Abstract. Following the analogies between three-dimensional topology and number theory, we study an idèlic form of class field theory for 3-manifolds. For a certain set \mathcal{K} of knots in a 3-manifold M, we first present a local theory for each knot in \mathcal{K}, which is analogous to local class field theory, and then, getting together over all knots in \mathcal{K}, we give an analogue of idèlic global class field theory for an integral homology sphere M.

1. Introduction

The analogies between knots and primes were first pointed out by Mazur [Ma] in the 1960s and, after a long silence, Kapranov and Reznikov took up the analogies between 3-manifolds and number rings again [Ka, R1, R2], and Morishita, whose work started independently, investigated the subject systematically [Mo1, Mo2, Mo3]. This new area of mathematics is now called arithmetic topology.

Here is a part of basic analogies: for a number field k, \mathcal{O}_k stands for the ring of integers of k:

$$
\begin{align*}
3\text{-manifold } M & \leftrightarrow \text{ number ring } \text{Spec}(\mathcal{O}_k), \\
\text{knot } K \text{ in } M & \leftrightarrow \text{ prime } p \text{ in } \text{Spec}(\mathcal{O}_k), \\
(\text{ramified}) \text{ covering } N \rightarrow M & \leftrightarrow (\text{ramified}) \text{ extension } K / k, \\
\text{first homology group } H_1(M; \mathbb{Z}) & \leftrightarrow \text{ ideal class group } H_k.
\end{align*}
$$

(1.1)

In particular, we have the following analogy between the Hurewicz isomorphism and unramified class field theory (Artin’s isomorphism):

$$
\begin{align*}
H_1(M; \mathbb{Z}) & \cong \text{Gal}(M^{ab}/M) \leftrightarrow H_k \cong \text{Gal}((\bar{k}^{ab}/k).
\end{align*}
$$

(1.2)

Here M^{ab} (respectively \bar{k}^{ab}) denotes the maximal Abelian covering of M (respectively the maximal unramified Abelian extension of k).

The purpose of this paper is, following the spirit of arithmetic topology, to pursue an idèlë theoretic form of class field theory for 3-manifolds and so extend the analogy (1.2) for ramified coverings/extensions.

For this, we first develop a local theory for each knot in a 3-manifold, which is analogous to local class field theory, based on the following analogies:

$$
\begin{align*}
tubular \text{neighborhood of } K & \leftrightarrow \text{p-adic integers } \mathcal{O}_p, \\
\text{boundary of } V_K & \leftrightarrow \text{p-adic field } \text{Spec}(\mathcal{O}_p), \\
\partial V_K \cong V_K \setminus K & \leftrightarrow \text{Spec}(\mathcal{O}_p) = \text{Spec}(\mathcal{O}_p) \setminus \text{Spec}(\mathcal{O}_p/p).
\end{align*}
$$

(1.3)

2010 Mathematics Subject Classification: Primary 57M12; Secondary 11R37, 11S31.

Keywords: idèlë; class field theory; 3-manifold; arithmetic topology.
Then a topological analogue of the local reciprocity homomorphism is simply given by the Hurewicz homomorphism:

$$\rho_K : H_1(\partial V_K; \mathbb{Z}) \to \text{Gal}(\partial V_K^{ab}/\partial V_K).$$

For a certain given set \mathcal{K} of knots in a 3-manifold M (cf. Section 5), we introduce the idèle group $I(M; \mathcal{K})$ as a restricted product of $H_1(\partial V_K; \mathbb{Z})$ over all K in \mathcal{K}, and getting ρ_K together over all K in \mathcal{K}, we define the homomorphism

$$\varphi(M; \mathcal{K}) : I(M; \mathcal{K}) \to \text{Gal}(M; \mathcal{K})^{ab} := \lim_{\leftarrow L} \text{Gal}(X_L^{ab}/X_L),$$

where L runs over all finite subsets of \mathcal{K}, $X_L := M \setminus L$ and X_L^{ab} is the maximal Abelian covering of X_L. The homomorphism $\varphi(M; \mathcal{K})$ factors through the idèle class group $C(M; \mathcal{K}) := I(M; \mathcal{K})/P(M; \mathcal{K})$, with the principal idèle group $P(M; \mathcal{K})$, and hence we obtain an analogue of the global reciprocity homomorphism

$$\rho_{(M; \mathcal{K})} : C(M; \mathcal{K}) \to \text{Gal}(M; \mathcal{K})^{ab}.$$

Then our main result (Theorem 5.9 below) is stated as follows. Suppose that M is an integral homology sphere. For a finite Abelian covering $h : N \to M$ branched over a finite subset of \mathcal{K}, the global reciprocity homomorphism $\rho_{(M; \mathcal{K})}$ induces an isomorphism

$$\rho_{N/M} : C(M; \mathcal{K})/h_*(C_{N,h^{-1}(\mathcal{K})}) \cong \text{Gal}(N/M).$$

This result may be regarded as an analogue of the fundamental theorem in global class field theory for number fields [KKS].

We note that idèlic class field theory for 3-manifolds was firstly studied by Sikora [S1, S2]. Our approach is different from his and elementary.

This paper is organized as follows. In Section 2 we review the class field theory for algebraic fields. In Section 3 we give a description of Hilbert theory for 3-manifolds. In Section 4 we give the local class field theory for tori, and in Section 5 we present the global class field theory over an integral homology 3-sphere.

Notation

For a connected topological space X (respectively a field k), we denote by X^{ab} (respectively k^{ab}) the maximal Abelian covering of X (respectively the maximal Abelian extension of k). We denote by $\text{Gal}(Y/X)$ (respectively $\text{Gal}(F/k)$) for the Galois group of a Galois covering $h : Y \to X$ (respectively a Galois extension F/k). For topological spaces X and Y, $X \simeq Y$ means that X and Y are homotopy equivalent. We write $\pi_1(X)$ for the fundamental group of X omitting a base point and write $H_1(X)$ simply for the homology group with coefficients in \mathbb{Z}.

2. **Review of class field theory in number theory**

In this section, we review local and global class field theory in number theory whose topological analogies will be studied in Sections 4 and 5. We consult [KKS] and [N] as basic references for this section.
Let k be a number field of finite degree over the rational number field \mathbb{Q}. We denote by \mathcal{O}_k the ring of integers of k. A prime p of k is a class of equivalent valuations of k. The finite primes belong to the maximal ideals of \mathcal{O}_k. The infinite primes fall into two classes, real and complex, where the real primes correspond to the embeddings $k \hookrightarrow \mathbb{R}$ and the complex primes correspond to the pairs of conjugate non-real embeddings $k \hookrightarrow \mathbb{C}$. For a finite prime p, let v_p be the corresponding additive valuation of k, and set $|a|_p = (Np)^{-v_p(a)}$ for $a \in k$ where $Np = \#(\mathcal{O}_k/p)$. For a real prime p with corresponding embedding $\iota : k \hookrightarrow \mathbb{R}$, set $|a|_p = |\iota(a)|$ for $a \in k$, and for a complex prime p with corresponding embedding $\iota : k \hookrightarrow \mathbb{C}$, set $|a|_p = |\iota(a)|^2$ for $a \in k$.

Let k_p be the local field obtained as the completion of a number field with respect to the metric $| \cdot |_p$. Suppose that p is a finite prime of k. Then k_p is non-archimedean local field, a finite extension of the p-adic field \mathbb{Q}_p for a prime number p. Let $v_p : k_p^\times \rightarrow \mathbb{Z}$ be the discrete valuation normalized by $v_p(k_p^\times) = \mathbb{Z}$. We let $\mathcal{O}_p := \{a \in k \mid v_p(a) \geq 0\}$ be the valuation ring and $p = \{a \in k \mid v_p(a) > 0\}$ be the unique maximal ideal of \mathcal{O}_p, and let F_p be the residue field \mathcal{O}_p/p, a finite extension of $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. We denote by U_p the unit group \mathcal{O}_p^\times. We note that $U_p = \ker(v_p)$ and so we have the following split exact sequence

\[0 \rightarrow U_p \rightarrow k_p^\times \xrightarrow{v_p} \mathbb{Z} \rightarrow 0. \tag{2.1}\]

When p is an infinite prime, we let $\mathcal{O}_p = k_p$ and $U_p = k_p^\times$ by convention.

Let k_p^{ab} be the maximal Abelian extension of k_p. When k_p is non-archimedean, we denote by k_p^{ur} the maximal unramified extension of k_p. Note that the Galois group $\text{Gal}(k_p^{ur}/k_p)$ is identified with $\text{Gal}(\hat{\mathbb{Q}}_p/F_p) \cong \hat{\mathbb{Z}}$, where $\hat{\mathbb{Z}}$ denotes the profinite completion of \mathbb{Z}. A main part of local class field theory for the local field k_p is stated as follows.

Theorem 2.1. (Local class field theory) There is a canonical homomorphism, called the local reciprocity homomorphism,

\[\rho_{k_p} : k_p^\times \rightarrow \text{Gal}(k_p^{ab}/k_p)\]

which satisfies the following properties.

1. For any finite Abelian extension F/k_p, ρ_{k_p} induces the isomorphism

\[\rho_{F/k_p} : k_p^\times / N_{F/k_p}(F^\times) \cong \text{Gal}(F/k_p)\]

where N_{F/k_p} denotes the norm map for F/k_p.

2. When k_p is non-archimedean, we have the following commutative diagram with exact horizontal sequences:

\[
\begin{array}{cccccccc}
0 & \rightarrow & U_p & \rightarrow & k_p^\times & \xrightarrow{v_p} & \mathbb{Z} & \rightarrow & 0 \\
\downarrow{\rho_{k_p}\mid_{U_p}} & & \downarrow{\rho_{k_p}} & & \downarrow{\rho_{k_p}} & & \downarrow & \\
0 & \rightarrow & \text{Gal}(k_p^{ab}/k_p^{ur}) & \rightarrow & \text{Gal}(k_p^{ab}/k_p) & \rightarrow & \text{Gal}(\hat{\mathbb{F}}_p/\mathbb{F}_p) & \rightarrow & 0.
\end{array}
\]

Corollary 2.2. There is the one-to-one correspondence between finite unramified extensions of k_p and open subgroups of finite index of k_p^\times containing U_p.

...
Now, let \(k \) be a number field. We define the idèle group \(I_k \) of \(k \) by the following restricted product of \(k_p^\times \) with respect to \(U_p \) over all primes \(p \) of \(k \):

\[
I_k := \left\{ (a_p)_p \in \prod_{p \text{ prime}} k_p^\times \; \middle| \; v_p(a_p) = 0 \text{ for almost all finite prime } p \right\}.
\]

Since, for \(a \in k^\times \), we have \(v_p(a) = 0 \) for almost all finite prime \(p \), \(k^\times \) is embedded into \(I_k \) diagonally. We let \(P_k \) be the image of \(k^\times \) in \(I_k \) and call it the group of principal idèles. We then define the idèle class group of \(k \) by

\[
C_k := I_k / k^\times.
\]

We recall that the homomorphism

\[
\varphi : I_k \to \bigoplus_{p \text{ prime}} \mathbb{Z}; \quad (a_p)_p \mapsto \prod_p p^{v_p(a_p)}
\]

induces the isomorphism

\[
I_k / (U \cdot P_k) \cong H_k
\]

where \(U = \text{Ker}(\varphi) = \prod_p U_p \), and \(H_k \) denotes the ideal class group of \(k \).

Let \(k^{ab} \) be the maximal Abelian extension of \(k \). Here is a global class field theory for \(k \) (cf. [N]). A main part of global class field theory is summarized as follows.

Theorem 2.3. (Global class field theory) There is a canonical homomorphism, called the global reciprocity map,

\[
\rho_k : C_k \to \text{Gal}(k^{ab}/k)
\]

which has the following properties:

1. For any finite Abelian extension \(F/k \), \(\rho_k \) induces the isomorphism

\[
C_k / N_{F/k}(C_F) \cong \text{Gal}(F/k)
\]

where \(N_{F/k} \) denotes the norm map on the idèle groups.

2. For a prime \(p \) of \(k \), we have the following commutative diagram

\[
\begin{array}{ccc}
 k_p^\times & \xrightarrow{\rho_{k_p}} & \text{Gal}(k_p^{ab}/k_p) \\
 \downarrow{\iota_p} & & \downarrow{\circ} \\
 C_k & \xrightarrow{\rho_k} & \text{Gal}(k^{ab}/k)
\end{array}
\]

where \(\iota_p \) is the map induced by the natural inclusion \(k_p^\times \to I_k \).

By class field theory, we obtain the following proposition.

Proposition 2.4. For a finite Abelian extension \(F/k \), let \(\rho_{F/k} : C_k \to \text{Gal}(F/k) \) be the homomorphism defined by composing \(\rho_k \) with the natural projection \(\text{Gal}(k^{ab}/k) \to \text{Gal}(F/k) \). Then we have:

1. \(p \) is completely decomposed in \(F/k \) if and only if \(\rho_{F/k} \circ \iota_p(k_p^\times) = \{1\} \);
2. \(p \) is unbranched in \(F/k \) if and only if \(\rho_{F/k} \circ \iota_p(U_p) = \{1\} \).
3. Hilbert theory for 3-manifolds

In this section, we review a Hilbert theory for 3-manifolds according to [Mo3, Ch. 5]. We also show a relation between the linking number and the decomposition law of a knot in a finite Abelian covering, which generalizes a result in [Mo3, Ch. 5].

Let \(M \) be an integral homology 3-sphere, namely \(M \) be a oriented closed 3-manifold and \(H_i(M) \cong H_i(S^3) \) for each \(i \in \mathbb{Z} \), and let \(h : N \rightarrow M \) be a finite Galois covering of connected oriented closed 3-manifolds branched over a link \(L \subset M \). Let \(X_L := M \setminus L, Y_L := N \setminus h^{-1}(L) \), and let \(n \) denote the covering degree of \(Y_L \) over \(X_L \) so that \(n = \#\text{Gal}(Y_L/X_L) = \#\text{Gal}(N/M) \). Let \(K \) be a knot in \(M \) which is a component of \(L \) or disjoint from \(L \), and suppose \(h^{-1}(K) = K_1 \cup \cdots \cup K_r \). Then \(\text{Gal}(N/M) \) acts transitively on the set of knots \(S_K := \{K_1, \ldots, K_r\} \) lying over \(K \). We call the stabilizer \(D_{K_i} \) of \(K_i \) the decomposition group of \(K_i \):

\[
D_{K_i} := \{g \in \text{Gal}(N/M) \mid g(K_i) = K_i\}.
\]

Since we obtain the bijection \(\text{Gal}(N/M)/D_{K_i} \cong S_K \) for each \(i \), \(#D_{K_i} = n/r \) is independent of \(K_i \).

Since each \(g \in \text{Gal}(N/M) \) induces a homeomorphism \(g|_{\partial V_{K_i}} : \partial V_{K_i} \rightarrow \partial V_{g(K_i)}, \) \(g|_{\partial V_{K_i}} \) is a covering transformation of \(\partial V_{K_i} \) over \(\partial V_K \), so we have following isomorphism,

\[
D_{K_i} \cong \text{Gal}(\partial V_{K_i}/\partial V_K).
\]

The Fox completion of the subcovering space of \(Y_L \) over \(X_L \) corresponding to \(D_{K_i} \) is called the decomposition covering space of \(K_i \) and this space is denoted by \(Z_{K_i} \). The map \(g \mapsto \tilde{g} := g|_{\partial V_{K_i}} \) induces the homomorphism

\[
D_{K_i} \rightarrow \text{Gal}(K_i/K)
\]

whose kernel is called the inertia group of \(K_i \) and is denoted by \(I_{K_i} \):

\[
I_{K_i} := \{g \in D_{K_i} \mid \tilde{g} = \text{id}_{K_i}\}.
\]

If \(K_j = g(K_i) \ (g \in \text{Gal}(N/M)) \), we obtain \(I_{K_j} = gI_{K_i}g^{-1} \) and, hence, \(#I_{K_i} \) is independent of \(K_i \). If \(e = e_{K_i} := #I_{K_i} \). The Fox completion of the subcovering space of \(Y_L \) over \(X_L \) corresponding to \(I_{K_i} \) is called the inertia covering space of \(K_i \) and denoted by \(T_{K_i} \):

\[
N \quad \xrightarrow{1} \quad T_{K_i} \quad \xrightarrow{\phi} \quad Z_{K_i} \quad \xrightarrow{\rho} \quad M
\]

\[
\begin{array}{ccc}
1 & \xrightarrow{e} & I_{K_i} & \xrightarrow{f} & D_{K_i} & \xrightarrow{r} & \text{Gal}(N/M).
\end{array}
\]

By the isomorphism \(D_{K_i} \cong \text{Gal}(\partial V_{K_i}/\partial V_K) \), we see that the homomorphism \(D_{K_i} \rightarrow \text{Gal}(K_i/K) \) is surjective:

\[
1 \rightarrow I_{K_i} \rightarrow D_{K_i} \rightarrow \text{Gal}(K_i/K) \rightarrow 1 \quad \text{(exact)}.
\]

Then we have the equalities

\[
#D_{K_i} = ef, \quad #I_{K_i} = e, \quad #\text{Gal}(K_i/K) =: f,
\]

where \(f \) is called the covering degree of \(K \).

Suppose \(h : N \rightarrow M \) is an Abelian covering. Then \(D_{K_i} \) and \(I_{K_i} \) are independent of \(K_i \) lying over \(K \) and so we denote them by \(D_K \) and \(I_K \) respectively.
THEOREM 3.1. [Mo3, Ch. 5] Let the notation be as above and suppose \(h : N \to M \) is an Abelian covering. Then we have the exact sequence

\[
1 \to I_K \to D_K \to \text{Gal}(K_i/K) \to 1
\]

and the equality

\[n = efr. \]

Finally, let us extend the relation between the linking number and the decomposition law of a knot in a finite Abelian covering. In this paper, a meridian of \(K \) is a closed oriented essential loop which is the boundary of a proper embedded disk \(D^2 \) in \(V_K \). A longitude of \(K \) is a closed loop on \(\partial V_K \) which intersects with a meridian at one point and is null-homologous in \(X_K \).

PROPOSITION 3.2. Let \(L := K_1 \cup \cdots \cup K_r \) be an \(r \)-component link in an integral homology 3-sphere \(M \). For given integers \(n_i \geq 2 \), let \(\psi : \pi_1(X_L) \to \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z} \) be the homomorphism sending a each meridian of \(K_i \) to \((0, \ldots, 0, \hat{i}, 0, \ldots, 0) \). Let \(Y_L \to X_L \) be the covering corresponding to \(\text{Ker}(\psi) \), whose covering degree is \(n := n_1n_2 \cdots n_r \), and let \(h : N \to M \) be its Fox completion. Then, for a knot \(K \) in \(M \) disjoint from \(L \), the covering degree of \(K \) in \(h : N \to M \) coincides with the order of \((\text{lk}(K, K_1) \mod n_1, \ldots, \text{lk}(K, K_i) \mod n_i, \ldots, \text{lk}(K, K_r) \mod n_r) \) in \(\mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z} \).

Proof. Let \(K' \) be a component of \(h^{-1}(K) \). Since \(I_{K'} = I_K = \{1\} \), by Theorem 3.1, the covering degree of \(K \) in \(h : N \to M \) is the order of a generator \(\sigma_K \) of \(\text{Gal}(K'/K) \cong D_K \) in \(\text{Gal}(N/M) \), where \(\sigma_K \) corresponds to a loop \(K \). Since \([K] \) is sent to \((\text{lk}(K, K_1) \mod n_1, \ldots, \text{lk}(K, K_r) \mod n_r) \) by the natural homomorphism \(H_1(X_L) \to \text{Gal}(N/M) \cong \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z} \) given by the Hurewicz map and Galois theory, our assertion follows.

In particular, suppose \(K \) is not a component of \(L \), so that \(K \) is unbranched in \(N \). Then the equality \(fr = n \) implies that \(K \) is decomposed completely in \(N \) (i.e. decomposed into an \(n \)-component link) if and only if for each \(i \), \(\text{lk}(K_i, K) \equiv 0 \mod n_i \).

4. Local class field theory for tori

In this section, we present a topological analogue of local class field theory for two-dimensional tori.

Let \(K \) be a fixed knot in an orientable 3-manifold and let \(V_K \) be a tubular neighborhood of \(K \). Let \(T_K = \partial V_K \) be the boundary of \(V_K \). Then \(T_K \) is a two-dimensional torus. According to (1.3), \(T_K \) and \(V_K \) are regarded as analogues of a \(p \)-adic local field \(k_p \) and the integer ring \(\mathcal{O}_p \). Let \(m \) and \(I \) be a meridian and a longitude on \(T_K \), respectively. The inclusion \(T_K \hookrightarrow V_K \) induces the homomorphism \(v_K : H_1(T_K) \to H_1(V_K) = \mathbb{Z}[I] \) whose kernel is \(\mathbb{Z}[m] \). Thus, we have the exact sequence

\[
0 \to \mathbb{Z}[m] \to H_1(T_K) \to \mathbb{Z}[I] \to 0
\]

which may be regarded as an analogue of the exact sequence (2.1).
Let T_{K}^{ab} be the maximal Abelian covering of T_K (which is the universal covering). Since $V_K \setminus K$ is homotopy equivalent to the torus T_K, (unramified) coverings of T_K correspond to ramified covering of V_K along K. Let T_K^{ur} be the maximal covering of T_K which comes from the maximal (unramified) covering of V_K. Then we have the following theorem which may be regarded as an analogy of Theorem 2.1.

THEOREM 4.1. (Local class field theory for tori) There is a canonical isomorphism

$$\rho_{T_K} : H_1(T_K) \rightarrow \text{Gal}(T_{K}^{\text{ab}} / T_K)$$

which satisfies following properties.

1. For any finite Abelian covering $h : R \rightarrow T_K$, ρ_{T_K} induces the isomorphism

 $$\rho_{R/T_K} : H_1(T_K)/h_*(H_1(R)) \cong \text{Gal}(R/T_K).$$

2. We have the following commutative diagram

 $$\begin{array}{cccccc}
 0 & \rightarrow & \mathbb{Z}[m] & \rightarrow & H_1(T_K) & \stackrel{\nu_K}{\rightarrow} & \mathbb{Z}[l] & \rightarrow & 0 \\
 | & & \downarrow \rho_{T_K}[\mathbb{Z}[m]] & & \downarrow \rho_{T_K} & & | \\
 0 & \rightarrow & \text{Gal}(T_{K}^{\text{ab}} / T_K) & \rightarrow & \text{Gal}(T_{K}^{\text{ur}} / T_K) & \rightarrow & 0
 \end{array}$$

where horizontal sequences are exact and vertical maps are all isomorphisms.

Proof. Let $\eta_{T_K} : H_1(T_K) \rightarrow \pi_1(T_K)/[\pi_1(T_K), \pi_1(T_K)]$ be the Hurewicz isomorphism, where $[\pi_1(T_K), \pi_1(T_K)]$ is commutator subgroup of $\pi_1(T_K)$. We define $\rho_{T_K} : H_1(T_K) \rightarrow \text{Gal}(T_{K}^{\text{ab}} / T_K)$ by the composite of η_{T_K} with the isomorphism $\pi_1(T_K)/[\pi_1(T_K), \pi_1(T_K)] \cong \text{Gal}(T_{K}^{\text{ab}} / T_K)$ coming from Galois theory of covering spaces.

1. Since $h : R \rightarrow T_K$ is the finite Abelian covering, R is torus. By Galois theory we have $H_1(T_K)/h_*(\pi_1(R)) \cong \text{Gal}(R/T_K)$. Since $\pi_1(T_K)$ and $\pi_1(R)$ are Abelian groups, we have $\pi_1(T_K) = H_1(T_K)$ and $\pi_1(R) = H_1(R)$. Hence, ρ_{T_K} induces the isomorphism $H_1(T_K)/h_*(H_1(R)) \cong \text{Gal}(R/T_K)$.

2. The upper horizontal exact sequence is nothing but (4.1). The lower horizontal sequence is coming from Galois theory. First, we obtain the following isomorphism:

 $$\text{Gal}(T_{K}^{\text{ur}} / T_K) \cong H_1(T_K)/h_*(H_1(T_{K}^{\text{ur}}))$$

 $$\cong (\mathbb{Z}[m] \times \mathbb{Z}[l]) / (\mathbb{Z}[m] \times 0)$$

 $$\cong \mathbb{Z}[l].$$

Then we consider following isomorphism, $\text{Gal}(T_{K}^{\text{ab}} / T_K) \cong \pi_1(T_K)/h_*(\pi_1(T_{K}^{\text{ab}}))$. Since $\pi_1(T_K)$ is Abelian group, T_K^{ab} is the universal covering. Therefore, we have $\text{Gal}(T_{K}^{\text{ab}} / T_K) \cong \pi_1(T_{K}^{\text{ur}}) = H_1(T_{K}^{\text{ur}})$. By the construction of T_{K}^{ur}, T_{K}^{ur} is homeomorphic to $S^1 \times \mathbb{R}$, whose S^1 corresponds to a meridian on T_K. Hence, $H_1(T_{K}^{\text{ur}}) \cong \mathbb{Z}[m]$. \hfill \Box

COROLLARY 4.2. There is the one-to-one correspondence between the set of finite unbranched coverings of V_K and the set of finite index subgroups of $H_1(T_K)$ containing $\mathbb{Z}[m]$.

Proof. The commutative diagram of (2) implies the corollary. \hfill \Box
Definition 4.3. Since we have \(H_1(T_K) = \mathbb{Z}[m] \times \mathbb{Z}[l] \), we can write an element \(a \in H_1(T_K) \) as \(a = (q, p) \in \mathbb{Z}^2 \) if \(a = q[m] + p[l] \). We call \(q \) the meridian component of \(a \) and \(p \) the longitude component of \(a \). The longitude component represents the value of \(v_K \), namely \(v_K(q, p) = p \).

5. Global class field theory for 3-manifolds

In this section, let \(M \) be a closed orientable 3-manifold, and for a certain set \(K \) of knots in a 3-manifold \(M \), we introduce the id` ele group and id`ele class group, and the global reciprocity homomorphism, by getting the local theory in Section 4 together over all knots in \(K \). We then establish an analogue of the isomorphism theorem in global class field theory. Now, we define a set of knots \(K \).

Definition 5.1. We call a set \(K \) of knots in \(M \) admissible, if \(K \) satisfies the following conditions:

1. for each \(K_i \in K \), there exists a tubular neighborhood \(V_{K_i} \) such that \(V_{K_i} \cap V_{K_j} = \emptyset \) if \(K_i, K_j \in K \) and \(K_i \neq K_j \);
2. \(K \) contains generators of \(H_1(M) \);
3. \#\(K \) = \#\(\mathbb{N} \).

In this paper, we fix such an admissible set \(K \) of knots in \(M \) and consider a pair \((M; K) \).

We then establish an analogue of the isomorphism theorem in global class field theory. Now, we define a set of knots \(K \).

Definition 5.2. (Id`ele group) We define the id`ele group of \((M; K) \) by

\[
I(M; K) := \{ (a_K)_{K} \mid a_K \in H_1(\partial V_K) \quad \text{for almost all } K \in K \}.
\]

Let \(\mathcal{L} = \{ L_\alpha \}_\alpha \) be a set of finite subsets of \(K \). We define the order for \(\mathcal{L} \) in the following way: for \(L_\alpha, L_\beta \in \mathcal{L}, L_\alpha \leq L_\beta \) if \(L_\alpha \subset L_\beta \). In this paper, for a finite subset \(L \subset K \), we denote by \(X_L \) the exterior space \(M \setminus L \). Then for each \(L_\alpha \leq L_\beta \), we consider the homomorphism

\[
\varphi_{\alpha\beta} : \text{Gal}(X^{ab}_{L_\beta}/X_{L_\alpha}) \to \text{Gal}(X^{ab}_{L_\alpha}/X_{L_\alpha})
\]

which is induced by natural inclusion \(t_{\alpha\beta} : X_{L_\beta} \hookrightarrow X_{L_\alpha} \).

When \(L_\alpha \leq L_\beta \leq L_\gamma \), it satisfies \(\varphi_{\alpha\gamma} = \varphi_{\alpha\beta} \circ \varphi_{\beta\gamma} \) from \(t_{\alpha\gamma} = t_{\alpha\beta} \circ t_{\beta\gamma} \). Then we define \(\text{Gal}(M; K)^{ab} \) by the inverse limit of the Galois groups \(\text{Gal}(X^{ab}_{L_\alpha}/X_{L_\alpha}) \) with respect to \(\varphi_{\alpha\beta} \):

\[
\text{Gal}(M; K)^{ab} := \lim_{\alpha} \text{Gal}(X^{ab}_{L_\alpha}/X_{L_\alpha}) := \left\{ (a_\alpha)_{\alpha} \in \prod_{L_\alpha \in \mathcal{L}} \text{Gal}(X^{ab}_{L_\alpha}/X_{L_\alpha}) \mid \varphi_{\alpha\beta}(a_\beta) = a_\alpha \right\}.
\]

This group may be regarded as an analogue of the maximal Abelian Galois group \(\text{Gal}(k^{ab}/k) \) of a number field \(k \).

Now, we are going to define an analogue of the global reciprocity homomorphism

\[
\rho_M : I(M; K) \to \text{Gal}(M; K)^{ab}
\]

as follows. First, for each \(\alpha \) and \(K \in K \), the natural inclusion \(\iota_K^{\alpha} : \partial V_K \to X_{L_\alpha} \) induces the homomorphisms \(\iota_K^{\alpha} : H_1(\partial V_K) \to H_1(X_{L_\alpha}) \) and \(g_K^{\alpha} : \text{Gal}(\partial V_K/X_{L_\alpha}) \to \text{Gal}(X^{ab}_{L_\alpha}/X_{L_\alpha}) \)
which fit in the commutative diagram

\[
\begin{array}{ccc}
H_1(\partial V_K) & \xrightarrow{\rho_{\partial V_K}} & \text{Gal}(\partial V_K^{ab} / \partial V_K) \\
\xi^\alpha_{K*} & \circlearrowleft & \eta_{X_{L*}} \\
H_1(X_{L*}) & \xrightarrow{\eta_{X_{L*}}} & \text{Gal}(X_{L*}^{ab} / X_{L*})
\end{array}
\]

where \(\eta_{X_{L*}} \) is the isomorphism by the Hurewicz map. We let

\[
\lambda^\alpha_K : H_1(\partial V_K) \to \text{Gal}(X_{L*}^{ab} / X_{L*})
\]

be the composite \(g^\alpha_K \circ \rho_{\partial V_K} = \eta_{X_{L*}} \circ l^\alpha_{K*} \) and define

\[
\psi_\alpha : I_{(M; K)} \to \text{Gal}(X_{L*}^{ab} / X_{L*})
\]

by

\[
\psi_\alpha((a_K)_K) := \sum_{K \in \mathcal{K}} \lambda^\alpha_K (a_K).
\]

Here the summation over \(\mathcal{K} \) is finite, because longitude component of \(a_K \) is zero for almost all \(K \in \mathcal{K} \) and the meridian component of \(a_K \) is zero in \(H_1(X_{L*}) \) for \(K \not\in L_\alpha \).

Finally, we define the global reciprocity homomorphism \(\rho_M : I_{(M; K)} \to \text{Gal}(M; K)^{ab} \) by

\[
\rho_M((a_K)_K) := (\psi_\alpha((a_K)_K))_\alpha,
\]

noticing \(\psi_\alpha = \varphi_{\alpha \beta} \circ \psi_\beta \), which can be checked as follows:

\[
\varphi_{\alpha \beta} \circ \psi_\beta((a_K)_K) = \varphi_{\alpha \beta} \left(\sum_{K \in \mathcal{K}} \eta_{X_{L*}} \circ l^\beta_{K*} (a_K) \right)
\]

\[
= \sum_{K \in \mathcal{K}} \eta_{X_{L*}} \circ l_{\alpha \beta*} \circ l^\beta_{K*} (a_K)
\]

\[
= \sum_{K \in \mathcal{K}} \eta_{X_{L*}} \circ l^\alpha_{K*} (a_K)
\]

\[
= \psi_\alpha((a_K)_K)
\]

where each \(\iota \) is induced by following commutative diagram:

\[
\begin{array}{ccc}
\partial V_K & \xrightarrow{\iota^\beta_K} & X_{L*} \\
\iota^\alpha_K & \xrightarrow{\iota_{\alpha \beta}} & X_{L*}
\end{array}
\]

Here we note that \(\varphi_{\alpha \beta} \circ \eta_{X_{L*}} = \eta_{X_{L*}} \circ l_{\alpha \beta*} \circ l^\beta_{K*} = \iota^\alpha_{K*} \).

We define a principal idèle group, and idèle class group of manifolds as follows.
Here, by moving knots condition: (A) F or any finite subset L distinct, K_{μ} (Very admissible set) We call an admissible set

\[\text{Definition 5.5.} \]

We note first that there are only countably many isotopy classes of links in M and that there are only countably many closed 3-manifolds. Let \mathcal{L} be the set of finite subsets of knots in M. For each $L \in \mathcal{L}$, there are only countably many covers of M branched over L, say $\mathcal{C}_L = \{ h_L : N_L \to M \}$. Choose a finite set of knots in N_L, $\{ K_{\mu}^L \mid 1 \leq \mu \leq m_{N_L} \}$, such that their homology classes \([K_{\mu}^L]\) generate $H_1(N_L)$. We then define \mathcal{K} to be the union of $h(K_{\mu}^L)$ over all $N_L \in \mathcal{C}_L$ and $L \in \mathcal{L}$:

\[\mathcal{K} := \{ h(K_{\mu}^L) \mid [K_{\mu}^L] \text{ generate } H_1(N_L), N_L \in \mathcal{C}_L, L \in \mathcal{L} \}. \]

Here, by moving knots K_{μ}^L, a little bit if necessary, we may assume that if K_{μ}^L and $K_{\nu}^{L_i}$ are distinct, $K_{\mu}^L \cap K_{\nu}^{L_i}$ are empty and that any K_{μ}^L does not intersect a branch set of N_L. Then the condition (A) is satisfied by our construction.

\[\text{Definition 5.5. (Very admissible set)} \]

We call an admissible set \mathcal{K} of knots in M very admissible if \mathcal{K} satisfies condition (A) in Lemma 5.4.

Hereafter we fix such a good admissible set \mathcal{K} of knots once and for all. So we assume that $h^{-1}(\mathcal{K})$ is an admissible set of Abelian covering space N, which is branched over $L \subset \mathcal{K}$. We set $\mathcal{K}_N := h^{-1}(\mathcal{K})$. And its order is induced by \mathcal{K}, namely if $L_{\alpha} \leq L_\beta$ in \mathcal{K}, then $h^{-1}(L_{\alpha}) \leq h^{-1}(L_\beta)$ in \mathcal{K}_N.

Next, we define the norm map $h_{N/M} : I(N;\mathcal{K}_N) \to I(M;\mathcal{K})$. Let $h^{-1}(K) = K_1 \cup K_2 \cup \cdots \cup K_r$ for each $K \in \mathcal{K}$. For a tubular neighborhood V_K of K, let V_{K_i} be a connected component of $h^{-1}(V_K)$ containing K_i. Let $h_{K_i} : H_1(\partial V_{K_i}) \to H_1(\partial V_K)$ be the homomorphism which is induced by $h_i := h|_{\partial V_{K_i}} : \partial V_{K_i} \to \partial V_K$. We then define

\[h_K : \bigoplus_{i=1}^r H_1(\partial V_{K_i}) \to H_1(\partial V_K) \text{ by } h_K((a_i)_{i=1}^r) := \sum_{i=1}^r h_{K_i}(a_i) \]

and $h_{N/M} : I(N;\mathcal{K}_N) \to I(M;\mathcal{K})$ is defined by $h_{N/M} := \prod_{K \in \mathcal{K}} h_K$. The norm map $h_{N/M}$ induces the homomorphism $\tilde{h}_{N/M} : C(N;\mathcal{K}_N) \to C(M;\mathcal{K})$. We will write $\tilde{h}_{N/M}$ simply as $h_{N/M}$ when no confusion can arise.
Remark 5.6. We note that $h_{N/M} : C_{(N; K_N)} \to C_{(M; K)}$ is well defined, because the following diagram is commutative:

$$
\begin{array}{ccc}
I_{(N; K_N)} & \xrightarrow{\rho_N} & \text{Gal}(N; K_N)_{ab} \\
\downarrow & & \downarrow \\
I_{(M; K)} & \xrightarrow{\rho_M} & \text{Gal}(M; K)_{ab}
\end{array}
$$

Next, we show an analogue of the relation between idèle class group and ideal class group in our 3-manifold context. We define the following homomorphism,

$$
\xi : I_{(M; K)} \to \bigoplus_{K \in \mathcal{K}} \mathbb{Z}
$$

by

$$
\xi((a_K)_K) := (v_K(a_K))_K.
$$

Then, we denote Ker(ξ) by U.

Proposition 5.7. Assume that a very admissible set K satisfies the following condition: for any finite subset $\{K_j\}_{j \in J}$ of \mathcal{K}, if one has $\sum_{j \in J} c_j[K_j] = 0$ in $H_1(M)$ with $c_j \in \mathbb{Z} \setminus \{0\}$, then $[K_j] = 0$ for all j. Then we have

$$
H_1(M) \cong I_{(M; K)}/(U + P_{(M; K)}).
$$

Proof. For $K \in \mathcal{K}$, let $\iota^M_K : \partial V_K \to M$ be the inclusion map and $\iota^K_{K*} : H_1(\partial V_K) \to H_1(M)$ the induced homomorphism, and define

$$
\varphi : I_{(M; K)} \to H_1(M)
$$

by

$$
\varphi((a_K)_K) := \sum_{K \in \mathcal{K}} \iota^K_{K*}(a_K).
$$

Here the summation over $K \in \mathcal{K}$ is actually a finite sum, because $v_K(a_K) = 0$ for almost all $K \in \mathcal{K}$ and a meridian of any K is null-homologous in M. It is easy to see that φ is surjective, using to the condition (2) of Definition 5.1 of \mathcal{K}. Therefore, it suffices to show $\text{Ker}(\varphi) = U + P_{(M; K)}$.

Suppose $(a_K)_K \in U + P_{(M; K)}$. Then we can write $(a_K)_K = (b_K)_K + (c_K)_K$ with $(b_K)_K \in P_{(M; K)}$ and $(c_K)_K \in U$. By Definition 5.3 of $P_{(M; K)}$, it is easy to see $\varphi((b_K)_K) = 0$, hence $(b_K)_K \in \text{Ker}(\varphi)$. As for $(c_K)_K$, we also have $\varphi((c_K)_K) = 0$, because $v_K(c_K) = 0$ for all $K \in \mathcal{K}$ and a meridian of any $K \in \mathcal{K}$ is null homologous in M. Therefore, we have $(a_K)_K \in \text{Ker}(\varphi)$.

Suppose $(a_K)_K \in \text{Ker}(\varphi)$. As in Definition 4.3, we decompose a_K to the meridian and longitude components:

$$
a_K = (q_K, p_K) = q_K[m_K] + p_K[l_K],
$$

where m_K is a meridian of K, l_K is a longitude of K, and $p_K, q_K \in \mathbb{Z}$. If $p_K = 0$ for all $K \in \mathcal{K}$, then $(a_K)_K \in U$. So we suppose there are some K, say K_1, \ldots, K_n, such that
$p_{K_1}, \ldots, p_{K_n} \neq 0$. We write

\[
\begin{aligned}
(a_K)_K &= (b_K)_K + (c_K)_K \\
(b_K)_K &= (\ldots, 0, (0, p_{K_i}), 0, \ldots, 0, (0, p_{K_n}), 0, \ldots) \\
(c_K)_K &\in U,
\end{aligned}
\]

where $0 = (0, 0)$. Then it suffices to show $(\ldots, 0, (0, p_{K_i}), 0, \ldots) \in P_{(M; K)} + U$ for each $i = 1, \ldots, n$. Since $\varphi((a_K)_K) = 0$ and $\varphi((c_K)_K) = 0$, we have

\[
0 = \varphi((b_K)_K) = \sum_{i=1}^n p_{K_i}[K_i].
\]

Since $\sum_{i=1}^n p_{K_i}[K_i] = 0$, we have $[K_i] = 0$ in $H_1(M)$ for each $i = 1, \ldots, n$ by our assumption. Therefore, there exists a surface S_i such that $\partial S_i = K_i$. If there is no $K \in K$ which intersects with S_i, then $(\ldots, 0, (0, p_{K_i}), 0, \ldots) \in P_{(M; K)}$. Suppose there is $K_{\mu} \in K$ such that K_{μ} intersects with S_i. Then let $n_{i\mu} := \text{lk}(K_i, K_{\mu})$ be the linking number of K_i and K_{μ} which can be defined by the existence of the surface S_i, and we have

\[
(\ldots, 0, (0, p_{K_i}), 0, \ldots) = (\ldots, 0, (0, p_{K_i}), 0, \ldots, 0, (-p_{K_i}n_{i\mu}, 0), 0, \ldots)
\]

\[
+ (\ldots, 0, (p_{K_i}n_{i\mu}, 0), 0, \ldots).
\]

Since the first term of the right-hand side is in $P_{(M; K)}$ and the second is in U, we obtain the claim.

COROLLARY 5.8. Let M be an integral homology sphere. Then $I_{(M; K)} = U + P_{(M; K)}$.

Proof. Since $H_1(M) = 0$, a very admissible set K of M satisfies the assumption of Proposition 5.7. Then $I_{(M; K)}/(U + P_{(M; K)}) = 0$ by Proposition 5.7.

Finally, we present our main result on global class field theory for integral homology sphere.

THEOREM 5.9. (Global class field theory over an integral homology sphere) Let M be an integral homology sphere and let K be a very admissible set of knots in M. Then, there exists a homomorphism,

\[
\rho_M : C_{(M; K)} \rightarrow \text{Gal}(M; K)^{ab}
\]

which has the following properties.

1. For any finite Abelian covering $h : N \rightarrow M$ branched over $L \in \mathcal{L}$, ρ_M induces the isomorphism,

\[
C_{(M; K)}/h_{N/M}(C_{(N; K_N)}) \cong \text{Gal}(N/M)
\]

where $h_{N/M}$ denotes the norm map on the idele class group.

2. For a knot $K \in K$, we have the following commutative diagram:

\[
\begin{array}{ccc}
H_1(\partial V_K) & \xrightarrow{\rho_K} & \text{Gal}(\partial V_K^{ab}/\partial V_K) \\
\downarrow^{i_K} & \circ & \downarrow^g_K \\
C_{(M; K)} & \xrightarrow{\rho_M} & \text{Gal}(M; K)^{ab}
\end{array}
\]
where \(\iota_K \) is the homomorphism induced by the natural inclusion \(H_1(\partial V_K) \to I_1(M;K) \).

Namely, \(\iota_K(a_K) = [(\ldots, 0, a_K, 0, \ldots)] \), and \(g_K \) is the homomorphism induced by \(g^\sigma_K \) in (5.2).

Proof. We note that a very admissible set \(\mathcal{K} \) exists by Lemma 5.4. Let \(M \setminus L = X_L \), \(N \setminus h^{-1}(L) = Y_L \), \(L = K_1 \cup \cdots \cup K_r \). Since \(h : N \to M \) is Abelian covering branched over \(L \), \(\text{Gal}(N/M) \cong H_1(X_L)/h_*(H_1(Y_L)) \).

We define \(\rho_M \) as the canonical homomorphism induced by (5.1). We note that this is well-defined by the definition of \(P(M;K) \).

(1) We have

\[
C_{(M;K)}/h_{N/M}(C(N;K_N)) = (I_{(M;K)}/P(M;K))/h_{N/M}(I(N;K_N)/P(N;K_N))
\]

\[
= I_{(M;K)}/(P(M;K) + h_{N/M}(I(N;K_N)))
\]

\[
= (P(M;K) + U)/(P(M;K) + h_{N/M}(I(N;K_N))) \quad \text{by Corollary 5.8}
\]

\[
= U/U \cap (P(M;K) + h_{N/M}(I(N;K_N))).
\]

Therefore, we need to prove \(U/U \cap (P(M;K) + h_{N/M}(I(N;K_N))) \cong \text{Gal}(N/M) \cong H_1(X_L)/h_*(H_1(Y_L)) \).

Let us define the homomorphism \(\varphi : U \to H_1(X_L)/h_*(H_1(Y_L)) \) by \(\varphi((a_K)_K) := \pi \circ \sum_{K \in \mathcal{K}} \iota_K^L(a_K) \), where the homomorphism \(\iota_K^L : H_1(T_K) \to H_1(X_L) \) is induced by the natural inclusion \(T_K \to X_L \), and \(\pi : H_1(X_L) \to H_1(X_L)/h_*(H_1(Y_L)) \) is the natural projection.

Since \(M \) is an integral homology sphere, \(H_1(X_L) \) is generated by the meridian classes of \(K_i \). Hence, \(\varphi \) is surjective by definition. Therefore, it suffices to prove \(\text{Ker}(\varphi) = U \cap (P(M;K) + h_{N/M}(I(N;K_N))) \).

Let \((a_K)_K \) be an element of \(\text{Ker}(\varphi) \), namely \(\sum_{K \in \mathcal{K}} \iota_K^L(a_K) \in h_*(H_1(Y_L)) \). We note that the longitude component of \(a_K \) is zero for each \(K \in \mathcal{K} \). For each component \(K \in \mathcal{K} \), we consider the homomorphism \(h_K : \bigoplus_{K \in \mathcal{K}} \iota_K^L(a_K) \in h_*(H_1(Y_L)) \) if \(K \) is unbranched component, the definition of unbranched covering implies \(\text{Im}(h_K) \supset \mathbb{Z}[m_K] \times 0 \ominus a_K \).

Therefore, it suffices to check that the meridian component of branched component \(K_i \) coming from \(h_{K_i} \). Since \(H_1(X_L) \) is freely generated by the meridian classes of \(K_i \), and the longitude component of \(a_{K_i} \) is zero, \(\sum_{K \in \mathcal{K}} \iota_K^L(a_K) \in h_*(H_1(Y_L)) \) implies \(\iota_{K_i}^L(a_{K_i}) \in h_*(H_1(Y_L))) \). Indeed, since \(h_*(H_1(Y_L)) = \sum_{i=1}^n n_i \mathbb{Z}[m_{K_i}] \subset H_1(X_L) = \sum_{i=1}^n \mathbb{Z}[m_{K_i}] \cong \mathbb{Z}^n \) with some \(n_i \) and \(\iota_{K_i}^L(a_{K_i}) \in \mathbb{Z}[m_{K_i}] \), the equivalence \(\sum_{i=1}^n \iota_{K_i}^L(a_{K_i}) \equiv \sum_{K \in \mathcal{K}} \iota_K^L(a_K) \equiv 0 \mod h_*(H_1(Y_L)) \) yields that \(\iota_{K_i}^L(a_{K_i}) \in n_i \mathbb{Z}[m_{K_i}] \subset h_*(H_1(Y_L)) \). Then, the following commutative diagram

\[
\begin{array}{ccc}
H_1(T_K_i) & \longrightarrow & H_1(Y_L) \\
\downarrow \iota_{K_i}^L \downarrow & & \downarrow h_* \\
H_1(X_L) & \longrightarrow & H_1(X_L)
\end{array}
\]

and the fact that \(\iota_{K_i}^L : \mathbb{Z}[m_{K_i}] \) is injective imply that \(a_{K_i} \) is an element of \(\text{Im}(h_{K_i}) \). Therefore, \((a_K)_K \) is an element of \(U \cap h_{N/M}(I(N;K_N)) \).

Let \((a_K)_K + (b_K)_K \) be an element of \(U \cap (P(M;K) + h_{N/M}(I(N;K_N))) \), where \((a_K)_K \) is an element of \(P(M;K) \), and \((b_K)_K \) is an element of \(h_{N/M}(I(N;K_N)) \). By the definition of
\[P(M;K), \sum_{K \in \mathcal{K}} \ell^a_{K}(a_K) = 0. \] Then \(\varphi((b_K)_K) = 0 \) by the definition of the norm map \(h_{N/M}. \) Hence, \((a_K)_K + (b_K)_K \in \text{Ker}(\varphi). \)

Thus, we obtain \(\text{Ker}(\varphi) = U \cap (P(M;K) + h_{N/M}(I(N;K_N))). \)

(2) Our assertion follows from
\[
g_K \circ \rho_K(a, b) = (\eta_{NL} \circ t^a_{K_s}(a, b))_a
\]
and
\[
\rho_M \circ t^a_K(a, b) = \rho_M((\ldots, 0, (a, b), 0, \ldots))
\]
\[
= \left(\sum_{K^{'} \in \mathcal{K}} \eta_{N_L} \circ t^a_{K^{'}_s}((a_K^{'})) \right)_a
\]
\[
= (\eta_{NL} \circ t^a_{K_s}(a, b))_a,
\]
where \((a_K^{'})_K^{'} = (\ldots, 0, (a, b), 0, \ldots) \).

\[\square \]

Examples 5.10. Let \(M = S^3 \), we choose a link \(L = K_1 \cup \cdots \cup K_r \in \mathcal{L} \). Let \(X_L := M \setminus L \), and let \(m_i \) be a meridian class of \(K_i \). The map sending each meridian class \(m_i \) to one defines a surjective homomorphism \(\psi : \pi_1(X_L) \rightarrow \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z} ; m_i \mapsto 1 \in \mathbb{Z}/n_i\mathbb{Z} \). For an Abelian covering of \(X_L \) corresponding to \(\text{Ker}(\psi) \), we have the Fox completion \(N \), which is an Abelian covering of \(S^3 \) branched over \(L \). Then, the Galois group \(\text{Gal}(N/S^3) \cong \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z} \). We are going to show that \(C_{S^3}^{L}(C(N;K_N)) \cong \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z} \) by the definition of idècle class group and Hilbert theory for 3-manifolds. By the above proof, it is sufficient to show that \(U/U \cap (P(S^3;K) + h(I(N;K_N))) \).

We define the homomorphism \(\varphi : U \rightarrow \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z} \) by \(\varphi((a_K)_K) := (q_{K_1}, \ldots, q_{K_r}) \), where \(q_{K_i} \) is the meridian component of \(H_1(T_{K_i}) \).

Since \(\varphi \) is surjective by definition, we prove that \(\text{Ker}(\varphi) = U \cap (P(S^3;K) + h(I(N;K_N))) \).

Let \((a_K)_K \) be an element of \(\text{Ker}(\varphi) \). Assume that \(K \) is an unbranched component of \(\mathcal{K} \), the meridian component of \(a_K \in H_1(T_{K_i}) \) is coming from a meridian component of some element of \(H_1(T_{h^{-1}(K_i)}) \). Therefore, we move on the branched component \(K_i \). We denote by \(K_i^{'} - 1 \) of the connected components of \(h^{-1}(K_i) \). The meridian component of \(q_{K_i} \) is a multiple of \(n_i \), so \(a_K \in H_1(T_{K_i}) \) is coming from \(H_1(T_{K_i^{'}}) \) by the fact that \(K_i \) has the branched index \(n_i \). Therefore, \((a_K)_K \in U \cap (0 + h(I(N;K_N))) \).

Let \((a_K)_K \) be an element of \(U \cap (P(S^3;K) + h(I(N;K_N))) \), which is written in the form
\[
(a_K)_K = (\ldots, (q_K, p_K), \ldots) + (\ldots, (q_K^{'}, -p_K), \ldots).
\]
The first term element is in \(P(S^3;K) \), and the second term element is in \(h(I(N;K_N)) \). Then we denote the first term by \((b_K)_K \) and the second term by \((c_K)_K \). Since \(c_K \in \text{Im}(h_{K_i}) \) and \(h_{K_i}(h_1(T_{K_i^{'}})) \subset n_i\mathbb{Z}[m_{K_i}] + \mathbb{Z}[l_{K_i}] \) for each connected component \(K_i^{'} \) of \(h^{-1}(K_i) \), \(q_K^{'} \) is a multiple of \(n_i \). Therefore we consider \(q_{K_i} \). We define the subset \(I := \{ i \in \{ 1, 2, \ldots, n \} \mid q_{K_i} \neq 0 \} \).

Since \((b_K)_K \in P(S^3;K)_K, \sum_{K \in \mathcal{K}} \ell^a_{K_s}(b_K) = 0 \in H_1(X_K) \) for \(L_\alpha = K_i \). Hence, for each \(i \in I, \quad q_{K_i}[m_{K_i}] = \ell^a_{K_i^{*\prime}}(b_K) = -\sum_{K \neq K_i} \ell^a_{K_s}(b_K) = -\sum_{\mu} \ell^a_{K_{i\mu}^{*\prime}}(b_{K_{i\mu}}) = -\sum_{\mu} \mu \cdot p_{K_{i\mu}} n_{i\mu}[m_{K_i}] \) for some finite subset \(\{ K_{i\mu} \}_{\mu} \subset \mathcal{K} \), where \(n_{i\mu} := \text{lk}(K_i, K_{i\mu}) \). Then \(q_{K_i} = \sum_{\mu} n_{i\mu} x_{i\mu}, \) i.e.
\[
(b_K)_K = \left(\ldots, \left(\sum_{\mu} x_{i\mu} n_{i\mu} \cdot p_{K_i} \right), \ldots, (*, -x_{i\mu}), \ldots \right)
\]
where \(x_{i\mu} = -p_{K_{i\mu}}. \)
The form of \((b_K)_K\) and the fact that \((a_K)_K = (b_K)_K + (c_K)_K \in U\) imply the form of
\((c_K)_K\), namely
\[(c_K)_K = (\ldots, (\ast, -p_K), \ldots, (\ast, x_{i\mu}), \ldots).\]

Next, we consider \(x_{i\mu}\). We denote by \(K'_\mu\) a connected component of \(h^{-1}(K_{i\mu})\). Let
\(f_{i\mu}\) be the covering degree of \(K'_\mu\) over \(K_{i\mu}\). By the Proposition 3.2, \(f_{i\mu}\) is the order of the element
\((\text{lk}(K_{i\mu}, K_1), \ldots, \text{lk}(K_{i\mu}, K_r)) \in \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}\).

Hence, \(f_{i\mu}\) is the multiple of \(n_i/d_i\), where \(d_i\) is the greatest common divisor of \(n_{i\mu}\) and \(n_i\). Therefore, \(x_{i\mu}\) is the multiple of \(n_i/d_i\). This implies that
\[q_{K_i} = \sum \mu n_{i\mu}x_{i\mu} = \sum \mu n_{i\mu}(n_i/d_i)y_{i\mu} = \sum \mu (n_{i\mu}/d_i)n_i y_{i\mu} \in n_i\mathbb{Z}.
\]

Since \(q_{K_i}\) is the multiple of \(n_i\) for each \(K_i\), \((a_K)_K\) is an element of \(K\). Thus, we obtain the isomorphism
\[C(S^3; \mathcal{K})/h_{N/S^3}(C(N; \mathcal{K}, \mathcal{N})) \cong \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}.
\]

Finally, we are going to introduce an analogue of Proposition 2.4.

Proposition 5.11. For a finite Abelian covering \(h : N \to M\) branched over \(L \in \mathcal{L}\), let \(\rho_{N/M} : \mathcal{C}_M \to \text{Gal}(N/M)\) be the homomorphism defined by composing \(\rho_M\) with the natural projection \(\text{Gal}(M; \mathcal{K})^{ab} \to \text{Gal}(N/M)\). Then we have:

1. \(K \in \mathcal{K}\) is completely decomposed in \(N\) if and only if \(\rho_{N/M} \circ \iota_K(H_1(\partial V_K)) = \{1\}\);
2. \(K \in \mathcal{K}\) is unbranched in \(N\) if and only if \(\rho_{N/M} \circ \iota_K(\mathbb{Z}[m]) = \{1\}\).

Proof. (1) Let \(K'\) be a connected component of \(h^{-1}(K)\). By Section 3, we identify with
\(\text{Gal}(\partial V_{K'}/\partial V_K)\) and the decomposition group of \(K'\). By Theorem 5.9, the following diagram is commutative:

\[
\begin{array}{ccc}
H_1(\partial V_K) & \longrightarrow & \text{Gal}(\partial V_{K'}/\partial V_K) \\
\rho_{N/M} \circ \iota_K & \downarrow \circ & \downarrow \cap \\
\text{Gal}(N/M) & \longrightarrow & \text{Gal}(N/M)
\end{array}
\]

Here, \(H_1(\partial V_K) \to \text{Gal}(\partial V_{K'}/\partial V_K)\) is surjective by Theorem 4.1. Thus, from the diagram we see \(\rho_{N/M} \circ \iota_K(H_1(\partial V_K)) = \{1\} \iff \text{Gal}(\partial V_{K'}/\partial V_K) = \{1\} \iff K\) is completely decomposed in \(N\).

(2) For the proof of the if part, \(\mathbb{Z}[m]\) is zero in \(\text{Gal}(\partial V_{K'}/\partial V_K) \cong H_1(\partial V_K)/h_\ast(\text{H}_1(\partial V_K))\) by the above diagram. This implies that \(h_\ast(\text{H}_1(\partial V_{K'}))\) is containing \(\mathbb{Z}[m]\). Therefore, \(h : V_{K'} \to V_K\) is unbranched subcovering by Corollary 4.2. Thus, \(K\) is unbranched in \(N\).

For the only if part, by Corollary 4.2, there exist a subgroup \(H \subset H_1(\partial V_K)\) such that
\(\text{Gal}(\partial V_{K'}/\partial V_K) \cong H_1(\partial V_K)/H\) and \(H\) containing \(\mathbb{Z}[m]\). By the above diagram, \(\rho_{N/M} \circ \iota_K(H) = \{1\}\). This implies that \(\rho_{N/M} \circ \iota_K(\mathbb{Z}[m]) = \{1\}\). \(\Box\)

Acknowledgements. I would like to thank my supervisor Professor Masanori Morishita for his advice and encouragement. I would also like to express my deep gratitude to my family for their support.

References

Hirofumi Niibo
Faculty of Mathematics
Kyushu University
744, Motooka, Nishi-ku
Fukuoka, 819-0395
Japan
(E-mail: h.niibo.411@s.kyushu-u.ac.jp)