ON THE GENERALIZATION OF A PROBLEM OF D. H. LEHMER

Yi YUAN and Zhang WENPENG

(Received 6 November 2000 and revised 23 May 2001)

1. Introduction

Let q be an odd integer ≥ 3. For each least positive residue $a \mod q$, relatively prime to q, we denote by \overline{a} the inverse of $a \mod q$ taken as the least positive residue mod q (only in this place; in general \overline{a} denotes the inverse of $a \mod q$). Let $r(q)$ denote the number of cases in which a and \overline{a} are of opposite parity (namely a is even [odd] and \overline{a} is odd [even]). For $q = p$ a prime, D. H. Lehmer asks for a closed form for $r(p)$ or for something non-trivial to be said about it [2, p. 251].

The second author [3, 4] considered $r(q)$ and obtained a sharp asymptotic formula for it, which reads as follows.

$$r(q) = \frac{1}{2} \phi(q) + O(q^{1/2}d^2(q) \ln^2 q), \quad (1)$$

where $\phi(q)$ denotes Euler’s function, $d(q) = \sum_{d|q} 1$ the divisor function ($d|q$ signifying that d is the divisor of q) and $\ln q = \log_e q$ the natural logarithm.

For $q = p$ a prime, this gives an answer to Lehmer’s problem.

It is quite natural and interesting to consider the case of power residues, i.e. the least positive residues of a^k and \overline{a}^k with opposite parity (as suggested to us by Professor S. Kanemitsu during his stay in Xi’an).

To be more precise, let $N(k, q)$ (k an integer ≥ 1) denote the number of cases in which

$$q \left\{ \frac{a^k}{q} \right\} \text{ and } q \left\{ \frac{\overline{a}^k}{q} \right\}$$

are of opposite parity, where $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of x, $\lfloor x \rfloor$ denotes the integral part of x, thus $q\{a^k/q\}$ is the least positive residue mod q of a^k.

In this paper we use estimate (10) in the second section for the general Kloosterman sums $S^k(r, s, q)$ to prove a sharp asymptotic formula for $N(k, q)$ in the same setting as in our former papers [3, 4].

Our main result is the following.
THEOREM. Let \(q \geq 3 \) be an odd integer and let \(k \) be a fixed positive integer. Then we have the asymptotic formula

\[
N(k, q) = \frac{1}{2} \varphi(q) + O(q^{3/4} d^{1/2}(q) \ln^2 q).
\] (2)

For \(k = 1 \), this gives

\[
r(q) = N(1, q) = \frac{1}{2} \varphi(q) + O(q^{3/4} d^{1/2}(q) \ln^2 q)
\]

which is much worse than (1), while for \(q = p \) a prime, it reads as follows.

\[
N(k, p) = \frac{1}{2} p + O(p^{3/4} \ln^2 p).
\] (3)

In view of (1), the estimate \(d(q) \ll q^\epsilon \) and a possible improvement in the estimate in Lemma 3, we conjecture that

\[
\Delta(k, q) = N(k, q) - \frac{1}{2} \varphi(q) = O(q^{1/2 + \epsilon}),
\]

for every \(\epsilon > 0 \).

2. Some lemmas

To complete the proof of the theorem, we need some lemmas. We use the following best possible estimate for the Kloostermann sums.

LEMMA 1. \([1]\) Let \(m, n, q \) be integers with \(q > 2 \) and let \(e(x) = e^{2\pi ix} \). Then we have

\[
S(m, n, q) = \sum'_{d \mod q} e \left(\frac{m d}{q} + \frac{n d}{q} \right) \ll (m, n, q)^{1/2} q^{1/2} d(q),
\]

where \(d \) denotes the inverse of \(d \mod q \) and the prime on the summation sign means that the sum is over reduced residue classes \(a \mod q \).

What we actually need is an estimate for the \(k \)th power analogue \(S^k(m, n, q) \) of the Kloostermann sum:

\[
S^k(m, n, q) = \sum'_{e \mod q} e \left(\frac{m e^k + n e^k}{q} \right). \quad (4)
\]

LEMMA 2. If \(q = uv (\geq 3) \) is a decomposition into relatively prime factors of the odd integer \(q \), then for any fixed positive integer \(k \) we have

\[
S^k(m, n, q) = S^k(m \overline{v}, n \overline{v}, u) S^k(m \overline{u}, n \overline{u}, v),
\]

where (here only) \(\overline{v} \) (respectively \(\overline{u} \)) is defined by \(v \overline{v} \equiv 1 \mod u \) (respectively \(u \overline{u} \equiv 1 \mod v \)).
Proof. Since the sum over reduced residue classes \(c \mod uv \) is the double sum \(c = av + bu \) over reduced residue classes \(a \mod u \) and \(b \mod v \), we have

\[
S^k(m, n, q) = S^k(m, n, uv)
\]

\[
= \sum_{a \mod u} \sum_{b \mod v} e\left(\frac{(m(av + bu)^k + n(av + bu)^k)}{uv} \right). \tag{5}
\]

Noting the congruence

\[
(av + bu)^k \equiv (av)^k + (bu)^k \pmod{uv},
\]

and

\[
(av + bu)^k \equiv av^k + bu^k \pmod{uv}
\]

we may factor the summand on the right-hand side of (5) as

\[
e\left(\frac{(av)^k}{u} + \frac{(av)}{v} \right) e\left(\frac{(bu)^k}{u} + \frac{(bu)}{v} \right).
\]

Hence,

\[
S^k(m, n, uv) = \sum_{a \mod u} e\left(\frac{(av)^k}{u} + \frac{(av)}{v} \right) \sum_{b \mod v} e\left(\frac{(bu)^k}{u} + \frac{(bu)}{v} \right). \tag{6}
\]

Since \(av \) and \(a \) (respectively \(bu \) and \(b \)) run through the reduced residue classes \(\mod u \) (respectively \(\mod v \)), it follows that identity (6) is exactly the assertion of Lemma 2. \[\square\]

By Lemma 2, we may restrict ourselves to the prime power case.

Lemma 3. Let \(p \) be an odd prime, \(\alpha \) a positive integer and let \(m \) and \(n \) be integers. Then for any fixed positive integer \(k \), we have the estimate

\[
S^k(m, n, p^\alpha) \ll (m, n, p^\alpha)^{1/4} p^{3\alpha/4} d^{1/2}(p^\alpha).
\]

Proof. Let \(g \) be any fixed primitive root modulo \(p^\alpha \) and let \(h = (k, \phi(p^\alpha)) \). Then for any integer \(r, 0 \leq r \leq k - 1 \), we have

\[
|S^k(mg^r, n_{p^\alpha}, p^\alpha)|^2 = \sum_{a \mod p^\alpha} \sum_{b \mod p^\alpha} e\left(\frac{mg^rb^k((ab)^k - 1) + n_{p^\alpha}p^k((ab)^k - 1)}{p^\alpha} \right).
\]
Writing \(b = g^j \), \(0 \leq j \leq \phi(p^\alpha) - 1 \), and \(\overline{a} \) as \(a \), we deduce that

\[
|S^k(mg^r, n\overline{g}, p^\alpha)|^2 = \sum_{a \mod p^\alpha} \phi(p^\alpha) \sum_{j=0}^{\phi(p^\alpha) - 1} e\left(\frac{mg^{rk}(a^k - 1) + n\overline{g}^{rk}(\overline{a}^k - 1)}{p^\alpha} \right).
\]

Adding these equalities for \(r = 0, \ldots, h - 1 \), we obtain

\[
|S^k(m, n, p^\alpha)|^2 \leq \sum_{r=0}^{h-1} |S^k(mg^r, n\overline{g}, p^\alpha)|^2
\]

\[
= \sum_{a \mod p^\alpha} S(m(a^k - 1), n(\overline{a}^k - 1), p^\alpha).
\]

(7)

Now the inner double sum on the right-hand side of (7) is the same as the sum over reduced residue classes \(b \mod p^\alpha \), we may write (7) as

\[
|S^k(m, n, p^\alpha)|^2 \leq \sum_{a \mod p^\alpha} S(m(a^k - 1), n(\overline{a}^k - 1), p^\alpha).
\]

Hence, by Lemma 1,

\[
|S^k(m, n, p^\alpha)|^2 \leq \sum_{a=1}^{p^\alpha} S(m(a^k - 1), n(\overline{a}^k - 1), p^\alpha)p^{\alpha/2}d(p^\alpha)
\]

\[
\leq (m, n, p^\alpha)^{1/2}p^{\alpha/2}d(p^\alpha)S,
\]

(8)

say, where

\[
S = \sum_{a=1}^{p^\alpha} (a^k - 1, p^\alpha)^{1/2}.
\]

and \(\ll \) is Vinogradov’s symbolism equivalent to Landau’s symbol \(O \), that is, if there exists a constant \(m > 0 \) such that \(|f(x)| \leq mg(x) \) for all \(x \geq a \), then we write \(f(x) \ll g(x) \) or \(f(x) = O(g(x)) \).

It remains to estimate the sum \(S \) in (8). Writing \((a^k - 1, p^\alpha) = d \), we note that \(d \) runs through all divisors of both \(p^\alpha \) and \(a^k - 1 \). Hence, \(d \) must be of the form \(d = p^i \), \(i = 0, \ldots, \alpha \). Hence,

\[
S = \sum_{i=0}^{\alpha} \sum_{a=1}^{p^\alpha} p^{i/2}.
\]
Now we write
\[a = p^i q_i + d_i, \quad 1 \leq q_i \leq p^{a_i - i}, \quad 1 \leq d_i \leq p^i \]
and note that \(d|a^k - 1 \) is equivalent to \(p^i|a^k - 1 \). Then we have
\[
S = \sum_{i=0}^{a} \left(\sum_{q_i=1}^{p^{a_i-i}} \right) \sum_{d_i=1}^{p^i} \frac{p^{i/2}}{p^i|a^k-1} \]
\[= p^a \sum_{i=0}^{a} \sum_{a_i=1}^{p^i} \left(\frac{1}{\sqrt{p}} \right)^i \ll p^a. \] (9)

By (8) and (9), the conclusion of Lemma 3 follows. \(\square \)

From Lemmas 2 and 3 we obtain an estimate for \(S^k(m, n, q) \):
\[S^k(m, n, q) \ll (m, n, q)^{1/4} q^{3/4} d^{1/2}(q). \] (10)

Lemma 4. Let \(q \geq 3 \) be an odd integer. Then for any integer \(r \), we have the identity
\[\sum_{a=1}^{q} (-1)^a e\left(-\frac{ra}{q} \right) = -1 + i \tan \left(\frac{\pi r}{q} \right). \]

Proof. This follows on noting that the left-hand side is the sum of the geometric sequence of common ratio \(-e(-r/q)\). \(\square \)

3. Proof of the theorem

From the definition of \(N(k, q) \) given in Section 1, we have
\[
N(k, q) = \sum_{a=1}^{q} \sum_{b=1}^{q} 1_{2q[a^k/q]+q[b^k/q] = 1} \\
= \frac{1}{2} \sum_{a=1}^{q} \sum_{b=1}^{q} (1 - (-1)^{q[a^k/q]+q[b^k/q]}) \\
= \frac{1}{2} \phi(q) - \frac{1}{2} \sum_{a=1}^{q} \sum_{b=1}^{q} (-1)^{q[a^k/q]+q[b^k/q]}. \] (11)
Using the orthogonality property of the additive character $e(nr/q)$,

$$\frac{1}{q} \sum_{r \mod q} e\left(\frac{rn}{q}\right) = \begin{cases} 1, & \text{if } q | n, \\ 0, & \text{if } q \nmid n, \end{cases}$$

we express $(-1)^{q\{a^k/q\}}$ as

$$\frac{1}{q} \sum_{c=1}^{q} (-1)^c \sum_{r \mod q} e\left(\frac{r(q\{a^k/q\} - c)}{q}\right)$$

$$= \frac{1}{q} \sum_{c=1}^{q} (-1)^c e\left(\frac{rq\{a^k/q\}}{q}\right) \sum_{c=1}^{q} (-1)^c e\left(\frac{-rc}{q}\right)$$

$$= \frac{1}{q} \sum_{c=1}^{q} e\left(\frac{rq}{q}\right) \left(-1 + i \tan \frac{\pi r}{q}\right), \quad (12)$$

by Lemma 4, and similarly for $q\{b^k/q\} = q\{a^k/q\}$:

$$(-1)^{q\{b^k/q\}} = \frac{1}{q} \sum_{c=1}^{q} e\left(\frac{cr}{q}\right) \left(-1 + i \tan \frac{\pi s}{q}\right). \quad (13)$$

Substituting (12) and (13) in (11) and expanding out, thereby extracting the special case $r = q, s = q$, we obtain

$$N(k, q) = \frac{1}{2} \phi(q) - \frac{1}{2q^2} \phi(q) + \frac{1}{q^2} S_1 - \frac{1}{2q^2} S_2 - \frac{1}{q^2} S_3 + \frac{1}{2q^2} S_4, \quad (14)$$

where

$$S_1 = \sum_{r=1}^{q-1} \sum_{a \mod q} e\left(\frac{ra^k}{q}\right) \left(-1 + i \tan \frac{\pi r}{q}\right),$$

$$S_2 = \sum_{r=1}^{q-1} \sum_{s=1}^{q-1} S^k(r, s, q),$$

$$S_3 = \sum_{r=1}^{q-1} \sum_{s=1}^{q-1} S^k(r, s, q)i \tan \frac{\pi r}{q},$$

$$S_4 = \sum_{r=1}^{q-1} \sum_{s=1}^{q-1} S^k(r, s, q) \tan \frac{\pi r}{q} \tan \frac{\pi s}{q}. \quad (15)$$

It is enough to estimate S_4 (the others can be found in the same way). To this end we note the estimate $\cot(\pi x) \ll 1/x$ if $0 < x \leq \frac{1}{2}$, so that we have the estimate

$$\tan\left(\frac{\pi r}{q}\right) = \cot\left(\frac{\pi}{2} - \frac{\pi r}{q}\right) \ll \frac{q}{|q - 2r|}.$$

Thus, from (10) we deduce that

$$S_4 \ll \sum_{r=1}^{q-1} \sum_{s=1}^{q-1} (r, s, q)^{1/4} q^{3/4} d^{1/2} (q) \frac{q}{|q - 2r||q - 2s|}.$$

Now, writing $(r, s, q) = d$, we see that

$$S_4 \ll q^{3/4} d^{1/2} (q) \sum_{d|q} d^{1/4} \sum_{r \leq q/d} \sum_{s \leq q/d} (q/d)^2 \frac{(q/d)^2}{|q/2d - r||q/2d - s|} \leq q^{11/4} d^{1/2} (q) \ln^2 q. \tag{16}$$

Similarly, we have

$$S_1 \ll q^{7/4}, \quad S_2 \ll q^{11/4} d^{1/2} (q), \quad S_3 \ll q^{11/4} d^{1/2} (q) \ln q. \tag{17}$$

Using estimates (16) and (17) in (14) completes the proof of the theorem. \qed

Acknowledgements. The authors express their gratitude to the referees for their very helpful and detailed comments. This work is supported by the Doctorate Foundation of Xi’an Jiaotong University.

REFERENCES

Yi Yuan and Zhang Wenpeng
Research Centre for Basic Science
Xi’an Jiaotong University
Xi’an
Shaanxi 710049
People’s Republic of China