ON EQUIVARIANT COBORDISM CLASSES
OF PROJECTIVE SPACES FOR COMPLEX
U(1)-REPRESENTATION SPACES

Masayoshi KAMATA
(Received 18 August 1997)

1. Introduction

Let \(V \) be an \((n + 1)\)-dimensional complex representation space for the unitary group \(U(1) \). The complex projective space \(P(V) \) is the projective space \(CP^n \) with the \(U(1) \)-action induced from the complex representation \(V \). The aim of this paper is to investigate the condition that the projective spaces \(P(V) \) and \(P(W) \) are cobordant as complex \(U(1) \)-manifolds. Let \(L \) be the one-dimensional canonical complex representation space of \(U(1) \). In this paper we shall prove the following theorem.

Theorem 1. Let

\[
V = L^{a_0} \oplus L^{a_1} \oplus \cdots \oplus L^{a_n}
\]

and

\[
W = L^{b_0} \oplus L^{b_1} \oplus \cdots \oplus L^{b_n}.
\]

Then \(P(V) \) is cobordant to \(P(W) \) as complex \(U(1) \)-manifolds if and only if there exists a permutation

\[
\sigma : \{0, 1, \ldots, n\} \rightarrow \{0, 1, \ldots, n\}
\]

such that for some integer \(s \)

\[
a_i = b_{\sigma(i)} + s.
\]

2. A proof of Theorem 1

Let \(G \) be a compact Lie group. Denote by \(\pi : EG \rightarrow BG \) the universal principal bundle for \(G \). For a unitary \(G \)-manifold \(M \) we have the associated bundle

\[
\pi_M : EG \times_G M \rightarrow BG
\]

and the Gysin homomorphism

\[
\pi_M^*: H^*(EG \times_G M; Q) \rightarrow H^*(BG; Q).
\]
Let ξ be an n-dimensional smooth complex vector bundle over an orientable closed manifold M. The tangent bundle $\tau(P(\xi))$ of the projective space bundle associated with ξ is described as

$$\tau(P(\xi)) \oplus \varepsilon = \overline{\eta_\xi} \otimes \pi^*\xi,$$

where ε is the trivial complex line bundle over $P(\xi)$, η_ξ is the tautological line bundle over $P(\xi)$ and $\pi : P(\xi) \rightarrow M$ is the projection. Denote by c the first Chern class of $\overline{\eta_\xi}$. Then the Chern classes of ξ satisfy

$$c^n + \pi^*(c_1(\xi))c^{n-1} + \pi^*(c_2(\xi))c^{n-2} + \cdots + \pi^*(c_n(\xi)) = 0,$$

and

$$c^{n+k-1} = -\pi^*(c_k(\xi)) + \text{decomposable elements of } \pi^*(c_i(\xi)) c^{n-i}$$

+ the lower terms. \hfill (1)

The canonical line bundle ξ_m over the complex projective space CP^m is the conjugate bundle of the line bundle $S^{2m+1} \times_{U(1)} L \rightarrow CP^m$. Let $V = L^{a_0} \oplus L^{a_1} \oplus \cdots \oplus L^{a_n}$ and let ξ_V be the associated bundle $S^{2m+1} \times_{U(1)} V \rightarrow CP^m$. Here we use the following notation for the first Chern classes:

$$x_m = c_1(\xi_m) \quad \text{and} \quad c_V = c_1(\eta_V),$$

where η_V is the tautological line bundle over the associated projective space bundle $P(\xi_V)$. We calculate the Gysin homomorphism

$$\pi_{P(V)\downarrow} : H^*(P(\xi_V)) \rightarrow H^*(CP^m)$$

for the projection $\pi_{P(V)} : P(\xi_V) \rightarrow CP^m$. Denote the ith elementary symmetric polynomial of $t_1, t_2, \ldots, t_{n+1}$ by $s_i(t_1, t_2, \ldots, t_{n+1})$. Then we have the following proposition.

Proposition 2.

$$\pi_{P(V)\downarrow}(c^{n+k}_V) = [(-1)^{k+1} s_k(a_0, a_1, \ldots, a_n)$$

$$+ \text{decomposable elements of } s_j(a_0, a_1, \ldots, a_n)] x_m^k.$$

Proof: We denote the fundamental class of an orientable closed manifold M by $[M]$. Put

$$\pi_{P(V)\downarrow}(c^{n+k}_V) = \lambda_k x_m^k.$$
Then we use formula (\(*\)) to calculate λ_k.

\[
\lambda_k = \langle \pi_{P(V)!}(c^{n+k}_V), x^{m-k}_m \cap [CP^m] \rangle \\
= \langle 1, x^{m-k}_m \cap (\pi_{P(V)!}(c^{n+k}_V) \cap [P(\xi_V)]) \rangle \\
= \langle (\pi_{P(V)}^*(x_m))^m_{m-k} c^{n+k}_V, [P(\xi_V)] \rangle \\
= \langle (-1)^{k+1} s_k(a_0, a_1, \ldots, a_n) \rangle \\
\quad + \text{decomposable elements of } s_j \} (\pi_{P(V)}^*(x_m))^m_{m-k} c^{n+k}_V, [P(\xi_V)] \rangle \\
= (-1)^{k+1} s_k(a_0, a_1, \ldots, a_n) + \text{decomposable elements of } s_j(a_0, a_1, \ldots, a_n).
\]

\[\square\]

For a complex $U(1)$-representation space V we consider the associated bundle

\[
\pi_{P(V)}: EU(1) \times_{U(1)} P(V) \rightarrow BU(1)
\]

and the Gysin homomorphism

\[
\pi_{P(V)!}: \lim_{m \rightarrow \infty} H^*(S^{2m+1}) \times_{U(1)} P(V) \cong H^*(EU(1) \times_{U(1)} P(V)) \\
\rightarrow H^*(BU(1)) \cong \lim_{m \rightarrow \infty} H^*(CP^m).
\]

Let us use the same notation as the bundle associated with the principal bundle $S^{2m+1} \rightarrow CP^m$:

\[
c_V = c_1(\eta_V) \quad \text{and} \quad x = c_1(\xi),
\]

where η_V is the tautological line bundle over the associated projective space bundle $EU(1) \times_{U(1)} P(V)$ and ξ is the canonical line bundle over $BU(1)$. Then we have the following corollary.

COROLLARY 3. Let $V = L^{a_0} \oplus L^{a_1} \oplus \cdots \oplus L^{a_n}$. Then

\[
\pi_{P(V)!}(c^{n+k}_V) = \langle (-1)^{k+1} s_k(a_0, a_1, \ldots, a_n) + \text{decomposable elements of } s_j \rangle x^k.
\]

We take a characteristic formal power series (cf. [1])

\[
f(z) = 1 + q_1 z + q_2 z^2 + \cdots + q_n z^n + \cdots \in \mathbb{Q}{[z]}.
\]

Let

\[
P_f(s_1, s_2, \ldots, s_n) = f(z_1) f(z_2) \cdots f(z_n).
\]

where s_i is the ith elementary symmetric polynomial of z_j's. For a complex vector bundle ξ over a space X we put

\[
\Phi_f(\xi) = P_f(c_1(\xi), c_2(\xi), \ldots, c_n(\xi)).
\]
For a unitary G-manifold M we have the G-equivariant stable tangent bundle τ'_M, and the quotient bundle of the product $EG \times \tau'_M$:

$$EG \times_G \tau'_M : EG \times_G E(\tau'_M) \rightarrow EG \times_G M.$$

Let us consider the associated bundle

$$\pi_M : EG \times_G M \rightarrow BG.$$

We denote the characteristic class $\Phi_f(EG \times_G \tau'_M)$ by $\Phi_f(M)$. If unitary G-manifolds M and N are cobordant, then

$$\pi_{M!}(\Phi_f(M)) = \pi_{N!}(\Phi_f(N)) \in H^*(BG; Q) \quad \text{(**) \quad (cf. [3]).}$$

A proof of Theorem 1

Suppose that $a_0 + a_1 + \cdots + a_n \equiv b_0 + b_1 + \cdots + b_n \mod n + 1$. Then there exists an integer s such that

$$a_0 + a_1 + \cdots + a_n = b_0 + b_1 + \cdots + b_n + (n + 1)s.$$

Here we consider the characteristic formal power series

$$f(z) = \exp(z).$$

$P(W')$, $W' = L^{b_0 + s} \oplus L^{b_1 + s} \oplus \cdots \oplus L^{b_n + s}$, is $U(1)$-equivariant diffeomorphic to $P(W)$. Suppose that $P(V)$ and $P(W)$ are G-cobordant. Then by (**),

$$\pi_{P(V)!}(\Phi_f(P(V))) = \pi_{P(V)!}(\exp((n + 1)c_V)\pi_{P(V)!}(\exp(-(a_0 + a_1 + \cdots + a_n)x)))$$

coincides with

$$\pi_{P(W')!}(\Phi_f(P(W')))$$

$$= \pi_{P(W')!}(\exp((n + 1)c_{W'})\pi_{P(W')!}(\exp(-(b_0 + b_1 + \cdots + b_n + (n + 1)s)x))).$$

Therefore it follows from Corollary 3 that for any k,

$$(-1)^{k+1}s_k(a_0, a_1, \ldots, a_n) + \text{decomposable elements of } s_j(a_0, \ldots, a_n)$$

$$= (-1)^{k+1}s_k(b_0 + s, b_1 + s, \ldots, b_n + s)$$

$$+ \text{decomposable elements of } s_j(b_0 + s, \ldots, b_n + s)$$

and

$$s_k(a_0, a_1, \ldots, a_n) = s_k(b_0 + s, b_1 + s, \ldots, b_n + s).$$
Equivariant cobordism classes of projective spaces

Thus under the assumption that \(a_0 + a_1 + \cdots + a_n \equiv b_0 + b_1 + \cdots + b_n \) modulo \(n + 1 \), if \(P(V) \) is cobordant to \(P(W) \) as complex \(U(1) \)-manifolds then there exists a permutation

\[\sigma : \{0, 1, \ldots, n\} \rightarrow \{0, 1, \ldots, n\} \]

such that for some integer \(s \),

\[a_i = b_{\sigma(i)} + s. \]

In the general case, for \(P(V), V = L^{a_0} \oplus L^{a_1} \oplus \cdots \oplus L^{a_n} \), and \(P(W), W = L^{b_0} \oplus L^{b_1} \oplus \cdots \oplus L^{b_n} \), consider complex representations

\[V' = L^{(n+1)a_0} \oplus L^{(n+1)a_1} \oplus \cdots \oplus L^{(n+1)a_n} \]

and

\[W' = L^{(n+1)b_0} \oplus L^{(n+1)b_1} \oplus \cdots \oplus L^{(n+1)b_n}. \]

If \(P(V) \) is cobordant to \(P(W) \) as complex \(U(1) \)-manifolds, then \(P(V') \) is cobordant to \(P(W') \) as complex \(U(1) \)-manifolds. Therefore using the above result we complete the proof of Theorem 1.

Acknowledgement. I am grateful to N. Iwase for many discussions about this problem.

REFERENCES

Masayoshi Kamata
Graduate School of Mathematics
Kyushu University 33
Hakozaki Fukuoka 812
Japan