A REMARK ON THE FRAMED NULL-COBORDANTNESS OF THE EXCEPTIONAL LIE GROUP E_6

Haruo MINAMI and Masayoshi KAMATA
(Received 13 May 2000 and revised 27 May 2000)

Dedicated to the memory of Professor Katsuo Kawakubo

1. Introduction and statement of a result

The null-cobordantness of a framed compact connected Lie group G has been discussed in [7] and many other papers. As is well known, the left (or right) invariant tangent fields over G yield a trivialization of its tangent bundle and so induce a framing of the stable normal bundle of G in a canonical way. This defines an element, denoted simply by $[G]$, of the stable homotopy group π_\ast^S of spheres via the Pontrjagin–Thom construction. The vanishing of $[G]$ means, of course, that such a framed Lie group G is null-cobordant.

Ossa [7] has shown the following result of a general nature:

$$8 \cdot 3^2 [G] = 0.$$

Furthermore, for a few special groups we have a stronger estimation of the order of $[G]$ such that $[2, 3, 4, 6]$

$$[SO(2n)] = 0 \ (n \geq 2), \quad [SU(n)]_{(3)} = 0 \ (n \geq 3) \quad \text{and} \quad [F_4]_{(3)} = 0,$$

where $[G]_{(3)}$ denotes the 3-primary component of $[G]$. In this paper we will prove the following.

Theorem. The odd-component of $[E_6]$ is trivial.

2. Preliminaries

Before proving the theorem we recall two facts. From now on let G and K denote E_6 and F_4 respectively and let p be an odd prime. Let σ be the involutive automorphism of G having K as a fixed point set. According to [1] (also cf. [5]) we then have

$$0 \rightarrow \pi_i(K) \stackrel{i_\ast}{\rightarrow} \pi_i(G) \stackrel{\pi_\ast}{\rightarrow} \pi_i(G/K) \rightarrow 0 \quad (i \geq 1) \quad (2.1)$$
are exact and split modulo the class of 2-primary abelian groups where \(i : K \rightarrow G \) denotes the inclusion and \(\pi : G \rightarrow G/K \) denotes the projection. The splitting is given by the map \(q : G/K \rightarrow G \) defined by \(q(gK) = g\sigma(g)^{-1} \) for \(g \in G \).

Consider the map
\[
\varphi : K \times G/K \rightarrow G
\]
given by \(\varphi(k, gK) = g\sigma(g)^{-1}k \) for \(k \in K, g \in G \). From (2.1) and the fact that the multiplication of the loop space \(\Omega G \) induced by the group multiplication of \(G \) and the standard multiplication of the loop space are homotopic, it follows that for all \(i \geq 1 \),

\[
\varphi_* : \pi_i(K \times G/K)(p) \rightarrow \pi_i(G)(p)
\]
is an isomorphism, where \(M(p) \) denotes the \(p \)-localization of a module \(M \). This implies that \(\varphi \) is a \(p \)-equivalence for all \(p \). Hence

\[
\varphi_* : \pi_0(K \times G/K)(p) \rightarrow \pi_0(G)(p)
\] \hspace{1cm} (2.2)
is an isomorphism, where \(X^+ \) denotes the disjoint union of \(X \) and a single point. Further, we see that

\[
(1 \times \pi)^* : \pi_0(K \times G/K)(p) \rightarrow \pi_0(K \times G^+)(p)
\] \hspace{1cm} (2.3)
is a split monomorphism. Actually, the splitting is given by the map \(1 \times q \).

The construction of \([G]\) mentioned below, which is done by making use of the fixed point index of a fiber-preserving map, is due to Becker and Schultz [2]. Let \(\zeta : G \rightarrow \mathbb{R}^\ell \) be an embedding with a normal bundle \(\nu \). Then the Pontrjagin–Thom construction yields a map
\[
\zeta^\sharp : S^\ell \rightarrow G\nu,
\]
where \(G\nu \) denotes the Thom space of \(\nu \). Define maps
\[
\eta : G^+ \wedge G^\nu \rightarrow G^+ \wedge G^\nu \quad \text{and} \quad d : G^\nu \rightarrow G^+ \wedge G^\nu
\]
by \(\eta(g', v) = (g'g, v) \) for \(g', g \in G \) and \(d(v) = (g, v) \) for \(v \in v_g \), where \(v_g \) denotes the normal space at \(g \in G \). Let \(\tau \) be the tangent bundle of \(G \). Then we have a sequence of maps
\[
G^+ \wedge S^\ell \xrightarrow{1 \times \zeta^\sharp} G^+ \wedge G^\nu \xrightarrow{\eta} G^+ \wedge G^\nu \xrightarrow{d^\sharp} G^\tau \oplus \psi \xrightarrow{\psi} G^+ \wedge S^\ell \xrightarrow{p} S^\ell. \] \hspace{1cm} (2.4)
Here \(d^\sharp \) is the Pontrjagin–Thom map similar to \(\zeta^\sharp \), \(\psi \) denotes the homeomorphism induced from the trivialization \(\tau \oplus \psi \cong G \times \mathbb{R}^\ell \) associated with the embedding \(\zeta \) and \(p \) denotes the evident projection.
Null-cobordantness of the exceptional Lie group E_6

The composition f of the maps of (2.4) defines an element of $\pi^0_3(G^+)$, denoted by $I_G(G)$ using the same notation as in [2]. Clearly this map is constant on the outside of some coordinate neighbourhood U of the identity element $e \in G$. So f factors as

$$f : G^+ \wedge S^d \xrightarrow{c \times 1} \frac{G^+}{G - U} \wedge S^d \to S^d,$$

where c denotes the collapse map. Identify $S^d = \frac{G^+}{G - U}$, where $d = \dim G$, then it is seen that the second unnamed map defines just $[G] \in \pi^3_d$. Now the map $c^* : \pi^3_d(S^d) \to \pi^0_3(S^d(G^+))$ is a split monomorphism; in fact, the splitting is given by taking the Kronecker product with the homotopy fundamental class of G. So if we identify π^3_d with its image by c^*, then $I_G(G)$ coincides with $[G]$.

3. Proof of the theorem

To prove the theorem it suffices to show by (2.2) that the composition

$$(K \times G/K)^+ \wedge S^d \xrightarrow{\psi \wedge 1} G^+ \wedge S^d \xrightarrow{f'} S^d$$

is null-homotopic. It is well known that G has a faithful complex representation of dimension 27, for which we write $\rho : G \to U(27)$, and ρ satisfies the equality $\rho(\sigma(g)) = \overline{\rho(g)}$, the complex conjugate of $\rho(g)$, for $g \in G$. So we have $\rho(K) \subset SO(2 \cdot 27)$.

Let $M(n, \mathbb{R})$ and $M(n, \mathbb{C})$ be the spaces of $n \times n$ real and complex matrices and let $M(n, \mathbb{C})$ be embedded in $M(2n, \mathbb{R})$ in the usual way. Then by identifying $M(2n, \mathbb{R})$ with \mathbb{R}^{4n^2} we have an embedding

$$\zeta : G \to \mathbb{R}^\ell \quad (\ell = 4 \cdot 27^2)$$

via the above representation ρ.

Take this one as an embedding ζ of Section 2 and identify G with the image $\zeta(G)$. We now also use all the other notation of Section 2 without references. Then it follows that $v_g = R_g v_e$ and $\tau_g = R_g \tau_e$ for all $g \in G$. Here τ_g is the tangent space at g, v_g is as in Section 2 and $R_g : \mathbb{R}^\ell \to \mathbb{R}^\ell$ denotes right multiplication by g induced from the product of matrices under the identification $\mathbb{R}^\ell = M(2 \cdot 27, \mathbb{R})$.

Now we consider the composition

$$\tilde{f} : (K \times G)^+ \wedge S^d \xrightarrow{(1 \wedge \tilde{\pi}) \wedge 1} (K \times G/K)^+ \wedge S^d \xrightarrow{\psi \wedge 1} G^+ \wedge S^d \xrightarrow{f'} G^{\tau \oplus v} ,$$

where $f' = d^\ell \circ \eta \circ (1 \wedge \zeta^2)$. To simplify the argument we now take $\rho \oplus 1$ instead of ρ, where 1 denotes one-dimensional complex representation and view $g' \in G$ as
an element of $SO(2 \cdot 28)$. Then we can represent g', for example, in the form of $g' = \left(\begin{smallmatrix} \alpha & \beta \\ -\beta & \alpha \end{smallmatrix} \right)$, where α and β are real square matrices of degree 28 and so the equality $g' = \left(\begin{smallmatrix} I & 0 \\ 0 & -I \end{smallmatrix} \right) g' \left(\begin{smallmatrix} I & 0 \\ 0 & -I \end{smallmatrix} \right)$ holds, where I denotes the identity matrix. There is an obvious path $p(t)$ in $SO(2 \cdot 28)$ with $\left(\begin{smallmatrix} I & 0 \\ 0 & -I \end{smallmatrix} \right)$ as the initial point and $e = \left(\begin{smallmatrix} I & 0 \\ 0 & 0 \end{smallmatrix} \right)$ as the terminal point. Because $\sigma(g') = \bar{g}'$ in $U(28)$, using this path we can define a homotopy

$$F_t : (K \times G)^+ \land S^\ell \to G^{\ell+\nu}$$

which is given by

$$F_t(k, g', R_g v) = R_g(u_t, v_t + v) \quad \text{for } k \in K, \quad g', g \in G \text{ and } v \in \mathcal{V}_e.$$

Here u_t and v_t denote the tangential and normal components over G of the vector in \mathbb{R}^ℓ with e as the initial point and $g'(p(t)) g'(p(t))^{-1} k$ as the terminal point. In fact, these vectors are uniquely determined because $\tau_e \oplus \mathcal{V}_e = \mathbb{R}^\ell$. Then it is easily seen that $F_0 = \bar{f}$ and F_1 is null-homotopic. Hence we also see that

$$f \circ (\varphi \land 1) \circ ((1 \times \pi) \land 1) : (K \times G)^+ \land S^\ell \to S^\ell$$

is null-homotopic. We thus obtain

$$(1 \times \pi)^* (\varphi^*(I_G(G))) = 0 \quad \text{in } \pi^0_\ell(K \times G^+)(p).$$

So by (2.3) we have $\varphi^*(I_G(G)) = 0$ in $\pi^0_\ell(K \times G/K^+)(p)$. (We note here that the equality $\varphi^*(I_G(G)) = I_K(G) \times 1$ holds using the same notation as in [2].) From (2.2) it therefore follows that $I_G(G) = 0$, so that $[G] = 0$. This completes the proof of the theorem.

REFERENCES

Null-cobordantness of the exceptional Lie group E_6

Haruo Minami
Department of Mathematics
Nara University of Education
Takabatake-cho
Nara 630-8528
Japan

Masayoshi Kamata
Graduate School of Mathematics
Kyushu University
Hakozaki 6-10-1
Fukuoka 812-8581
Japan