AX_{2i+4} \cdots X_{n+1} A^{3i} AAA111X''_{n+i+4} \cdots X''_{k}x''\). Thus, the statement holds for \(i + 1\).

Lemma 3.7. For any configuration \(x = A'111X_{s+2} \cdots X_kx'\) with \(s \geq 0\), we have
\[
\delta^{2i}(x) = (A)_{3s+i}^* 111q \quad \text{for } 1 \leq i \leq m - 3s - 3,
\]
where \(q\) is a sequence with a length of \(m - 3s - i - 3\).

Proof. (By induction on \(i\).)
1. When \(i = 1\), from \(\delta(x) = (100)^*100X'_{s+2} \cdots X'_{k}x''\) and Lemma 3.4, we have
\[
\delta^2(x) = (110)^*0111q
= 0(110)^*111q
= (A)_{3s+1}^* 111q,
\]
for a sequence \(q\) with a length of \(m - 3s - 4\). So, the statement holds when \(i = 1\).
2. Assume that it holds when \(1 \leq i \leq m - 3s - 4\).
 (a) When \(i = 3j\), as \(\delta^{2i}(x) = A^{i+j}111X'_{s+j+2} \cdots X'_{k}x''\), it follows that \(\delta^{2i+2}(x) = (A)_{3(i+j)+1}^* 111q'\) for a sequence \(q'\) with a length of \(m - 3(s + j) - 4\) in the same way as for the case \(i = 1\). So we have \(\delta^{2(i+1)}(x) = (A)_{3s+i+1}^* 111q'\).
 (b) When \(i = 3j + 1\) or \(3j + 2\), we can prove in a similar way to (a) above. Thus, the statement holds for \(i + 1\). \(\square\)

Lemma 3.8. For the configuration \(x = (A)_{m-3}^* 111\), we have
\[
\delta^4(x) = (A)_{m-1}^* 0.
\]

Proof.
1. When \(m = 3k\), since \(x = (A)_{3k-3}^* 111 = A^{k-1}111\), it follows that \(\delta(x) = (100)^{k-1}100\), \(\delta^2(x) = (011)^{k-1}011\), \(\delta^3(x) = 110(010)^{k-2}010\) and \(\delta^4(x) = 101(101)^{k-2}100 = 10(110)^{k-1}0 = (A)_{3(k-1)+2}^* 0 = (A)_{m-1}^* 0.\)
2. When \(m = 3k + 1 \) or \(3k + 2 \), we can prove in a similar way to 1 above.

Proposition 3.9. For any configuration \(x = AX_2X_3 \cdots X_{n+1}111X_{n+3} \cdots X_kx' \) where \(X_i = A \) or \(B \) \((2 \leq i \leq n + 1)\), we have

\[
\delta^{2m-6n-8}(x) = (A)^{m-1}_m 0.
\]

Proof.

1. If \(n = 2j \) and \(i = j \) in Lemma 3.6, then we have \(y = \Delta^4(x) = AA^3Y_{3j+3} \cdots Y_ky' = A^{3j+1}Y_{3j+3} \cdots Y_ky' \). Moreover, let \(i = m - 3(3j + 1) - 3 = m - 9j - 6 \) in Lemma 3.7, then we have

\[
\delta^{2(m-9j-6)}(y) = \delta^{2m-9n-12}(y) = (A)^{m-3}_m 111.
\]

By Lemma 3.8, it follows that

\[
\delta^{3n+(2m-9n-12)+4}(x) = \delta^{2m-6n-8}(x) = (A)^{m-1}_m 0.
\]

2. If \(n = 2j + 1 \) and \(i = j \) in Lemma 3.6, then we have \(y = \Delta^2(x) = AX_nA^3Y_{3j+4} \cdots Y_ky' \) and \(z = \Delta^2(y) = \Delta^{n+1}(x) = AA^3Z_{3j+5} \cdots Z_kz' = A^{3j+3}Z_{3j+5} \cdots Z_kz' \). Let \(i = m - 3(3j + 3) - 3 = m - 9j - 12 \) in Lemma 3.7, and we have \(\delta^{2m-9n-15}(z) = \delta^{2m-6n-8}(x) = (A)^{m-1}_m 111 \). By Lemma 3.8, it follows that

\[
\delta^{3(n+1)+(2m-9n-15)+4}(x) = \delta^{2m-6n-8}(x) = (A)^{m-1}_m 0.
\]

Proposition 3.10. For the configuration \(x = (A)^{m-1}_m 0 \), the following holds.

1. When \(m = 3k \) and \(k = 2l + r \) \((r = 0 \text{ or } 1)\), we have

\[
\delta^{m-7}(x) = A' (AB)^l.
\]

2. When \(m = 3k + 1 \) and \(k = 2l + r \) \((r = 0 \text{ or } 1)\), we have

\[
\delta^{m-7}(x) = A^{1-r} (AB)^l + r-1 A0.
\]

3. When \(m = 3k + 2 \) and \(k = 2l + r \) \((r = 0 \text{ or } 1)\), we have

\[
\delta^{m-7}(x) = A' (AB)^l 111.
\]

Proof.

1. As \(x = (A)^{3k-1}_m 0 = 10(110)^{k-1} 0 = 10(110)^{k-2} 1100 \), so \(\delta(x) = 00(100)^{k-2} 1011 \) and \(\delta^2(x) = 11(011)^{k-2} 0010 = (110)^{k-1} 010 = A^{k-1}B \). Since this shows \(\Delta^2(X) = AA^{k-3}AB \) in Proposition 3.3 item 1, it follows that \(\Delta^{(k-1)-2}(A^{k-1}B) = \Delta^{k-3}(A^{k-1}B) = A' (AB)^l \). Thus, we have \(\delta^{2+3(k-3)}(x) = \delta^{3k-7}(x) = \delta^{m-7}(x) = A' (AB)^l \).

2. Items 2 and 3 are proved in a similar way.
When $m = 3k$, each configuration x reaches $y = AY_2Y_3 \cdots Y_k$ within 5 steps by Lemma 3.1, and y is a configuration of case (a), case (b) or case (c) stated above. After some steps, y reaches $A'(AB)^l$ by Proposition 3.3, Lemma 3.5 item 2, Proposition 3.9 and Proposition 3.10. Since

$$ \Delta(A'(AB)^l) = A'(AB)^l, $$

configuration $A'(AB)^l$ is a fixed point or a configuration on a limit cycle of period length 3 about δ. However, $A'(AB)^l$ is not a fixed point by $\delta(110p) = 10q$, so $A'(AB)^l$ is a configuration on a limit cycle of period length 3. Thus, there exists a unique limit cycle of period length 3.

Let $x = A'(AB)^l$, then the other configurations on the limit cycle are as follows.

- When $r = 0$, we have

$$ \delta(x) = (101100)^l, \quad \delta^2(x) = (001011)^l. $$

- When $r = 1$, we have

$$ \delta(x) = 100(101100)^l, \quad \delta^2(x) = 011(001011)^l. $$

To see whether there are entrances to the limit cycle other than $A'(AB)^l$, recall the discussion in Proposition 3.3 item 1. We have

$$ \Delta^{k-2}(x) = \begin{cases} A\overline{X}_kB(AB)^{l-1} & (k - 2 : \text{odd}) \\ AX_k(AB)^{l-1} & (k - 2 : \text{even}) \end{cases} $$

is not a configuration on the limit cycle and the remaining configurations on the limit cycle must appear while $\Delta^{k-2}(x)$ transfers to $\Delta^{k-1}(x)$. $\Delta^{k-2}(x)$ is not a configuration on the limit cycle when $X_k = A$. So we have the following.

- When $r = 0$ and $x = A^2(AB)^{l-1}$,

$$ \delta(x) = 100100(101100)^{l-1}, \quad \delta^2(x) = 011011(001011)^{l-1}. $$

- When $r = 1$ and $x = AB^2(AB)^{l-1}$,

$$ \delta(x) = 101101100(101100)^{l-1}, \quad \delta^2(x) = 001001011(001011)^{l-1}. $$

The above two cases contain no configurations on the limit cycle. Thus, the transient length is the maximum of the transition steps which each configuration needs to reach $A'(AB)^l$.

When $m = 3k + 1$ or $m = 3k + 2$, we can consider in a similar manner.
On behaviors of cellular automata with rule 27

PROPOSITION 3.11. For the configuration \(x = ACX_3X_4 \cdots X_kx' \), we have

\[
h(x) = \begin{cases}
3m - 12 & (C = 000, \, 001 \text{ or } 011) \\
3m - 9 & (C = 100 \text{ or } 101) \\
3m - 15 & (C = 111).
\end{cases}
\]

Proof. By Lemma 3.5 item 2, Proposition 3.9 and Lemma 3.10, it follows that

\[
h(x) = \begin{cases}
3 + (2m - 6n - 8) + (m - 7) = 3m - 6n - 12 & (C = 000, \, 001 \text{ or } 011) \\
6 + (2m - 6n - 8) + (m - 7) = 3m - 6n - 9 & (C = 100 \text{ or } 101) \\
(2m - 6n - 8) + (m - 7) = 3m - 6n - 15 & (C = 111),
\end{cases}
\]

for \(x = AX_2Y_3 \cdots X_{n+1}CX_{n+3} \cdots X_kx' \) where \(X_i = A \) or \(B \) (\(2 \leq i \leq n + 1 \)). Let \(n = 0 \), then we have \(x = ACX_3X_4 \cdots X_kx' \) and

\[
h(x) = \begin{cases}
3m - 12 & (C = 000, \, 001 \text{ or } 011) \\
3m - 9 & (C = 100 \text{ or } 101) \\
3m - 15 & (C = 111).
\end{cases}
\]

\(\square \)

LEMMA 3.12. (Common to both boundary conditions 0–1 and 0–0.) \(\delta(x) \) does not contain the subsequence 1010 for any configuration \(x \).

Proof. Let \(y = \delta(x) \) and \(y_{i+1}y_{i}y_{i+1}y_{i+2}y_{i+3} = 1010 \) with \(1 \leq i \leq m - 3 \). For \(y_{i+1} = 0 \), it follows that \(x_i x_{i+1} x_{i+2} = 111, 110, 101 \) or 010. As \(f(110) = f(111) = 0, x_i x_{i+1} x_{i+2} = 111 \) contradicts \(y_{i+1} = 1 \). When \(x_i x_{i+1} x_{i+2} = 110 \) or 010, we have that \(x_{i+3} = 0 \) for \(y_{i+2} = 1 \). However, this contradicts \(y_{i+3} = 0 \) by \(f(000) = f(001) = 1 \). As \(f(010) = f(110) = 0, x_i x_{i+1} x_{i+2} = 101 \) contradicts \(y_{i} = 1 \). \(\square \)

THEOREM 3.13. CA–27(m) with boundary condition 0–1 has a unique limit cycle of period length 3 and its transient length is \(5m - 7 \).

Proof. When \(C = 100, \, 101 \) in Proposition 3.11, then \(x = 110100X_3X_4 \cdots X_kx' \) or \(110101X_3X_4 \cdots X_kx' \). However, no predecessor of the configuration \(x \) exists by Lemma 3.12. About the other cases we have \(H \leq 5 + (3m - 12) = 3m - 7 \) from Lemma 3.1 and Proposition 3.11. In particular, if we take \(x = 1010q \), it follows that \(\delta(x) = 000q' \) and that \(\delta^2(x) = 111q'' \). Let \(s = 0 \) and \(i = 3 \) in Lemma 3.7, then we have \(\delta^6(111q'') = 110111q''' \). Thus, it follows that \(h(x) = 2 + 6 + 3m - 15 = 3m - 7 = H \) from the case \(C = 111 \) in Proposition 3.11. \(\square \)
Remarks.
1. When \(m = 3k \) and \(k = 2l + r \) (\(r = 0 \) or \(1 \)),
 \[
 A^r(AB)^{l_1}, \quad (100)^r(101100)^l, \quad (011)^r(001011)^l
 \]
 make a limit cycle.
2. When \(m = 3k + 1 \) and \(k = 2l + r \) (\(r = 0 \) or \(1 \)),
 \[
 A^{1-r}(AB)^{l_1+r-1}A0, \quad (100)^{1-r}(101100)^{l_1+r-1}1011, \quad (011)^{1-r}(001011)^{l_1+r-1}0010
 \]
 make a limit cycle.
3. When \(m = 3k + 2 \) and \(k = 2l + r \) (\(r = 0 \) or \(1 \)),
 \[
 A^r(AB)^{l_111}, \quad (100)^r(101100)^{l_110}, \quad (011)^r(001011)^{l_100}
 \]
 make a limit cycle.

4. Boundary condition 0–0

We can consider the boundary condition 0–0 in a similar way to the boundary condition 1–0. We adopt the same notations \(A, B, C, \Delta, F \) and \(\overline{X}_i \) as in the preceding section.

Lemma 4.1. When \(\Delta(x) = y \), \(X_1 = A \) and \(X_i = A \) or \(B \) (\(2 \leq i \leq k \)) for a configuration \(x \) of \(CA–27(m) \), the following properties hold.
1. \(F(X_{i-1}X_iX_{i+1}) = \overline{X}_{i+1} \) (\(2 \leq i \leq k - 1 \)).
2. \(Y_1 = A \).
3. If \(m = 3k \), then \(Y_k = 111 \).
4. If \(m = 3k \), then \(F(X_{i-1}X_i111) = B \) (\(2 \leq i \leq k - 1 \)).
5. If \(m = 3k + 1 \) and \(x_m = 0 \), then \(Y_ky_m = A1 \).
6. If \(m = 3k + 1 \) and \(x_m = 1 \), then \(Y_ky_m = B0 \).
7. If \(m = 3k + 2 \) and \(x_{m-1}x_m = 01 \), then \(Y_ky_{m-1}y_m = A00 \).
8. If \(m = 3k + 2 \) and \(x_{m-1}x_m = 11 \), then \(Y_ky_{m-1}y_m = B00 \).
9. If \(m = 3k + 2 \) and \(x_{m-1}x_m = 00 \), then \(Y_ky_{m-1}y_m = A11 \).

Proof. The results can be obtained by direct calculations. \(\square \)

Lemma 4.2. When \(\delta(x) = y \), we have
\[
y_m = 1 - x_m
\]
for any configuration \(x \).
On behaviors of cellular automata with rule 27

Proof. Since \(f(000) = f(100) = 1 \), we have \(y_m = 1 = 1 - x_m \) when \(x_m = 0 \). Since
\(f(010) = f(110) = 0 \), we have \(y_m = 0 = 1 - x_m \) when \(x_m = 1 \).

\[\square \]

Lemma 4.3. For any configuration \(x = A^i111X_{s+2} \cdots X_kx' \) with \(s \geq 0 \), we have
\[
\delta^{2i}(x) = (A|_{s+1}^{s+i}111q \quad \text{for}\ 1 \leq i \leq m - 3s - 4,
\]
where \(q \) is a sequence with a length of \(m - 3s - i - 3 \).

Proof. Cf. Lemma 3.7.

\[\square \]

Proposition 4.4. For any configuration \(x \) of case (a), the following holds.
1. When \(m = 3k \), we have
\[
\Delta^{k-1}(x) = A^{k-1}111 \text{ or } AB^{k-1}.
\]
2. When \(m = 3k + 1 \), we have
\[
\Delta^k(x) = A^k1 \text{ or } AB^{k-1}0.
\]
3. When \(m = 3k + 2 \), we have
\[
\Delta^k(x) = A^k11 \text{ or } AB^{k-1}00.
\]

Proof.
1. Let \(x = AX_2X_3 \cdots X_k \), then the following holds:
\[
\Delta^i(x) = \begin{cases}
A\overline{X}_{i+2} \cdots \overline{X_k}A^{i-1}111 & (i : \text{odd}) \\
AX_{i+2} \cdots X_kB^i & (i : \text{even})
\end{cases} \quad (1 \leq i \leq k - 1).
\]
By induction on \(i \) we have the following.

(a) When \(i = 1 \) or 2, we have \(\Delta(x) = A\overline{X}_3 \cdots \overline{X_k}111 \) and that \(\Delta^2(x) = AX_4 \cdots X_kBB \). So the statement holds when \(i = 1 \) or 2.

(b) Assume that the subject holds when \(1 \leq i \leq k - 2 \).

1. When \(i \) is odd, it follows that
\[
\Delta^{i+1}(x) = AX_{i+3} \cdots X_kB^{i-1}BB = AX_{i+3} \cdots X_kB^{i+1}.
\]

2. When \(i \) is even, it follows that
\[
\Delta^{i+1}(x) = A\overline{X}_{i+3} \cdots \overline{X_k}A'^{111}.
\]
Thus, the given equation holds for \(i + 1 \).
Let \(i = k - 1 \). Then we have

\[
\Delta^{k-1}(x) = \begin{cases}
AA^{k-2}111 & (k - 1 \text{: odd}) \\
AB^{k-1} & (k - 1 \text{: even})
\end{cases}
\]

Thus, we have \(\Delta^{k-1}(x) = A^{k-1}111 \) or \(AB^{k-1} \) when \(m = k \).

2. Items 2 and 3 are shown in a similar way.

Remarks.
1. When \(m = 3k \) and \(X_k = A \), the configuration \(x \) reaches \(A^{k-1}111 \) or \(AB^{k-1} \) with just \(m - 3 \) steps.
2. When \(m = 3k + 1 \) and \(x = AX_2 \cdots X_{k-1}A0 \) or \(AX_2 \cdots X_{k-1}B1 \), the configuration \(X \) reaches \(A^k \) or \(AB^{k-1}0 \) with just \(m - 4 \) steps.
3. When \(m = 3k + 2 \) and \(x = AX_2 \cdots X_k01 \), the configuration \(X \) reaches \(A^k11 \) or \(AB^{k-1}00 \) with just \(m - 2 \) steps.

Proposition 4.5. For any configuration \(x = AX_2X_3 \cdots X_{n+1}111X_{n+3} \cdots X_kx' \) where \(X_i = A \) or \(B \) (\(2 \leq i \leq n + 1 \)), we have

\[
\delta^{2m-6n-14}(x) = [A]_{m-4}^{*}111a.
\]

Proof.
1. If \(n = 2j \) and \(i = j \) in Lemma 3.6, then we have \(y = \Delta^n(x) = AA^{3j+1}111Y_{3j+3} \cdots Y_ky' = A^{3j+1}111Y_{3j+3} \cdots Y_ky' \). Furthermore, let \(i = m - 3(3j + 1) - 4 = m - 9j - 7 \) in Lemma 4.3, then it follows that \(\delta^{2(m-9j-7)}(y) = \delta^{2m-9n-14}(y) = (A)_{m-4}^{*}111a \). Thus, we have \(\delta^{3n+2m-9n-14}(x) = \delta^{2m-6n-14}(x) = (A)_{m-3}^{*}111a \).
2. If \(n = 2j + 1 \) and \(i = j \) in Lemma 3.6, then we have \(y = \Delta^{2j}(x) = AX_{n+1}A^{3j+1}111Y_{3j+4} \cdots Y_ky' \) and \(z = \Delta^2(y) = \Delta^{n+1}(x) = AA^{3j+1}A^{3j+1}111Z_{3j+5} \cdots Z_kz' = A^{3j+1}111Z_{3j+5} \cdots Z_kz' \). Let \(i = m-3(3j+3)-4 = m-9j-13 \) in Lemma 4.3, it follows that \(\delta^{2(m-9j-13)}(z) = \delta^{2m-9n-17}(z) = (A)_{m-3}^{*}111a \). Thus, we have \(\delta^{3(n+1)+(2m-9n-17)}(x) = \delta^{2m-6n-14}(x) = (A)_{m-3}^{*}111a \).

Proposition 4.6. For configurations \(x = (A)_{m-4}^{*}111x_m \), the following holds.
1. When \(m = 3k \), we have

\[
\delta^{m-1}(x) = AB^{k-1} \text{ or } A^{k-1}111.
\]
2. When \(m = 3k + 1 \), we have \(\delta^{m-1}(x) = A B^{k-1}0 \text{ or } A^k1 \).

3. When \(m = 3k + 2 \), we have \(\delta^{m-1}(x) = A B^{k-1}100 \text{ or } A^k11 \).

Proof.

1. Since \(x = (110)^{3k}1111x_m = 10(110)^{k-2}1111x_m \), if \(x_m = 1 \), then \(x = 10(110)^{k-2}1111 \) and it follows that \(\delta(x) = 00(100)^{k-2}1000 = (001)^{k-1}000 \) and that \(\delta^2(x) = A^{k-1}111 \). Thus, we have \(\delta^{m-1}(x) = \delta^{3k-3}(A^{k-1}111) = A^{k-1}111 \) or \(AB^{k-1} \). If \(x_m = 0 \), then \(x = 10(110)^{k-2}1110 \), \(\delta(x) = 00(100)^{k-2}1001 \) and \(\delta^2(x) = 11(011)^{k-2}0110 = A^{k} \). Thus, we have \(\delta^{2+3(k-1)}(x) = \delta^{m-1}(x) = A^{k-1}111 \) or \(AB^{k-1} \) from Proposition 4.4 item 1.

2. Items 2 and 3 are shown in a similar way.

Remarks.

1. When \(m = 3k \) and \(x_m = 0 \), the configuration \(x \) reaches \(A^{k-1}111 \) or \(AB^{k-1} \) with just \(m - 1 \) steps.

2. When \(m = 3k + 1 \) and \(x_m = 0 \), the configuration \(x \) reaches \(A^k1 \) or \(AB^{k-1}0 \) with just \(m - 1 \) steps.

3. When \(m = 3k + 2 \) and \(x_m = 0 \), the configuration \(x \) reaches \(A^k11 \) or \(AB^{k-1}100 \) with just \(m - 1 \) steps.

When \(m = 3k \), each configuration \(x \) reaches \(y = AY_2Y_3\cdots Y_k \) within 5 steps by Lemma 3.1, and \(y \) is a configuration of case (a), case (b) or case (c) stated above. After some steps, \(y \) reaches \(A^{k-1}111 \) or \(AB^{k-1} \) by Proposition 4.4, Lemma 3.4 item 2, and Propositions 4.5 and 4.6. Since

\[
\Delta(A^{k-1}111) = AB^{k-1} \quad \text{and} \quad \Delta(AB^{k-1}) = A^{k-1}111,
\]

configurations \(A^{k-1}111 \) and \(AB^{k-1} \) are on a limit cycle of period length 6. Thus, there exists a unique limit cycle of period length 6.

Let \(x = A^{k-1}111 \), then the remaining configurations on the limit cycle are as follows:

\[
\delta(x) = (100)^k, \quad \delta^2(x) = (011)^k, \quad \delta^3(x) = AB^{k-1}, \quad \delta^4(x) = (101)^k, \quad \delta^5(x) = (001)^{k-1}000.
\]
We can consider the transient length when $x_m = 0$ in Proposition 4.6. To see whether there are entrances to the limit cycle other than $A^{k-1}111$ or AB^{k-1}, recall the discussion in Proposition 4.4 item 1. We have that

$$\Delta^{k-2}(X) = \begin{cases}
ABX_kA^{k-3}111 & (k - 2 : \text{odd}) \\
AX_kB^{k-2} & (k - 2 : \text{even})
\end{cases}$$

is not a configuration on the limit cycle and the other configurations on the limit cycle must appear while $\Delta^{k-2}(x)$ transfers to $\Delta^{k-1}(x)$. As $\Delta^{k-2}(x)$ is not a configuration on the limit cycle when $x_k = A$, so for $x = ABA^{k-3}111$, we have

$$\delta(x) = 101(100)^{k-1}, \quad \delta^2(x) = 001(011)^{k-1}$$

and for $x = A^2B^{k-2}$, we have

$$\delta(x) = 100(101)^{k-1}, \quad \delta^2(x) = 011(001)^{k-2}000.$$

Neither of them contains a configuration on the limit cycle. Thus, the transient length is the maximum of the transition steps which each configuration needs to reach $A^{k-1}111$ or AB^{k-1}.

When $m = 3k + 1$ or $3k + 2$, we can consider in a similar manner.

PROPOSITION 4.7. For the configuration $x = ACX_3X_4\cdots X_kx'$, we have

$$h(x) \leq \begin{cases}
3m - 12 & (C = 000, \; 001 \text{ or } 011) \\
3m - 9 & (C = 100 \text{ or } 101) \\
3m - 15 & (C = 111).
\end{cases}$$

Proof. By Lemma 3.5 item 2, Proposition 3.9 and Lemma 3.10, it follows that

$$h(x) \leq \begin{cases}
3 + (2m - 6n - 14) + (m - 1) = 3m - 6n - 12 & (C = 000, \; 001 \text{ or } 011) \\
6 + (2m - 6n - 14) + (m - 1) = 3m - 6n - 9 & (C = 100 \text{ or } 101) \\
(2m - 6n - 14) + (m - 1) = 3m - 6n - 15 & (C = 111).
\end{cases}$$

for $x = AX_2X_3\cdots X_{n+1}CX_{n+3}\cdots X_kx'$ where $X_i = A$ or B $(2 \leq i \leq n + 1)$. Let $n = 0$, then we have $x = ACX_3X_4\cdots X_kx'$ and

$$h(x) \leq \begin{cases}
3m - 12 & (C = 000, \; 001 \text{ or } 011) \\
3m - 9 & (C = 100 \text{ or } 101) \\
3m - 15 & (C = 111).
\end{cases}$$

\square
Remark. When \(C = 000, 001 \) or \(011 \) and \(z_m = 1 \), the above equality holds. For the other cases, the above equality holds when \(x_m = 0 \).

Theorem 4.8. CA-27\((m)\) with boundary condition 0-0 has a unique limit cycle of period length 6 and its transient length is \(5m - 7 \).

Proof. When \(C = 100, 101 \) in Proposition 4.7, then \(x = 110100X_3 \cdots X_kx' \) or \(110101X_3 \cdots X_kx' \). However, from Lemma 3.12, no predecessor of the configuration \(x \) exists. Regarding the other cases, we have \(H \leq 5 + (3m - 12) = 3m - 7 \) from Lemma 3.1 and Proposition 4.7. If we take \(x = 1010q0 \) considering Lemma 4.1, it follows that \(\delta(x) = 000q'1 \) and that \(\delta^2(x) = 111q''0 \). Let \(s = 0 \) and \(i = 3 \) in Lemma 4.3, then we have \(\delta^6(111q''0) = 110111q''0 \). Thus, it follows that \(h(x) = 2 + 6 + 3m - 15 = 3m - 7 = H \) from \(C = 111 \) in Proposition 4.7. □

Remarks.
1. When \(m = 3k \),

\[
A^{k-1}111, \ (100)^k, \ (011)^k, \ AB^{k-1}, \ (101)^k, \ (001)^{k-1}000
\]

make a limit cycle.
2. When \(m = 3k + 1 \),

\[
A^k1, \ (100)^k0, \ (011)^k1, \ AB^{k-1}0, \ (101)^k1, \ (001)^k0
\]

make a limit cycle.
3. When \(m = 3k + 2 \),

\[
A^k11, \ (100)^k10, \ (011)^k01, \ AB^{k-1}00, \ (101)^k11, \ (001)^k00
\]

make a limit cycle.

Acknowledgement. The author would like to express his hearty thanks to Professor Y. Kawahara of Kyushu University for his useful comments, suggestions and guidance.

REFERENCES

Tatsuro Sato
Department of Mathematics
Oita National College of Technology
1666 Maki Oita 870–01, Japan