A REMARK ON KAZHDAN’S THEOREM ON SEQUENCES OF BERGMAN METRICS

Takeo OHSAWA
(Received 8 May 2008)

Abstract. A proof is given to an assertion attributed to D. Kazhdan by D. Mumford. The argument works to prove a generalized assertion, which was due to Kazhdan according to S. T. Yau, under some additional assumptions.

0. Introduction

Let M be a connected and paracompact complex manifold of dimension n and let $\tilde{M} \to M$ be a covering space. In [M], Mumford states the following, attributing it to Kazhdan [K-1] (see also [K-2]).

(a) If M is compact, $n = 1$, $\tilde{M} \simeq \mathbb{D} := \{z \in \mathbb{C} \mid |z| < 1\}$ and $M = \mathbb{D} / \Gamma$, then, for any sequence $\Gamma_1 = \Gamma \supset \Gamma_2 \supset \Gamma_3 \supset \cdots \supset \Gamma_{\infty} = \{\text{id}\}$ of Fuchsian group Γ_k satisfying $\bigcap_{k \in \mathbb{N}} \Gamma_k = \{\text{id}\}$, such that \mathbb{D} / Γ_k (for $k \in \mathbb{N}$) are compact, the pullbacks ds^2_k of the Bergman metrics of \mathbb{D} / Γ_k to \mathbb{D} satisfy

$$\lim_{k \to \infty} \lambda_k ds^2_k = ds^2_{\infty} = \frac{2 \, dz \, d\bar{z}}{(1 - |z|^2)^2}$$

with suitably chosen scalars λ_k.

However, neither this statement nor its proof is explicitly stated in [K-1, K-2].

In [Y], Yau asserts that Kazhdan proved the following.

(b) If $M = \tilde{M} / \Gamma$ and the manifold \tilde{M} admits the Bergman metric, then for any sequence $\Gamma_1 = \Gamma \supset \Gamma_2 \supset \Gamma_3 \supset \cdots \supset \Gamma_{\infty} = \{\text{id}\}$ of properly discontinuous groups of automorphisms of \tilde{M} with $[\Gamma_k, \Gamma_{k+1}] < \infty$ and $\bigcap_{k \in \mathbb{N}} \Gamma_k = \{\text{id}\}$, the pullbacks of the Bergman metrics \tilde{M} / Γ_k converge on \tilde{M} to the Bergman metric $ds^2_{\tilde{M}}$ of \tilde{M}.

Again, similarly as in [M], no literature is given for the statement and the proof in the reference of [Y].

In [R], Rhodes proved (a) under somewhat restrictive assumptions. The purpose of the present paper is to give a proof of (b) under some assumptions which are obviously satisfied if $\tilde{M} = \mathbb{D}$ and M is compact. Accordingly, we shall obtain (a) with $\lambda_k = 1$ without any additional assumptions.

2000 Mathematics Subject Classification: Primary 32M05, 32Q15; Secondary 53C40.

Keywords: covering space, Bergman metric, Donnelly–Fefferman’s estimate.
1. Donnelly–Fefferman’s estimate

Let us recall an L^2 estimate for the $\bar{\partial}$-operator first due to Donnelly and Fefferman [D-F], in a generalized formulation after Gromov [G].

Let (X, ds^2) be a complete Kähler manifold of pure dimension n equipped with a $(0, 1)$-form γ of class C^1 such that $\sqrt{-1} d\gamma$ is the fundamental form of ds^2.

Let $C^0_{p,q}(X)$ be the space of C^∞ compactly supported (p, q)-forms on X and let

$$\bar{\partial} : C^0_{p,q}(X) \rightarrow C^0_{p,q+1}(X)$$

be the complex exterior derivative of type $(0, 1)$.

For any $u, v \in C^0_{p,q}(X)$, let $\langle u, v \rangle$ denote the pointwise inner product of u and v with respect to ds^2, and put

$$(u, v) = \int_X \langle u, v \rangle \, dV,$$

where dV denotes the volume form on X with respect to ds^2. We put $|u| = \sqrt{(u, v)}$ and $\|u\| = \sqrt{(u, u)}$.

Let $L^p,q(X)$ denote the completion of $C^0_{p,q}(X)$ with respect to the norm $\|u\|$ and let $\bar{\partial}$ also denote the maximal extension of $\bar{\partial}$ as a closed operator from $L^p,q(X)$ to $L^p,q+1(X)$. The adjoint of $\bar{\partial} : L^p,q(X) \rightarrow L^p,q+1(X)$ is denoted by $\bar{\partial}^*$. The domains of $\bar{\partial}$ and $\bar{\partial}^*$ in $\bigcup_{p,q} L^p,q(X)$ will be denoted by $\text{Dom} \, \bar{\partial}$ and $\text{Dom} \, \bar{\partial}^*$, respectively.

Theorem 1.1. (Cf. [D-F] and [G]) If $c := \sup_X |\gamma| < \infty$, then

$$c^{-1}|p + q - n| \|u\| \leq \|\bar{\partial} u\| + \|\bar{\partial}^* u\|$$

holds for any $u \in L^{p,q}(X) \cap \text{Dom} \, \bar{\partial} \cap \text{Dom} \, \bar{\partial}^*$.

Corollary 1.1. Under the above situation, let $u \in L^{p,q}(X) \cap \text{Ker} \, \bar{\partial}$ with $p + q \neq n$. Then there exists a $v \in L^{p,q-1}(X) \cap \text{Dom} \, \bar{\partial}$ satisfying $\bar{\partial} v = u$ and $\|v\| \leq c|p + q - n|^{-1}\|u\|$.

2. Assertion (b) with additional conditions

Let M, \tilde{M}, Γ_k and ds^2_M be as in (b), let $M_k = \tilde{M} / \Gamma_k$ and let ds^2_k be the Bergman metric of M_k.

We recall at first a characterization of ds^2_k as the solution to an extremal problem.

Let ξ be a holomorphic tangent vector of M_k at $p \in M_k$. By expressing any $\omega \in L^{n,0}(M_k) \cap \text{Ker} \, \bar{\partial}$ near p as $\omega = \omega_0 \, dz_1 \wedge \cdots \wedge dz_n$ with respect to a fixed local coordinate (z_1, \ldots, z_n) around p, we put

$$K(\xi) = \sup \{ |\xi \omega_0|^2 \mid \omega \in L^{n,0}(M_k) \cap \text{Ker} \, \bar{\partial}, \|\omega\| = 1, \omega_0(p) = 0 \}$$

and

$$L(p) = \sup \{ |\omega_0(p)|^2 \mid \omega \in L^{n,0}(M_k) \cap \text{Ker} \, \bar{\partial}, \|\omega\| = 1 \}. \quad (2.2)$$

Then the length $|\xi|_k$ of ξ with respect to ds^2_k satisfies

$$|\xi|_k^2 = K(\xi) / L(p). \quad (2.3)$$

From (2.3) we deduce the following criterion for the convergence of ds^2_k.

PROPOSITION 2.1. Let \(\pi_k : \tilde{M} \to M_k \) be the projection. Suppose that the following two conditions are satisfied.

(i) For any \(\omega \in L^{n,0}(\tilde{M}) \cap \text{Ker} \, \tilde{\partial} \), for any \(\varepsilon > 0 \) and for any compact set \(Q \subset \tilde{M} \), there exists \(k_0 \in \mathbb{N} \) such that, for any \(k > k_0 \) one can find \(\omega_k \in L^{n,0}(M_k) \cap \text{Ker} \, \tilde{\partial} \) and an open set \(D_k \subset M \) containing \(Q \), such that \(\|\omega_k\| \leq \|\omega\| \) and \(\|\pi_k^* \omega_k - \omega\| \leq \varepsilon \).

(ii) For any compact set \(Q \subset M \) and for any \(\varepsilon > 0 \), there exists \(k_1 \in \mathbb{N} \) such that, for any \(k > k_1 \) and for any \(\omega_k \in L^{n,0}(M_k) \cap \text{Ker} \, \tilde{\partial} \), there exists \(\tilde{\omega}_k \in L^{n,0}(\tilde{M}) \cap \text{Ker} \, \tilde{\partial} \) such that \(\|\tilde{\omega}_k\| \leq \|\omega_k\| \) and \(\|\pi_k^* \omega_k - \tilde{\omega}_k\| \leq \varepsilon \).

Then \(\lim_{k \to \infty} \pi_k^* ds^2_k = ds^2_M \).

In fact, for any holomorphic tangent vector \(\xi \) of \(\tilde{M} \), from (i) we have \(\lim_{k \to \infty} K(\pi_k^* \xi) \geq K(\xi) \) and \(\lim_{k \to \infty} L(\pi_k(p)) \geq L(p) \), and from (ii) we have \(\lim_{k \to \infty} K(\pi_k^* \xi) \leq K(\xi) \) and \(\lim_{k \to \infty} L(\pi_k(p)) \leq L(p) \).

Combining Proposition 2.1 with Corollary 1.1, we shall prove the following.

THEOREM 2.1. In the situation of (b), assume moreover that the following are satisfied.

1. \(ds_M^2 \) is complete.
2. There exists a \((0, 1)\)-form \(\gamma \) of class \(C^1 \) on \(\tilde{M} \) such that \(\sup |\gamma| < \infty \) and that \(\sqrt{-1} \, d\gamma \) is the fundamental form of \(ds_M^2 \).
3. For any sequence \(Q_k \subset M_k \) (\(k = 1, 2, \ldots \)) of compact sets, there exists \(N \in \mathbb{N} \), a sequence of subsets \(A_k \subset M_k \) (\(k = 1, 2, \ldots \)) and a divergent sequence of positive real numbers \(r_k \) such that

\[
\sup \{\text{dist}(p, A_k) \mid p \in Q_k\} < r_k^2 - r_k
\]

holds, \(\pi_k^{-1} \) exists on \(\{p \mid \text{dist}(p, q) < r_k^2\} \) for all \(q \in A_k \), and

\[
\bigcap_{q \in A} \{p \mid \text{dist}(p, q) < r_k^2\} = \emptyset
\]

holds if \(A \subset A_k \) and \(\#A > N \). Here \(\text{dist}(\cdot, A_k) \) denotes the distance to \(A_k \) with respect to the metric induced by \(ds_M^2 \) and \(\#A \) is the cardinality of \(A \).

Then \(\lim_{k \to \infty} \pi_k^* ds_k^2 = ds_M^2 (= ds^2_\infty) \).

Proof. It suffices to verify the conditions (i) and (ii) of Proposition 2.1.

(i) Let \(\omega \in L^{n,0}(\tilde{M}) \cap \text{Ker} \, \tilde{\partial} \), let \(\varepsilon > 0 \) and let \(Q \subset \tilde{M} \) be any compact set. By \(\bigcap \Gamma_k = \{\text{id}\} \) and (3), there exists \(k_0 \in \mathbb{N} \) such that, for any \(k > k_0 \), one has a \(C^\infty \) partition of unity, say \(\{\chi_{k\mu}\}_{\mu=1}^{m_k} \), on \(M_k \) such that

there exist continuous maps \(\sigma_{k\mu} : \text{supp} \, \chi_{k\mu} \to \tilde{M} \)

such that \(\pi_k \circ \sigma_{k\mu} = \text{id} \) and \(\sigma_{k1}(\text{supp} \, \chi_{k1}) \supset Q \),

\[
\chi_{k1} \circ \pi_k | Q = 1,
\]

\[
\|\omega - (\chi_{k1} \circ \pi_k)\omega| \sigma_{k1}(\text{supp} \, \chi_{k1})\| < \varepsilon
\]

and

\[
\sum_{\mu} |\tilde{\partial}(\chi_{k\mu} \circ \pi_k)| < \varepsilon.
\]
We put
\[
\hat{\omega}_k = \begin{cases}
\chi_{k1} \sigma_{k1}^* \omega & \text{on } \text{supp } \chi_{k1}, \\
0 & \text{on } M_k \setminus \text{supp } \chi_{k1}.
\end{cases}
\]
Then, by (1) and (2), it follows from Corollary 1.1 and (2.7) that there exist a constant \(C > 0 \) and \(C^\infty(n, 0) \)-forms \(v_{k\mu} \) on \(\text{supp } \chi_{k\mu} \) such that
\[
\bar{\partial} v_{k\mu} = \bar{\partial} \hat{\omega}_k | \text{supp } \chi_{k\mu}
\]
and
\[
\| v_{k\mu} \| \leq C \varepsilon \| \omega \|
\]
hold for all \(\mu \).
Then we put
\[
\omega_1 = \hat{\omega}_k - \sum_{\mu=1}^{m_k} \chi_{k\mu} v_{k\mu}.
\]
Here we extend \(\chi_{k\mu} v_{k\mu} \) trivially outside \(\text{supp } \chi_{k\mu} \).
Observe that we have
\[
\| \omega_1 - \hat{\omega}_k \| \leq C \varepsilon \| \omega \|
\]
and
\[
\| \bar{\partial} \omega_1 \| = \left\| \sum_{\mu} \bar{\partial} \chi_{k\mu} v_{k\mu} \right\| \leq C \varepsilon^2 \| \omega \|
\]
by (2.7)–(2.9). Here \(\| \bar{\partial} \omega_1 \| \) is with respect to \(\pi_k^* ds_M^2 \).
Hence, by a successive approximation one can find \(\tilde{\omega}_k \in L^{n, 0}(M_k) \cap \text{Ker } \bar{\partial} \) satisfying
\[
\| \omega_k - \hat{\omega}_k \| \leq 2C \varepsilon \| \omega \|
\]
if \(C \varepsilon \ll 1 \).
In view of (2.6) and (2.13), with sufficiently large \(Q \), it is easy to see the validity of (i).
(ii) Let \(\varepsilon > 0 \). Then, by (1), (2), \(\bigcap \Gamma_k = \{ \text{id} \} \) and by Corollary 1.1, it is easy to see that there exists \(k_1 \in \mathbb{N} \) such that, for any \(k > k_1 \), for any compact set \(Q_k \subset \tilde{M} \) such that \(\pi_k | Q_k \) is injective and for any \(\omega_k \in L^{n, 0}(M_k) \cap \text{Ker } \bar{\partial} \), one can find \(\tilde{\omega}_k \in L^{n, 0}(\tilde{M}) \cap \text{Ker } \bar{\partial} \) such that
\[
\| (\pi_k^* \omega_k - \tilde{\omega}_k) | Q_k \| < \varepsilon
\]
and
\[
\| \tilde{\omega}_k \| \leq \| \omega_k \| + \varepsilon
\]
hold. Thus we obtain (ii).

Note added in proof. It turned out that, in the situation of (a), the normality of \(\Gamma_k \) is needed for applying Theorem 2.1, so that the general case is still open.

References

Takeo Ohsawa
Graduate School of Mathematics
Nagoya University
Chikusaku Furocho
Nagoya 464-8602, Japan
(E-mail: ohsawa@math.nagoya-u.ac.jp)