DECAY ESTIMATES ON SOLUTIONS OF THE
LINEARIZED COMPRESSIBLE NAVIER–STOKES
EQUATION AROUND A PARALLEL FLOW
IN A CYLINDRICAL DOMAIN

Reika AOYAMA
(Received 19 June 2014 and revised 30 October 2014)

Abstract. This paper is concerned with the stability of a parallel flow of the compressible
Navier–Stokes equation in a cylindrical domain. It is proved that the linearized semigroup
around the parallel flow decays in the L^2-norm as a one-dimensional heat semigroup when
the Reynolds and Mach numbers are sufficiently small. The proof is given by combining the
energy method of Iooss–Padula and a variant of the Matsumura–Nishida energy method.

1. Introduction

We consider the system of equations for a barotropic motion of viscous compressible gas

$$\partial_t \rho + \text{div}(\rho v) = 0, \quad (1.1)$$

$$\rho(\partial_t v + v \cdot \nabla v) - \mu \Delta v - (\mu + \mu') \nabla \text{div } v + \nabla P(\rho) = \rho g \quad (1.2)$$

in a cylindrical domain $\Omega = D \times \mathbb{R}$:

$$\Omega = \{x = (x', x_3); \ x' = (x_1, x_2) \in D, x_3 \in \mathbb{R}\}.$$

Here D is a bounded and connected domain in \mathbb{R}^2 with a smooth boundary ∂D; $\rho = \rho(x, t)$
and $v = (v^1(x, t), v^2(x, t), v^3(x, t))$ denote the unknown density and velocity at time $t \geq 0$
and position $x \in \Omega$, respectively; $P(\rho)$ is the pressure that is a smooth function of ρ
and satisfies

$$P'(\rho_*) > 0$$

for a given positive constant ρ_*; μ and μ' are the viscosity coefficients that are assumed to be
constants satisfying

$$\mu > 0, \quad \frac{3}{2}\mu + \mu' \geq 0;$$

and g is an external force of the form $g = (g^1(x'), g^2(x'), g^3(x'))$ with g^1 and g^2 satisfying

$$(g^1(x'), g^2(x')) = (\partial_{x_1} \Phi(x'), \partial_{x_2} \Phi(x')).$$

2010 Mathematics Subject Classification: Primary 35Q30; Secondary 76N15.

Keywords: compressible Navier–Stokes equation; parallel flow; cylindrical domain; linearized
semigroup; decay estimates.
where \(\Phi \) and \(g^3 \) are given smooth functions of \(x' \). Here and in what follows \(\^T \) stands for the transposition.

The system (1.1)–(1.2) is considered under the boundary condition

\[
v|_{\partial D} = 0
\]

and the initial condition

\[
(\rho, v)|_{t=0} = (\rho_0, v_0).
\]

One can see that problem (1.1)–(1.3) has the stationary solution \(\bar{u}_s = \^T(\bar{\rho}_s, \bar{v}_s) \); \(\bar{\rho}_s \) is determined by

\[
\begin{align*}
\text{Const.} - \Phi(x') &= \int_{\bar{\rho}_s}^{\rho_0} \frac{P'(\eta)}{\eta} d\eta, \\
\int_D \bar{\rho}_s - \rho_0 dx' &= 0;
\end{align*}
\]

and \(\bar{v}_s \) takes the form

\[
\bar{v}_s = \^T(0, 0, \bar{v}_3(x')),
\]

where \(\bar{v}_3(x') \) is the solution of

\[
\begin{align*}
-\Delta' \bar{v}_3 &= \frac{1}{\mu} \bar{\rho}_s g^3, \\
\bar{v}_3|_{\partial D} &= 0.
\end{align*}
\]

Here \(\Delta' = \partial^2_{x_1} + \partial^2_{x_2} \). We are interested in the large time behavior of solutions to problem (1.1)–(1.4) when the initial value \((\rho, v)|_{t=0} = (\rho_0, v_0) \) is sufficiently close to the stationary solution \(\bar{u}_s = \^T(\bar{\rho}_s, \bar{v}_s) \). As a first step of the analysis, we study the linearized problem in this paper and establish decay estimates on solutions of the linearized equation around the parallel flow \(\bar{u}_s \).

As for the asymptotic behavior of multi-dimensional compressible Navier–Stokes equations on unbounded domains, a lot of results have been obtained through the studies on the problems about global existence, stability, convergence rates and so on; see, for example, [1, 3, 8, 12–16, 18] and references therein. Concerning the stability of parallel flows, in [9], the stability of a plane Poiseuille-type flow in an infinite layer of \(\mathbb{R}^n \) was considered under the perturbations in some \(L^2 \)-Sobolev space on the infinite layer. It was shown in [9] that the low-frequency part of the linearized semigroup behaves like a \((n-1)\)-dimensional heat kernel and the high-frequency part decays exponentially as \(t \to \infty \), provided that the Reynolds and Mach numbers are sufficiently small and the density of the parallel flow is sufficiently close to the given constant \(\rho_0 \). The nonlinear problem was studied by Kagei [7]; and it was proved that the stationary parallel flow is asymptotically stable under sufficiently small initial perturbations in some \(L^2 \)-Sobolev space. Furthermore, the asymptotic behavior of the perturbation is described by a \((n-1)\)-dimensional heat equation when \(n \geq 3 \). When \(n = 2 \), the asymptotic behavior of the perturbation is no longer described by a linear equation but by a one-dimensional viscous Burgers equation.

As for the case of the cylindrical domain \(\Omega \), Iooss and Padula [4] studied the linearized stability of a stationary parallel flow in \(\Omega \) under the perturbations periodic in \(x_3 \). It was shown in [4] that the linearized operator generates a \(C_0 \)-semigroup in \(L^2 \) on the basic periodicity cell.
under vanishing average condition for the density component. In particular, if the Reynolds number is suitably small, then the semigroup decays exponentially as time goes to infinity.

On the other hand, in [11], the stability of the rest state \(\tilde{u}_s = \tilde{\mathcal{T}}(\rho_s, 0) \) was considered under the perturbations in some \(L^2 \)-Sobolev space on \(\Omega \). It was shown in [11] that the solution of the linearized problem decays in \(L^2(\Omega) \) in the order \(r^{-1/4} \) and its asymptotic leading part is given by a solution of a one-dimensional heat equation. Furthermore, the asymptotic leading part of the perturbation is given by that for the linearized problem. (See also [5].)

The purpose of this paper is to extend the analysis for the rest state in [11] to the case of the general parallel flow in a cylindrical domain. We will establish decay estimates for the dimensional linearized problem: analysis of the nonlinear problem. To state our result more precisely, consider the non-

solutions of the linearized problem for (1.1)–(1.4), which play an important role in the

part of the perturbation is given by that for the linearized problem. (See also [9, 11]

where

\[\xi \in \mathbb{R} \] given by a solution of a one-dimensional heat equation. Furthermore, the asymptotic leading part is

defined by

\[\tilde{\mathcal{T}}(\rho_s) \]

with domain

\[D(L) = \{ u = \tilde{\mathcal{T}}(\phi, w) \in L^2(\tilde{\Omega}); \quad w \in H^1_0(\tilde{\Omega}), \quad Lu \in L^2(\tilde{\Omega}) \}, \]

where \(\tilde{\Omega}, \tilde{D}, \tilde{\rho}, \tilde{v}, \rho_s, \nu_s \) and \(\tilde{P}(\rho_s) \) are the non-dimensional form of \(\Omega, D, \rho, v, \bar{\rho}_s, \bar{v}_s \) and \(P(\bar{\rho}_s) \), respectively; \(I_3 \) denotes the \(3 \times 3 \) identity matrix; \(v, v' \) and \(\gamma \) are some positive constants. We will prove that the linearized semigroup \(e^{-tL} \) satisfies

\[
\| \partial^k_x \partial^l_v e^{-tL} u_0 \|_{L^2(\tilde{\Omega})} \leq C(t^{-1/4-l/2} \| u_0 \|_{L^1(\mathbb{R}; L^2(\tilde{\Omega}))}) + e^{-\delta t} \| u_0 \|_{H^1(\tilde{\Omega})} \quad (1.6)
\]

for \(t \geq 0 \) and \(0 \leq k + l \leq 1 \), provided that the Reynolds number \(\text{Re} = 1/\nu \) and Mach number \(\text{Ma} = 1/\gamma \) are sufficiently small and that \(\bar{\rho}_s \) is sufficiently close to \(\rho_s \).

To prove (1.6), we consider the Fourier transform of (1.5) in \(x_3 \in \mathbb{R} \) which is written as

\[
\partial_t \hat{u} + \hat{L}_\xi \hat{u} = 0, \quad \hat{u}_{|t=0} = \hat{u}_0,
\]

where \(\xi \in \mathbb{R} \) denotes the dual variable. The operator \(\hat{L}_\xi \) has different properties in the cases \(|\xi| \ll 1 \) and \(|\xi| \gg 1 \). We thus decompose the semigroup \(e^{-tL} \) into two parts: \(e^{-tL} = \mathcal{F}^{-1}(e^{-tL_\xi} \chi_{|\xi| \leq 1}) + \mathcal{F}^{-1}(e^{-tL_\xi} \chi_{|\xi| > 1}) \), where \(\mathcal{F}^{-1} \) denotes the inverse Fourier transform. As for the low-frequency part, we take a new approach. A straightforward application of the arguments in [9, 11] seems to yield a more restrictive smallness conditions for the Reynolds and Mach numbers. To overcome this, we combine the arguments in [9, 11] and the energy method in [4]. As in [9, 11], we decompose the low-frequency part of the semigroup according to the spectral properties of the linearized operator with zero frequency. The decay estimate for the \(L^2 \) norm is then established with the aid of the energy method in [4] applied to the decomposed system. Based on the decay estimate for \(L^2 \) norm, we obtain the estimate

Compressible Navier–Stokes equation 295
for the L^2 norm of the derivatives. We note that this approach also enables us to improve the decay estimate in [9, 10, Theorem 3.2] which is the one with $t^{-1/4} \|u_0\|_{L^1(\mathbb{R}; L^2(\tilde{D}))}$ in (1.6) replaced by $t^{-1/4} \|u_0\|_{L^1(\tilde{D}; H^1(\tilde{D}) \times L^2(\tilde{D}))}$. On the other hand, in the case of the high-frequency part, we employ the Fourier-transformed version of Matsumura–Nishida’s energy method as in [9, 11].

This paper is organized as follows. In Section 2 we first rewrite the problem into the system of equations in a non-dimensional form and then present the existence of a stationary solution of parallel flow type. We state our main results in Section 3. We derive the decay estimate of the low-frequency part in Section 4, and the high-frequency part in Section 5.

2. Stationary solution and formulation of the problem

We first rewrite the problem into the one in the non-dimensional form. We introduce the following non-dimensional variables:

$$x = \ell \tilde{x}, \quad v = V \tilde{v}, \quad \rho = \rho_0 \tilde{\rho}, \quad t = \frac{\ell}{V} \tilde{t},$$

$$P = \rho_0 V^2 \tilde{P}, \quad \Phi = \frac{V^2}{\ell} \tilde{\Phi}, \quad g^3 = \frac{V^2}{\ell} \tilde{g}^3.$$

$$V = \|\overline{T}_3|_{C^1(D)} = \sum_{k=0}^{3} \sup_{x' \in D} \ell^k |\partial^k \overline{T}_3(x')|, \quad \ell = \left(\int_D dx' \right)^{1/2}.$$

The problem (1.1)–(1.3) is then transformed into the following non-dimensional problem on $\tilde{\Omega} = \tilde{D} \times \mathbb{R}$:

$$\partial \tilde{\rho} + \text{div} (\tilde{\rho} \tilde{v}) = 0, \quad \tilde{t} > 0,$$

$$\tilde{P} (\partial \tilde{v} + \tilde{v} \cdot \nabla \tilde{v}) - \nu \Delta \tilde{v} - (v + v') \nabla \tilde{v} \cdot \nabla \tilde{v} + \tilde{P}'(\tilde{\rho}) \nabla \tilde{v} \tilde{\rho} = \tilde{\rho} \tilde{g},$$

$$\tilde{v}|_{\partial \tilde{D}} = 0,$$

$$\tilde{\rho}, \tilde{v}|_{\tilde{D}} = (\tilde{\rho}_0, \tilde{v}_0).$$

Here \tilde{D} is a bounded and connected domain in \mathbb{R}^2; $\tilde{g} = \tilde{T}(\partial_{\tilde{x}_1} \tilde{\Phi}, \partial_{\tilde{x}_2} \tilde{\Phi}, \tilde{g}^3)$; and v and v' are non-dimensional parameters:

$$v = \frac{\mu}{\rho_0 \ell V}, \quad v' = \frac{\mu'}{\rho_0 \ell V}.$$

We also introduce a parameter γ:

$$\gamma = \sqrt{\frac{\tilde{P}'(\tilde{\rho})}{\tilde{P}''(\tilde{\rho})}} = \sqrt{\frac{\tilde{P}'(\rho_0)}{V}}.$$

In what follows, for simplicity, we omit tilde of $\tilde{x}, \tilde{t}, \tilde{v}, \tilde{\rho}, \tilde{g}, \tilde{P}, \tilde{\Phi}, \tilde{D}$ and $\tilde{\Omega}$ and write them as $x, t, v, \rho, g, P, \Phi, D$ and Ω.

We next introduce some notation which will be used throughout the paper. For a domain X and $1 \leq p \leq \infty$ we denote by $L^p(X)$ the usual Lebesgue space on X and its norm is denoted by $\| \cdot \|_{L^p(X)}$. Let m be a non-negative integer. Here $H^m(X)$ denotes the mth-order
L^2 Sobolev space on X with norm $\| \cdot \|_{H^m(X)}$ and $C_0^m(X)$ stands for the set of all C^m functions which have compact support in X. We denote by $H_0^m(X)$ the completion of $C_0^m(X)$ in $H^m(X)$.

We simply denote by $L^p(X)$ (respectively $H^m(X)$) the set of all vector fields $w = \overline{T}(w^1, w^2, w^3)$ on X and its norm is denoted by $\| \cdot \|_{L^p(X)}$ (respectively $\| \cdot \|_{H^m(X)}$). For $u = \overline{T}(\phi, w)$ with $\phi \in H^k(X)$ and $w = \overline{T}(w^1, w^2, w^3) \in H^m(X)$, we define $\|u\|_{H^k(X) \times H^m(X)}$ by $\|u\|^2_{H^k(X) \times H^m(X)} = \|\phi\|_{H^k(X)}^2 + \|w\|_{H^m(X)}^2$.

In the case $X = \Omega$ we abbreviate $L^p(\Omega)$ (respectively $H^m(\Omega)$) as L^p (respectively H^m).

In particular, the norm $\| \cdot \|_{L^p(\Omega)} = \| \cdot \|_{L^p}$ (respectively $\| \cdot \|_{H^m}$).

We often write $x \in \Omega$ as $x = \overline{T}(x', x_3), \quad x' = \overline{T}(x_1, x_2) \in D$.

Partial derivatives of a function u in x, x', x_3 and t are denoted by $\partial_x u, \partial_{x'} u, \partial_{x_3} u$ and $\partial_t u$. We also write higher-order partial derivatives of u in x as $\partial^k_x u = (\partial^k_x u; |\alpha| = k)$.

We denote the $n \times n$ identity matrix by I_n. We define 4×4 diagonal matrices Q_0, \tilde{Q}, Q' and Q_3 by

$Q_0 = \text{diag}(1, 0, 0, 0), \quad \tilde{Q} = \text{diag}(0, 1, 1, 1), \quad Q' = \text{diag}(0, 1, 1, 0), \quad Q_3 = \text{diag}(0, 0, 0, 1)$.

We then have, for $u = \overline{T}(\phi, w)$ with $w = \overline{T}(w^1, w^2, w^3)$,

$Q_0 u = \begin{pmatrix} \phi \\ 0 \end{pmatrix}, \quad \tilde{Q} u = \begin{pmatrix} 0 \\ w \end{pmatrix}, \quad Q' u = \begin{pmatrix} 0 \\ w^1 \\ w^2 \\ 0 \end{pmatrix}, \quad Q_3 u = \begin{pmatrix} 0 \\ 0 \\ 0 \\ w^3 \end{pmatrix}.$
For a function $f = f(x_3)$, we denote its Fourier transform by \hat{f} or $\mathcal{F}[f]$:

$$\hat{f}(\xi) = \mathcal{F}[f](\xi) = \int_{\mathbb{R}} f(x_3) e^{-i\xi x_3} \, dx_3, \quad \xi \in \mathbb{R}.$$

The inverse Fourier transform is denoted by \mathcal{F}^{-1}:

$$\mathcal{F}^{-1}[f](x_3) = (2\pi)^{-1} \int_{\mathbb{R}} f(\xi) e^{i\xi x_3} \, d\xi, \quad x_3 \in \mathbb{R}.$$

Let us state the existence of a stationary solution of Poiseuille flow.

Proposition 2.1. For $\Phi \in C^3(\overline{D})$ and $g^3 \in H^3(D)$, there exists a positive constant δ_0 such that if $|\Phi|_{C^3} \leq \delta_0$, then (2.1)–(2.3) has a stationary solution $u_s = \mathcal{T}(\rho_s, v_s) \in C^3(\overline{D})$. Here ρ_s is determined by

$$\begin{cases}
\text{Const.} - \Phi(x') = \int_1^{\rho_s(x')} \frac{P'(\eta)}{\eta} \, d\eta, \\
\int_D \rho_s \, dx' = 1, \quad \rho_1 < \rho_s(x') < \rho_2 \quad (\rho_1 < 1 < \rho_2),
\end{cases}$$

and v_s is a function of the form $v_s = \mathcal{T}(0, 0, v^3_s)$ with $v^3_s = v^3_s(x')$ being the solution of

$$\begin{cases}
-\Delta' v^3_s = \frac{1}{\nu}\rho_s g^3, \\
v^3_s|_{\partial D} = 0.
\end{cases}$$

Furthermore, $u_s = \mathcal{T}(\rho_s, v_s)$ satisfies the estimates:

$$|\rho_s(x') - 1|_{C^3} \leq C |\Phi|_{C^3}(1 + |\Phi|_{C^3})^3,$$
$$|v^3_s|_{C^3} \leq C |v^3_s|_{H^5} \leq C |\Phi|_{C^3}(1 + |\Phi|_{C^3})^3 |g^3|_{H^3}.$$

Proposition 2.1 can be proved in a similar manner to the proof of [17, Lemma 2.1]. We omit the proof.

From now on we simply denote $\nu + \nu'$ by $\tilde{\nu}$:

$$\tilde{\nu} = \nu + \nu'.$$

Setting $\rho = \rho_s + \gamma^{-2} \Phi$ and $v = v_s + w$ in (2.1)–(2.4), we arrive at the initial boundary value problem for the disturbance $u = \mathcal{T}(\phi, w)$ that is written as follows:

$$\begin{align*}
\partial_t \phi + v^3_s \partial_{x_3} \phi + \gamma^2 \text{div}(\rho_s w) &= f^0(\phi, w), \\
\partial_t w - \frac{\nu}{\rho_s} \Delta w - \frac{\tilde{\nu}}{\rho_s} \nabla \text{div} w + \nabla \left(\frac{P'_{\rho_s}}{\gamma^2 \rho_s} \phi \right) + \frac{\nu}{\gamma^2 \rho_s} \Delta' v^3_s \phi e_3 + v^3_s \partial_{x_3} w + (w' \cdot \nabla' v^3_s) e_3 &= f(\phi, w), \\
w|_{\partial \Omega} &= 0, \\
(\phi, w)|_{t=0} &= (\phi_0, w_0).
\end{align*}$$

(2.5) (2.6) (2.7) (2.8)
Here \(e_3 = T(0, 0, 1) \in \mathbb{R}^3 \) and \(\nabla' = T(\partial_{x_1}, \partial_{x_2}) \);

\[
f^0(\phi, w) = -\text{div}(\phi w),
\]

\[
f(\phi, w) = -w \cdot \nabla w + \frac{v \phi}{(\phi + \gamma^2 \rho_s) \rho_s} \left(-\Delta w + \frac{1}{\gamma^2 \rho_s} \Delta' v_s \phi \right) - \frac{\tilde{v} \phi}{(\phi + \gamma^2 \rho_s) \rho_s} \nabla \text{div} w
\]

\[
+ \frac{\phi}{\gamma^2 \rho_s} \nabla \left(\frac{P'(\rho_s) \phi}{\gamma^2 \rho_s} \right) - \frac{1}{2\gamma^4 \rho_s} \nabla \left(P''(\rho_s) \phi^2 \right) + \tilde{P}_3(\rho_s, \phi, \partial_x \phi),
\]

and

\[
\tilde{P}_3(\rho_s, \phi, \partial_x \phi) = \frac{\phi^3}{\gamma^4 (\phi + \gamma^2 \rho_s) \rho_s^3} \nabla P(\rho_s) - \frac{1}{2\gamma^6 \rho_s} \nabla (\phi^3 P_3(\rho_s, \phi))
\]

\[
+ \frac{\phi}{2\gamma^6 \rho_s^2} \nabla \left(P''(\rho_s) \phi^2 + \frac{1}{\gamma^2} \phi^3 P_3(\rho_s, \phi) \right)
\]

\[
- \frac{\phi^2}{\gamma^2 (\phi + \gamma^2 \rho_s) \rho_s^3} \nabla \left(\frac{1}{\gamma^2} P'(\rho_s) \phi + \frac{1}{2\gamma^4} P''(\rho_s) \phi^2 + \frac{1}{2\gamma^6} \phi^3 P_3(\rho_s, \phi) \right),
\]

with

\[
P_3(\rho_s, \phi) = \int_0^1 (1 - \theta)^2 P'''(\rho_s + \theta \gamma^{-2} \phi) \, d\theta.
\]

Our main concern in this paper is decay estimates of solutions to the linearized problem, i.e. problem (2.5)–(2.8) with \(f^0(\phi, w) = 0 \) and \(f(\phi, w) = 0 \).

3. Main results

Let us consider the linearized problem

\[
\partial_t u + Lu = 0, \quad u = T(\phi, w), \quad w|_{\partial D} = 0, \quad u|_{t=0} = u_0.
\]

(3.1)

Here \(L \) is the operator on \(L^2(\Omega) \) defined by

\[
L = \begin{pmatrix}
\frac{\nabla \cdot \nabla v_s}{\gamma^2} & \gamma^2 \text{div}(\rho_s) \\
\nabla \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \right) & -\frac{v}{\rho_s} \Delta I_3 - \frac{v + v'}{\rho_s} \nabla \text{div} + v_s \cdot \nabla + \frac{0}{\gamma^2 \rho_s^2} \Delta' v_s \\
0 & e_3 \otimes (\nabla v_3)
\end{pmatrix}
\]

\[
\equiv L_1 + L_2
\]

with domain

\[
D(L) = \{ u = T(\phi, w) \in L^2(\Omega); \ w \in H^1_0(\Omega), \ Lu \in L^2(\Omega) \}.
\]

Here, for \(a = T(a_1, a_2, a_3) \) and \(b = T(b_1, b_2, b_3) \), we denote the \(3 \times 3 \) matrix \((a_ib_j) \) by \(a \otimes b \).

In a similar manner to that in [4], one can show that \(-L_1 \) generates a \(C_0 \)-semigroup on \(L^2(\Omega) \). Since \(||L_2u||_2 \leq C ||u||_2 \), it follows from the standard perturbation theory that \(-L \) generates a \(C_0 \)-semigroup \(e^{-tL} \) on \(L^2(\Omega) \). It is not difficult to prove that if
$u_0 \in H^1(\Omega) \times H^1_0(\Omega)$, then
\[
e^{-tL}u_0 \in C([0, T]; H^1(\Omega) \times H^1_0(\Omega)),
\]
\[
Q_0e^{-tL}u_0 \in H^1(0, T; L^2(\Omega)),
\]
\[
\hat{Q}e^{-tL}u_0 \in L^2(0, T; H^2(\Omega)) \cap H^1(0, T; L^2(\Omega))
\]
for all $T > 0$.

In what follows we set
\[
\omega = \|\rho_s - 1\|_{C^2}.
\]

The main results of this paper are stated as follows.

THEOREM 3.1. Suppose that $u_0 = \hat{\gamma}(\phi_0, w_0) \in (H^1(\Omega) \times H^1_0(\Omega)) \cap L^1(\Omega)$. There exist positive constants v_0, γ_0 and ω_0 such that if $v \geq v_0$, $\gamma^2/(2v + v') \geq \gamma_0$ and $(2v + v')\omega/v \leq \omega_0$, then the estimate
\[
\|\partial^k_x \partial^l_x e^{-tL}u_0\|_{L^2(\Omega)} \leq C(\{1 + t\}^{-1/4})\{2\|u_0\|_{L^1(\Omega)} + e^{-dt}\|u_0\|_{H^1(\Omega)}\}
\]
holds for $t \geq 0$ and $0 \leq k + l \leq 1$ with positive constants C and d.

To prove Theorem 3.1, we consider the Fourier transform of (3.1) in x_3 variable which is written as
\[
\partial_t \phi + i\xi v_3 \phi + \gamma^2\nabla' \cdot (\rho_s \hat{w}) + \gamma^2 i\xi \rho_s \hat{w}^3 = 0,
\]
\[
\partial_t \hat{w}' - \frac{\nu}{\rho_s} (\Delta' - \xi^2) \hat{w}' - \frac{\nu}{\rho_s} \nabla' \cdot \hat{w}' + \nu \nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \right) + i\xi v_3 \hat{w}' = 0,
\]
\[
\partial_t \hat{w}^3 - \frac{\nu}{\rho_s} (\Delta' - \xi^2) \hat{w}^3 - \frac{\nu}{\rho_s} i\xi (\nabla' \cdot \hat{w}^3 + i\xi \hat{w}^3) + i\xi \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \right)
\]
\[
+ i\xi v_3 \hat{w}^3 + \frac{\nu}{\gamma^2 \rho_s} \Delta' v_3 \phi + \hat{w}' \cdot \nabla' v_3 = 0,
\]
\[
\hat{w}|_{\partial D} = 0
\]
for $t > 0$, and
\[
\hat{T}(\phi, \hat{w})|_{t=0} = \hat{T}(\phi_0, \hat{w}_0) = \hat{u}_0.
\]

We thus arrive at the following problem
\[
\partial_t \hat{u} + \hat{L}_\xi \hat{u} = 0, \quad \hat{u}|_{t=0} = \hat{u}_0
\]
with a parameter $\xi \in \mathbb{R}$. Here $\hat{u} = \hat{T}(\phi(x', t), \hat{w}(x', t)) \in D(\hat{L}_\xi)$ ($x' \in D, \ t > 0$), $\hat{u}_0 \in H^1(D) \times H^1_0(D)$, and \hat{L}_ξ is the operator on $L^2(D)$ of the form
\[
\hat{L}_\xi = \hat{A}_\xi + \hat{B}_\xi + \hat{C}_0.
\]
where
\[
\hat{A}_\xi = \begin{pmatrix}
0 & 0 & 0 \\
\frac{\nu}{\rho_s} (\Delta' - |\xi|^2) I_2 - \frac{\bar{\nu}}{\rho_s} \nabla' \nabla' & -i \frac{\bar{\nu}}{\rho_s} \xi \nabla' \\
0 & -i \frac{\bar{\nu}}{\rho_s} \xi \nabla' & -\frac{\nu}{\rho_s} (\Delta' - |\xi|^2) + \frac{\bar{\nu}}{\rho_s} |\xi|^2
\end{pmatrix},
\]
\[
\hat{B}_\xi = \begin{pmatrix}
\nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \right) & i\xi v^3_s I_2 & 0 \\
\frac{P'(\rho_s)}{\gamma^2 \rho_s} & 0 & i\xi v^3_s \\
i\xi v^3_s & 0 & \nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \right)
\end{pmatrix},
\]
\[
\hat{C}_0 = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\nu \frac{\gamma^2 v^3_s}{\rho_s} & \nabla' \left(\frac{\gamma^2 v^3_s}{\rho_s} \right) & 0
\end{pmatrix},
\]
with domain of definition
\[
D(\hat{L}_\xi) = \{ \hat{u} = (\hat{\phi}, \hat{w}) \in L^2(D); \hat{w} \in H^1_0(D), \hat{L}_\xi \hat{u} \in L^2(D) \}.
\]

Note that \(D(\hat{L}_\xi) = D(\hat{L}_0)\) for all \(\xi \in \mathbb{R}\), where \(\hat{L}_0 = \hat{L}_\xi|_{\xi=0}\).

As in the case of \(L\), following [4], one can show that \(-\hat{L}_\xi\) generates a \(C_0\)-semigroup on \(L^2(D)\). Furthermore if \(\hat{u}_0 \in H^1(D) \times H^1_0(D)\), then
\[
e^{-t\hat{L}_{\xi}} \hat{u}_0 \in C([0, T]; H^1(D) \times H^1_0(D)),
\]
\[
Q_0 e^{-t\hat{L}_{\xi}} \hat{u}_0 \in H^1(0, T; H^1(D)),
\]
\[
\hat{Q} e^{-t\hat{L}_{\xi}} \hat{u}_0 \in L^2(0, T; H^2(D)) \cap H^1(0, T; L^2(D)) \tag{3.9}
\]
for any \(T > 0\).

To prove Theorem 3.1 we decompose \(e^{-tL}u_0\) in the following way. We define \(\chi_1(\xi)\) and \(\chi_\infty(\xi)\) by \(\chi_1(\xi) = 1\) if \(|\xi| \leq 1\), \(\chi_1(\xi) = 0\) if \(|\xi| > 1\), and \(\chi_\infty(\xi) = 1 - \chi_1(\xi)\).

We decompose \(e^{-tL}u_0\) as
\[
e^{-tL}u_0 = U_1(t)u_0 + U_\infty(t)u_0,
\]
where
\[
U_j(t)u_0 = \mathcal{F}^{-1}[\chi_j e^{-t\hat{L}_{\xi}} \hat{u}_0], \quad j = 1, \infty.
\]
We can then obtain the following decay estimates for \(U_1(t)u_0\) and \(U_\infty(t)u_0\).

Theorem 3.2. There exist positive constants \(\nu_0\), \(\gamma_0\), \(\sigma_0\) and \(d\) such that if \(\nu \geq \nu_0\), \(\gamma^2/(\nu + \bar{\nu}) \geq \gamma_0^2\) and \((\nu + \bar{\nu})\omega/\nu \leq \sigma_0\), then for any \(l = 0, 1, \ldots\), there exists a positive constant \(C = C(l)\) such that the estimates
\[
\|\partial_x^I U_1(t)u_0\|_{L^2} \leq C(1 + t)^{-1/4 - l/2} \|u_0\|_{L^1(\mathbb{R}; L^2(D))},
\]
\[
\|\partial_x^I \partial_x^J U_1(t)u_0\|_{L^2} \leq C((1 + t)^{-1/4 - l/2} \|u_0\|_{L^1(\mathbb{R}; L^2(D))} + e^{-dt}(\|u_0\|_{L^2} + \|\partial_x^I u_0\|_{L^2}))
\]
hold for \(t \geq 0\).
THEOREM 3.3. There exist positive constants ν_0, γ_0, ω_0 and d such that if $\nu \geq \nu_0$, $\gamma_2^2/(\nu + \tilde{\nu}) \geq \gamma_0^2$ and $\omega \leq \omega_0$, then the estimate
\[
\|U_\infty(t)u_0\|_{H^1} \leq Ce^{-dt}\|u_0\|_{H^1}
\]
holds for $t \geq 0$ with a positive constant C.

Theorem 3.1 follows from Theorems 3.2 and 3.3. In Section 4 we will prove Theorem 3.2 and in Section 5 we will give an outline of the proof of Theorem 3.3.

4. Decay estimate of the low-frequency part

In this section we give a proof of Theorem 3.2. Theorem 3.2 is a consequence of Propositions 4.12 and 4.20 below.

For simplicity we omit $\hat{\cdot}$ of \hat{u}, $\hat{\phi}$ and \hat{w} in (3.3)–(3.8).

To prove Theorem 3.2 we decompose $u(t)$ based on a spectral property of \hat{L}_ξ with $\xi = 0$, namely, \hat{L}_0.

We introduce the adjoint operator \hat{L}_0^* of \hat{L}_ξ with the weighted inner product $\langle \cdot, \cdot \rangle$. We define \hat{L}_0^* by
\[
\hat{L}_0^* = \hat{A}_0^* + \hat{B}_0^* + \hat{C}_0^*
\]
with domain of definition
\[
D(\hat{L}_0^*) = \{ u = T(\phi, w) \in L^2(D); \ w \in H_0^1(D), \ \hat{L}_0^* u \in L^2(D) \},
\]
where
\[
\hat{A}_0 = \hat{A}_\xi, \quad \hat{B}_0 = -\hat{B}_\xi
\]
and
\[
\hat{C}_0^* = \begin{pmatrix} 0 & \frac{\gamma^2 \nu \Delta' v_3}{P'(\rho)} & 0 \\ 0 & \nu' v_3^3 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]
Note that $D(\hat{L}_0) = D(\hat{L}_\xi^*)$ for any $\xi \in \mathbb{R}$. It follows that
\[
\langle \hat{A}_\xi u, v \rangle = \langle u, \hat{A}_\xi^* v \rangle = \langle u, \hat{A}_\xi v \rangle,
\]
\[
\langle \hat{B}_\xi u, v \rangle = \langle u, \hat{B}_\xi^* v \rangle = -\langle u, \hat{B}_\xi v \rangle,
\]
\[
\langle \hat{C}_0 u, v \rangle = \langle u, \hat{C}_0^* v \rangle
\]
and
\[
\langle \hat{L}_\xi u, v \rangle = \langle u, \hat{L}_\xi^* v \rangle
\]
for $u, v \in D(\hat{L}_\xi)$.

We begin with a lemma on the zero-eigenvalue of \hat{L}_0 and \hat{L}_0^*.
Lemma 4.1. (i) There exists a constant $\omega_0 > 0$ such that if $(\nu + \tilde{\nu})/\nu \leq \omega_0$, then $\lambda = 0$ is a simple eigenvalue of \hat{L}_0 and \hat{L}_0^*.

(ii) The eigenspaces for $\lambda = 0$ of \hat{L}_0 and \hat{L}_0^* are spanned by $u^{(0)}$ and $u^{(0)*}$, respectively, where

$$u^{(0)} = T(\phi^{(0)}, w^{(0)}), \quad w^{(0)} = T(0, 0, w^{(0),3})$$

and

$$u^{(0)*} = T(\phi^{(0)*}, 0).$$

Here

$$\phi^{(0)}(x') = a_0 \frac{\gamma^2 \rho_s(x')}{P'(\rho_s(x'))}, \quad a_0 = \left(\int_D \frac{\gamma^2 \rho_s(x')}{P'(\rho_s(x'))} dx' \right)^{-1};$$

and $w^{(0),3}$ is the solution of the following problem:

$$\begin{cases} -\Delta' w^{(0),3} = -\frac{1}{\gamma^2 \rho_s} \Delta' \nu^3 \phi^{(0)}, \\ w^{(0),3}|_{\partial D} = 0; \end{cases}$$

and

$$\phi^{(0)*}(x') = \frac{\gamma^2}{a_0} \phi^{(0)}(x').$$

(iii) The eigenprojections $\hat{\Pi}^{(0)}$ and $\hat{\Pi}^{(0)*}$ for $\lambda = 0$ of \hat{L}_0 and \hat{L}_0^* are given by

$$\hat{\Pi}^{(0)} u = \langle u, u^{(0)*} \rangle u^{(0)} = (Q_0 u) u^{(0)},$$

$$\hat{\Pi}^{(0)*} u = \langle u, u^{(0)} \rangle u^{(0)*}$$

for $u = T(\phi, w)$, respectively.

(iv) Let $u^{(0)}$ be written as $u^{(0)} = u^{(0)}_0 + u^{(0)}_1$, where

$$u^{(0)}_0 = T(\phi^{(0)}, 0), \quad u^{(0)}_1 = T(0, w^{(0)}).$$

Then

$$u^{(0)*} = \frac{\gamma^2}{a_0} u^{(0)}_0$$

and

$$\langle u, u^{(0)} \rangle = \frac{a_0}{\gamma^2} (\phi) + (w^3, w^{(0),3} \rho_s)$$

for $u = T(\phi, w) = T(\phi, w', w^3)$.

Remark 4.2. We have $\phi^{(0)} = O(1), a_0 = O(1)$ and $w^{(0),3} = O(1/\gamma^2)$ as $\gamma^2 \to \infty$.

Proof. Let $\hat{L}_0 u = 0$ for $u = T(\phi, w', w^3) \in D(\hat{L}_0)$. Then

$$\begin{cases}
\gamma^2 \nabla' \cdot (\rho_s w') = 0, \\
-\frac{\nu}{\rho_s} \Delta' w' - \frac{\tilde{\nu}}{\rho_s} \nabla' \nabla' \cdot w' + \nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \right) = 0, \\
-\frac{\nu}{\rho_s} \Delta' w^3 + \frac{\nu}{\gamma^2 \rho_s^{\gamma}} \Delta' \nu^3 \phi + w' \cdot \nabla' \nu^3 = 0, \\
w|_{\partial D} = 0.
\end{cases} \quad (4.1)$$
We take the weighted inner product of (4.1) with $\overline{\gamma}(\phi, w', 0)$ to get
\begin{equation*}
v' | \nabla' w' |^2 + \tilde{v} | \nabla' \cdot w' |^2 = 0.
\end{equation*}

Since $w' \in H^1_0(D)$, we have $w' = 0$. It then follows that
\begin{equation*}
\begin{cases}
\nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \right) = 0, \\
-\Delta' w^3 = -\frac{1}{\gamma^2 \rho_s} \Delta' \nu^3 \phi, \\
w^3|_{\partial D} = 0.
\end{cases}
\end{equation*}

This implies that $(P'(\rho_s)/\gamma^2 \rho_s)\phi$ is a constant since D is connected, and we conclude that $\text{Ker}(\hat{L}_0) = \text{span}\{u^{(0)}\}$. Note that $\int_D \phi^{(0)} \, dx' = 1$.

Let $\hat{L}_0 u = 0$ for $u = \overline{\gamma}(\phi, w', w^3)$. Then
\begin{equation*}
\begin{cases}
-\gamma^2 \nabla' \cdot (\rho_s w') + \frac{\gamma^2 \nu}{P'(\rho_s)} \Delta' \nu^3 w^3 = 0, \\
-\frac{\nu}{\rho_s} \Delta' w^3 - \frac{\tilde{v}}{\rho_s} \nabla' \nabla' \cdot w' - \nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \right) + w^3 \nabla' \nu^3 = 0, \\
-\frac{\nu}{\rho_s} \Delta' w^3 = 0, \\
w'|_{\partial D} = 0.
\end{cases}
\end{equation*}

The third equation, together with $w^3|_{\partial D} = 0$, implies that $w^3 = 0$ and, hence,
\begin{equation*}
\begin{cases}
-\gamma^2 \nabla' \cdot (\rho_s w') = 0, \\
-\frac{\nu}{\rho_s} \Delta' w^3 - \frac{\tilde{v}}{\rho_s} \nabla' \nabla' \cdot w' - \nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \right) = 0, \\
w'|_{\partial D} = 0.
\end{cases}
\end{equation*}

Similarly to the case of \hat{L}_0, one can show that $w' = 0$ and $(P'(\rho_s)/\gamma^2 \rho_s)\phi$ is a constant. We set $\phi^{(0)*} = (\gamma^2/\alpha_0)\phi^{(0)}(x')$. Note that $\int_D \phi^{(0)*}(\phi^{(0)*)}(P'(\rho_s)/\gamma^2 \rho_s) \, dx' = 1$. We thus proved (i), (ii) and (iii) except for the simplicity of $\lambda = 0$. The assertion (iv) can be verified by direct computations.

It remains to prove the simplicity of $\lambda = 0$. Since we have already proved that $\text{Ker}(\hat{L}_0) = \text{span}\{u^{(0)}\}$ and $\text{Ker}(\hat{L}_0^*) = \text{span}\{u^{(0)*}\}$, if we would prove the following lemma, then the proof of the simplicity of $\lambda = 0$ would be complete.

Lemma 4.3. There exists a constant $\omega_0 > 0$ such that if $(v + \tilde{v}) \omega/\nu \leq \omega_0$, then $R(\hat{L}_0)$ and $R(\hat{L}_0^*)$ are closed, and it holds that
\begin{equation*}
L^2(D) = \text{Ker}(\hat{L}_0) \oplus R(\hat{L}_0), \quad L^2(D) = \text{Ker}(\hat{L}_0^*) \oplus R(\hat{L}_0^*).
\end{equation*}

To prove Lemma 4.3, we show the following proposition.
PROPOSITION 4.4. There exists a constant \(\omega_0 > 0 \) such that if \((\nu + \tilde{\nu})\omega/\nu \leq \omega_0 \), then for any \(f = \tilde{\mathcal{L}}(f^0, g) = \tilde{\mathcal{L}}(f^0, g', g^3) \in L^2(D) \) with \(\langle f^0 \rangle = 0 \), there is a unique solution \(u = \tilde{\mathcal{L}}(\phi, w) \in D(\tilde{\mathcal{L}}_0) \) of the following problem:

\[
\begin{cases}
\tilde{\mathcal{L}}_0 u = f, \\
\langle \phi \rangle = 0.
\end{cases}
\] (4.2)

Proof. Let us prove that if \(\langle f^0 \rangle = 0 \), then (4.2) has a unique solution \(u = \tilde{T}(\phi, w) \in L^2(D) \times H^1_0(D) \) with \(\langle \phi \rangle = 0 \). The problem (4.2) is rewritten as the following system:

\[
\begin{cases}
\nabla' \cdot w' = F[w' ; f^0], \\
-\nu \Delta w' + \nabla' \phi = G[\phi, w' ; f^0, g'], \\
w'|_{\partial D} = 0, \\
\langle \phi \rangle = 0
\end{cases}
\] (4.3)

and

\[
\begin{cases}
-\nu \Delta w^3 = G^3[\phi, w' ; g^3], \\
w^3|_{\partial D} = 0.
\end{cases}
\] (4.4)

where

\[
F[w' ; f^0] = \nabla' \cdot ((1 - \rho_s)w') + \frac{1}{\gamma^2} f^0,
\]

\[
G[\phi, w' ; f^0, g'] = \tilde{\nu} \nabla' F[w' ; f^0] + \nabla' ((1 - \rho_s)\phi) + \nabla' \rho_s \phi
\]

\[
+ \rho_s \nabla' \left(\frac{1 - \frac{P'(\rho_s)}{\gamma^2 \rho_s}}{\gamma^2 \rho_s} \right) \phi + \rho_s g',
\]

\[
G^3[\phi, w' ; g^3] = -\frac{\nu}{\gamma^2 \rho_s} \Delta' v_3^3 \phi - \rho_s w' \cdot \nabla' v_3^3 + \rho_s g^3.
\]

We define a set \(\hat{X} \) by

\[
\hat{X} = \{(p, v') ; p \in L^2(D), v' = \tilde{T}(v^1, v^2) \in H^1_0(D), \langle p \rangle = 0\}
\]

with norm

\[
|(p, v')|_{\hat{X}} = |p|_2 + v|\nabla' v'|_2.
\]

We assume that \((\tilde{\phi}, \tilde{w}') \in \hat{X} \). Let us consider the following problem

\[
\begin{cases}
\nabla' \cdot w' = F[\tilde{w}' ; f^0], \\
-\nu \Delta w' + \nabla' \phi = G'[\tilde{\phi}, \tilde{w}' ; f^0, g'], \\
w'|_{\partial D} = 0.
\end{cases}
\] (4.5)

It holds that

\[
F[\tilde{w}' ; f^0] \in L^2(D), \quad \langle F[\tilde{w}' ; f^0] \rangle = 0,
\]

\[
G'[\tilde{\phi}, \tilde{w}' ; f^0, g'] \in H^{-1}(D),
\]
where $H^{-1}(D)$ denotes the dual space to $H^1_0(D)$ with norm $|\cdot|_{H^{-1}}$. In fact, we have from the Poincaré inequality that

$$|F[\tilde{w}'; f^0]|_2 \leq |\nabla' \cdot ((1 - \rho_s)\tilde{w}')|_2 + \frac{1}{\gamma^2} |f^0|_2 \leq C \left\{ \omega|\tilde{w}'|_{H^1} + \frac{1}{\gamma^2} |f^0|_2 \right\}$$

$$\leq C \left\{ \omega|\nabla'\tilde{w}'|_2 + \frac{1}{\gamma^2} |f^0|_2 \right\}.$$

Thus, we have

$$|G'[\tilde{\phi}, \tilde{w}'; f^0, g']|_{H^{-1}} \leq C \left\{ |\nabla' F[\tilde{w}'; f^0]|_{H^{-1}} + |\nabla'((1 - \rho_s)\tilde{\phi})|_{H^{-1}} \right\}$$

$$\leq C \left\{ |\tilde{\phi} + \tilde{v}|_{H^1} + |\nabla\tilde{\phi}'|_2 + \frac{1}{\gamma^2} |f^0|_2 + |g'|_2 \right\}.$$

From [19, III.1.4, Theorem 1.4.1], we see that there is a unique solution $(\phi, w') \in \tilde{X}$ of (4.5) and the following estimate holds:

$$|\phi|_2 + v|\nabla'w'|_2 \leq C \left\{ |\tilde{v}|_{H^1} + |G'[\tilde{\phi}, \tilde{w}'; f^0, g']|_{H^{-1}} \right\}$$

$$\leq C_1 \left\{ \omega(|\tilde{\phi}|_2 + (v + \tilde{v})|\nabla'\tilde{w}'|_2) + \frac{v + \tilde{v}}{\gamma^2} |f^0|_2 + |g'|_2 \right\}, \quad (4.6)$$

where C_1 is a positive constant. Let us define a map $\Gamma : \tilde{X} \to \tilde{X}$ by

$$\Gamma(\tilde{\phi}, \tilde{w}') = (\phi, w') \quad \text{for} \quad (\tilde{\phi}, \tilde{w}') \in \tilde{X},$$

where $(\phi, w') \in \tilde{X}$ is a solution of (4.5). We see from (4.6) that

$$|\Gamma(\tilde{\phi}, \tilde{w}')|_{\tilde{X}} \leq C_1 \left\{ \omega(|\tilde{\phi}|_2 + (v + \tilde{v})|\nabla'\tilde{w}'|_2) + \frac{v + \tilde{v}}{\gamma^2} |f^0|_2 + |g'|_2 \right\}.$$

Since we have the estimate

$$|\Gamma(\tilde{\phi}_1, \tilde{w}_1') - \Gamma(\tilde{\phi}_2, \tilde{w}_2')|_{\tilde{X}} \leq C_1 \omega\{|\tilde{\phi}|_2 + (v + \tilde{v})|\nabla'\tilde{w}'|_2\}$$

for $(\tilde{\phi}_1, \tilde{w}_1'), (\tilde{\phi}_2, \tilde{w}_2') \in \tilde{X}$, if we take ω sufficiently small satisfying $\omega < (1/2C_1) \min\{1, v/(v + \tilde{v})\}$, then we see that $\Gamma : \tilde{X} \to \tilde{X}$ is a contraction map. This implies that there is a unique $(\phi, w') \in \tilde{X}$ such that $\Gamma(\phi, w') = (\phi, w')$, i.e., there is a unique solution $(\phi, w') \in \tilde{X}$ of (4.3).

Furthermore, for a solution $(\phi, w') \in \tilde{X}$ of (4.3), since

$$G^3[\phi, w'; g^3] \in L^2(D),$$

there is a unique solution $w^3 \in H^1_0(D)$ of (4.4). Consequently, we have

$$\tilde{L}_0u = f \quad \text{in the sense of distribution},$$
where $f = T(f^0, g', g^3) \in L^2(D)$ with $\langle f^0 \rangle = 0$. Since $f \in L^2(D)$, it holds that $\hat{L}_0 u \in L^2(D)$. It then follows that

$$u \in D(\hat{L}_0).$$

This completes the proof. \hfill \square

Proof of Lemma 4.3. We have already proved that

$$\text{Ker}(\hat{L}_0) = \tilde{\Pi}^{(0)} L^2(D).$$

To prove $R(\hat{L}_0) = (I - \tilde{\Pi}^{(0)}) L^2(D)$, we first show that

$$u = T(\phi, w) \in (I - \tilde{\Pi}^{(0)}) L^2(D) \quad \text{if and only if} \quad \langle \phi \rangle = 0. \tag{4.7}$$

Let us prove (4.7). We can decompose $u = T(\phi, w)$ as

$$u = \langle \phi \rangle u^{(0)} + u_1.$$

Here

$$\langle \phi \rangle u^{(0)} \in \Pi^{(0)} L^2(D), \quad u_1 = T(\phi_1, w_1) \in (I - \Pi^{(0)}) L^2(D).$$

This implies that if $\langle \phi \rangle = 0$, then

$$u = \langle \phi \rangle u^{(0)} + u_1 = u \in (I - \tilde{\Pi}^{(0)}) L^2(D).$$

On the other hand, if $u = T(\phi, w) \in (I - \tilde{\Pi}^{(0)}) L^2(D)$, then there exists $\tilde{u} = T(\tilde{\phi}, \tilde{w}) \in L^2(D)$ such that

$$u = \tilde{u} - \langle \tilde{\phi} \rangle u^{(0)}.$$

It then follows that

$$\langle \phi \rangle = \langle \tilde{\phi} \rangle - \langle \tilde{\phi} \rangle = 0.$$

We thus conclude that (4.7) holds true.

We next show that $R(\hat{L}_0) = (I - \tilde{\Pi}^{(0)}) L^2(D)$. Since $\langle Q_0 \hat{L}_0 u \rangle = \langle \nabla' \cdot (\rho x w') \rangle = 0$, we see from (4.7) that $\hat{L}_0 u \in (I - \tilde{\Pi}^{(0)}) L^2(D)$ and, therefore,

$$R(\hat{L}_0) \subset (I - \Pi^{(0)}) L^2(D).$$

On the other hand, if $f = T(f^0, g', g^3) \in (I - \tilde{\Pi}^{(0)}) L^2(D)$, then it follows from (4.7) that $\langle f^0 \rangle = 0$. By Proposition 4.4, there exists a unique solution $u = T(\phi, w) \in D(\hat{L}_0)$ such that $L_0 u = f$ with $\langle \phi \rangle = 0$. This implies that $f \in R(\hat{L}_0)$ and, thus,

$$(I - \Pi^{(0)}) L^2(D) \subset R(\hat{L}_0).$$

Therefore, we see that $R(\hat{L}_0) = (I - \tilde{\Pi}^{(0)}) L^2(D)$. Consequently, we have that $R(\hat{L}_0)$ is closed and

$$L^2(D) = \text{Ker}(\hat{L}_0) \oplus R(\hat{L}_0).$$

Similarly, one can prove that $\text{Ker}(\hat{L}_0^*) = \tilde{\Pi}^{(0)*} L^2(D)$ and $R(\hat{L}_0^*) = (I - \tilde{\Pi}^{(0)*}) L^2(D)$. We thus see that $R(\hat{L}_0^*)$ is closed and

$$L^2(D) = \text{Ker}(\hat{L}_0^*) \oplus R(\hat{L}_0^*).$$

This completes the proof of Lemma 4.1. \hfill \square
We are now ready to prove Theorem 3.2. We decompose \(u(t) \) as follows
\[
\begin{align*}
 u(t) &= \sigma(t)u(0) + u_1(t), \\
 \sigma(t) &= \langle Q_0 u(t) \rangle = (u(t), u(0)^*), \\
 u_1(t) &= (I - \tilde{\Pi}(0))u(t).
\end{align*}
\]
The density component of \(u_1 \) is denoted by \(\phi_1 \) and the velocity component is denoted by \(w_1 \), namely,
\[
u_1 = T(\phi_1, w_1).
\]
Note that \(\langle \phi_1 \rangle = 0 \) and \(w_1|_{\partial D} = 0 \); the latter follows from \(u(0) \in D(\tilde{L}_0) \) which implies that \(w(0), \theta|_{\partial D} = 0 \).

Remark 4.5. (i) The boundary condition \(w_1|_{\partial D} = 0 \) implies that the Poincaré inequality holds for \(w_1 \):
\[
 |w_1|^2 \leq C |\partial x w_1|^2.
\]
(ii) The vanishing mean value condition \(\langle \phi_1 \rangle = 0 \) implies that the Poincaré inequality holds for \(\phi_1 \):
\[
 |\phi_1|^2 \leq C |\partial x \phi_1|^2.
\]
We define \(\tilde{M}_\xi \) by
\[
\tilde{M}_\xi = \tilde{L}_\xi - \tilde{L}_0 = \tilde{A}_\xi + \tilde{B}_\xi,
\]
where
\[
\begin{align*}
 \tilde{A}_\xi &= \hat{A}_\xi - \hat{A}_0 = \begin{pmatrix}
 0 & 0 & 0 \\
 -\frac{v}{\rho_s} \xi^2 I_2 & -\frac{\bar{v}}{\rho_s} i \xi \nabla' \\
 0 & \frac{\bar{v}}{\rho_s} i \xi \nabla' & \frac{v + \bar{v}}{\rho_s} \xi^2
 \end{pmatrix}, \\
 \tilde{B}_\xi &= \hat{B}_\xi - \hat{B}_0 = \begin{pmatrix}
 i \xi \bar{\rho}_s v_3 & 0 & \gamma^2 i \xi \rho_s \\
 0 & i \xi \bar{\rho}_s v_3 I_2 & 0 \\
 i \xi \frac{P'\rho_s}{\gamma^2 \rho_s} & 0 & i \xi \bar{\rho}_s^3
 \end{pmatrix}.
\end{align*}
\]
Decomposing \(u(t) \) in (3.8) as \(u(t) = \sigma(t)u(0) + u_1(t) \), we obtain
\[
 \partial_t (\sigma u(0) + u_1) + \tilde{L}_0 u_1 + \tilde{M}_\xi (\sigma u(0) + u_1) = 0.
\]
Applying \(\Pi(0) \) and \(I - \Pi(0) \) to this equation, we have
\[
\begin{align*}
 \partial_t \sigma + \langle Q_0 \tilde{M}_\xi (\sigma u(0) + u_1) \rangle &= 0, \\
 \partial_t u_1 + \tilde{L}_0 u_1 + (I - \tilde{\Pi}(0)) \tilde{M}_\xi (\sigma u(0) + u_1) &= 0.
\end{align*}
\]
Since \(\tilde{\Pi}(0) \tilde{M}_\xi u = \langle Q_0 \tilde{M}_\xi u \rangle u(0) \) and \(Q_0 \tilde{M}_\xi = Q_0 \tilde{B}_\xi \), we obtain
\[
\begin{align*}
 \partial_t \sigma + \langle Q_0 \tilde{B}_\xi (\sigma u(0) + u_1) \rangle &= 0, \\
 \partial_t u_1 + \tilde{L}_\xi u_1 + \tilde{M}_\xi (\sigma u(0) + u_1) - \langle Q_0 \tilde{B}_\xi (\sigma u(0) + u_1) \rangle u(0) &= 0, \\
 w_1|_{\partial D} &= 0, \quad \sigma(0) = \sigma_0, \quad u_1(0) = u_{1,0},
\end{align*}
\]
where σ_0 and $u_{1,0}$ are given by

$$\sigma_0 = (u_0, u^{(0)w}), \quad u_{1,0} = (I - \tilde{\Pi}^{(0)}) u_0.$$

We see from (3.9) that if $u_0 \in H^1(D) \times H^1_0(D)$, then

$$\sigma \in H^1(0, T), \quad u_1 \in C([0, T]; H^1(D) \times H^1_0(D)), \quad \phi_1 \in H^1(0, T; H^1(D)), \quad w_1 \in L^2(0, T; H^2(D)) \cap H^1(0, T; L^2(D))$$

for all $T > 0$.

Lemma 4.6. For $u_1 = \Upsilon(\phi_1, w_1)$, the following estimates hold:

(i) $|\langle Q_0 \tilde{B}_\xi u^{(0)} \rangle| \leq C|\xi|$,
(ii) $|\langle Q_0 \tilde{B}_\xi u_1 \rangle| \leq C|\xi|(|\phi_1|_2 + \gamma^2|w_1|_2)$,
(iii) $|\langle Q_0 \tilde{B}_\xi u_1 \rangle| \leq C(|\xi||\phi_1|_2 + \gamma^2|\nabla' \cdot w_1 + i\xi w_1^3|_2 + \gamma^2\omega|w_1^3|_2)$.

Lemma 4.6 can be proved by direct computations. We omit the proof.

We will employ an energy method to obtain the decay estimate on solutions of (4.8)-(4.10). We write (4.9) as

$$\begin{aligned}
\partial_t \phi_1 + i\xi v_3^3 \phi_1 + \gamma^2 \nabla' \cdot (\rho_s u_1^3) + \gamma^2 i\xi \rho_s w_1^3 \\
+ i\xi v_3^3 \sigma \phi^{(0)} + \gamma^2 i\xi \rho_s \sigma w^{(0),3} - (Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1)) \phi^{(0)} = 0, \\
\partial_t w_1' - \frac{\nu}{\rho_s} (\Delta' - \xi^2) w_1' - \frac{\tilde{v}}{\rho_s} \nabla'(\nabla' \cdot w_1' + i\xi w_1^3) + \nabla'(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi_1) + i\xi v_3^3 w_1' \\
- \frac{\tilde{v}}{\rho_s} i\xi \nabla'(\sigma w^{(0),3}) = 0, \\
\partial_t w_1^3 - \frac{\nu}{\rho_s} (\Delta' - \xi^2) w_1^3 - \frac{\tilde{v} \xi}{\rho_s} \nabla'(\nabla' \cdot w_1^3 + i\xi w_1^3) + i\xi \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi_1\right) + i\xi v_3^3 w_1^3 \\
+ \frac{\nu}{\gamma^2 \rho_s^2} \Delta' v_3^3 \phi_1 + w_1' \cdot \nabla' v_3^3 + \frac{\tilde{v}}{\rho_s} \xi \sigma w^{(0),3} + i\xi \alpha_0 \sigma \\
+ i\xi v_3^3 \sigma w^{(0),3} - (Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1)) w^{(0),3} = 0.
\end{aligned}$$

(4.11)

Before proceeding further we introduce some notation. For $u = \Upsilon(\phi, w)$ we define $E_0[u]$ by

$$E_0[u] = \frac{1}{\gamma^2} \left| \sqrt{\frac{P'(\rho_s)}{\gamma^2 \rho_s}} \phi \right|^2 + \left| \sqrt{\rho_s} w_1^2 \right|^2.$$

For $w = \Upsilon(w', w^3)$ with $w' = \Upsilon(w^1, w^2)$ we define $\tilde{D}_\xi[w]$ by

$$\tilde{D}_\xi[w] = \nu (|\nabla' w_1^2|_2 + |\xi|^2 w_1^2) + \tilde{v} |\nabla' \cdot w' + i\xi w_1^3|_2^2.$$

For ϕ we define $\hat{\phi}$ by

$$\hat{\phi} = \partial_t \phi + i\xi v_3^3 \phi.$$
PROPOSITION 4.7. There exist constants $\nu_0 > 0$ and $\omega_0 > 0$ such that if $\nu \geq \nu_0$ and $(\nu + \bar{\nu})\omega/\nu \leq \omega_0$, then the following estimates hold:

\[
\frac{1}{2} \frac{d}{dt} \left(\frac{\alpha_0}{\nu^2} |\sigma|^2 + E_0[u_1] \right) + \frac{1}{2} \hat{D}_\xi [w_1] \leq C \left\{ \left(\frac{1}{\nu^2} + \frac{\nu + \bar{\nu}}{\nu^4} \right) |\xi|^2 |\sigma|^2 + \left(\frac{1}{\nu^2} + \frac{\nu}{\nu^4} \right) |\phi_1|^2 \right\},
\]

(4.12)

\[
\nu + \bar{\nu} |\phi_1|^2 \leq C \left\{ \nu + \bar{\nu} |\xi|^2 |\sigma|^2 + \nu + \bar{\nu} |\xi|^2 |\phi_1|^2 + \left(1 + \frac{\nu + \bar{\nu}}{\nu} \omega^2 \right) \hat{D}_\xi [w_1] \right\}.
\]

(4.13)

Proof. Multiplying (4.8) by ν and taking real part of the resulting equation, we have

\[
\frac{1}{2} \frac{d}{dt} |\sigma|^2 + \text{Re}\{\langle Q_0 \hat{B}_\xi (\sigma u^{(0)} + u_1) \rangle\nu \} = 0.
\]

(4.14)

Since $\hat{B}_\xi^* = -\hat{B}_\xi$ and $u^{(0)} = (\nu^2/\alpha_0)u_0^{(0)}$, we see that

\[
\langle Q_0 \hat{B}_\xi u_1 \rangle\nu = \langle \hat{B}_\xi u_1, \sigma u^{(0)*} \rangle
\]

\[
= - \langle u_1, \hat{B}_\xi (\sigma u^{(0)*}) \rangle
\]

\[
= - \nu^2 \langle u_1, \hat{B}_\xi (\sigma u_0^{(0)}) \rangle,
\]

(4.15)

where $u_0^{(0)} = \nu(\phi^{(0)}, 0)$. On the other hand, since

\[
\langle Q_0 \hat{B}_\xi (\sigma u^{(0)}) \rangle\nu = i \xi |\sigma|^2 \{ (\nu^2 \phi_1) + (\nu^2 \rho_1 w_1^3) \},
\]

we have

\[
\text{Re}\{\langle Q_0 \hat{B}_\xi (\sigma u^{(0)}) \rangle\nu \} = 0.
\]

(4.16)

We thus obtain from (4.14)–(4.16) that

\[
\frac{1}{2} \frac{d}{dt} |\sigma|^2 - \frac{\nu^2}{\alpha_0} \text{Re}\{u_1, \hat{B}_\xi (\sigma u_0^{(0)}) \} = 0.
\]

(4.17)

We next take the weighted inner product of (4.11) with u_1. The real part of the resulting equation then gives

\[
\frac{1}{2} \frac{d}{dt} E_0[u_1] + \text{Re}\{\hat{L}_0 u_1, u_1 \} + \text{Re}\{\hat{M}_\xi (\sigma u^{(0)} + u_1), u_1 \}
\]

\[
- \text{Re}\{\langle Q_0 \hat{B}_\xi (\sigma u^{(0)} + u_1) \rangle\langle u^{(0)}, u_1 \} = 0.
\]

(4.18)

Since $\hat{B}_\xi^* = -\hat{B}_\xi$, we see that $\text{Re}\{\hat{B}_\xi u_1, u_1 \} = 0$. It then follows that

\[
\text{Re}\{\hat{L}_0 u_1, u_1 \} + \text{Re}\{\hat{M}_\xi (\sigma u^{(0)} + u_1), u_1 \}
\]

\[
= \text{Re}\{\hat{C}_0 u_1, u_1 \} + \text{Re}\{\hat{A}_\xi (\sigma u^{(0)}), u_1 \} + \text{Re}\{\hat{B}_\xi (\sigma u^{(0)}), u_1 \}
\]

\[
= \text{Re}\{\hat{C}_0 u_1, u_1 \} + \hat{D}_\xi [w_1] + \text{Re}\{\hat{A}_\xi (\sigma u^{(0)}), u_1 \} + \text{Re}\{\hat{B}_\xi (\sigma u^{(0)}), u_1 \}.
\]

This, together with (4.18), gives

\[
\frac{1}{2} \frac{d}{dt} E_0[u_1] + \hat{D}_\xi [w_1] + \text{Re}\{\hat{C}_0 u_1, u_1 \} + \text{Re}\{\hat{A}_\xi (\sigma u^{(0)}), u_1 \}
\]

\[
+ \text{Re}\{\hat{B}_\xi (\sigma u^{(0)}), u_1 \} - \text{Re}\{\langle Q_0 \hat{B}_\xi (\sigma u^{(0)} + u_1) \rangle\langle u^{(0)}, u_1 \} = 0.
\]

(4.19)
We add \((\alpha_0/\nu^2) \times (4.17)\) to (4.19), to obtain
\[
\frac{1}{2} \frac{d}{dt} \left(\frac{\alpha_0}{\nu^2} |\sigma|^2 + E_0[u_1] \right) + \tilde{D}_\xi [w_1] + \text{Re} \langle \tilde{C}_0 u_1, u_1 \rangle + \text{Re} \langle \tilde{A}_\xi (\sigma u^{(0)}), u_1 \rangle \\
+ \text{Re} \langle \tilde{B}_\xi (\sigma u^{(0)}), u_1 \rangle - \text{Re} \langle \langle Q_0 \tilde{B}_\xi (\sigma u^{(0)}) + u_1 \rangle \langle u^{(0)}, u_1 \rangle \rangle = 0,
\]
where \(u^{(0)}_1 = \tilde{\tau}(0, w^{(0)})\). Here we used the equation
\[- \text{Re} \langle u_1, \tilde{B}_\xi (\sigma u^{(0)}) \rangle + \text{Re} \langle \tilde{B}_\xi (\sigma u^{(0)}), u_1 \rangle = \text{Re} \langle \tilde{B}_\xi (\sigma u^{(0)}), u_1 \rangle.
\]
By the Poincaré inequality we have
\[
|\text{Re} \langle \tilde{A}_\xi (\sigma u^{(0)}), u_1 \rangle| \leq C \left(\frac{\nu}{\nu^2} |\xi|^2 |\sigma||w_1^3|_2 + \frac{\nu}{\nu^2} |\xi||\sigma||\nabla' \cdot w' + i\xi w_1^3|_2 \right)
\]
\[
\leq \frac{1}{8} \tilde{D}_\xi [w_1] + C \frac{\nu + \tilde{\nu}}{\nu^4} |\xi|^2 |\sigma|^2,
\]
\[
|\text{Re} \langle \tilde{B}_\xi (\sigma u^{(0)}), u_1 \rangle| \leq C |\xi| |\sigma| \left(\frac{1}{\nu^2} |\phi_1|_2 + \frac{1}{\nu^2} |w_1^3|_2 \right)
\]
\[
\leq C \left(\frac{1}{\nu^2} + \frac{1}{\nu \nu^2} \right) |\xi|^2 |\sigma|^2 + \frac{1}{\nu^2} |\phi_1|_2^2 + \frac{1}{\nu^2} \tilde{D}_\xi [w_1].
\]
Since \(\langle \phi_1 \rangle = 0\), it holds that
\[
|\langle u^{(0)}, u_1 \rangle| \leq C \frac{1}{\nu^2} |w_1^3|_2.
\]
Applying Lemma 4.6 and the Poincaré and Hölder inequalities, we thus have the following estimates:
\[
|\text{Re} \langle \langle Q_0 \tilde{B}_\xi (\sigma u^{(0)}) + u_1 \rangle \langle u^{(0)}, u_1 \rangle \rangle| \leq C |\xi| |(|\sigma| + |\phi_1|_2 + \nu^2 |w_1^3|_2) \frac{1}{\nu^2} |w_1^3|_2
\]
\[
\leq \frac{1}{8} \tilde{D}_\xi [w_1]
\]
\[
+ C \left(\frac{1}{\nu \nu^4} |\xi|^2 |\sigma|^2 + \frac{1}{\nu \nu^4} |\phi_1|_2^2 + \frac{1}{\nu} \tilde{D}_\xi [w_1] \right).
\]
\[
|\text{Re} \langle \tilde{C}_0 u_1, u_1 \rangle| \leq C \left(\frac{\nu}{\nu^4} |\phi_1|_2^2 + \frac{1}{\nu} \tilde{D}_\xi [w_1] \right).
\]
Therefore, we find that there exists a constant \(\nu_0 > 0\) such that if \(\nu \geq \nu_0\), then
\[
\frac{1}{2} \frac{d}{dt} \left(\frac{\alpha_0}{\nu^2} |\sigma|^2 + E_0[u_1] \right) + \frac{1}{2} \tilde{D}_\xi [w_1] \leq C \left(\left(\frac{1}{\nu^2} + \frac{\nu + \tilde{\nu}}{\nu^4} \right) |\xi|^2 |\sigma|^2 + \left(\frac{1}{\nu^2} + \frac{\nu + \tilde{\nu}}{\nu^4} \right) |\phi_1|_2^2 \right).
\]

We next estimate \(\dot{\phi}_1\). By the first equation of (4.11) it holds that
\[
\frac{1}{\nu^2} \dot{\phi}_1 = - (\nabla' \cdot (\rho_s w'_1) + i\xi \rho_s w_1^3)
\]
\[
- \frac{1}{\nu^2} (i\xi \nu^2 \sigma \phi^{(0)} + \gamma^2 i\xi \rho_s \sigma w^{(0),3} - \langle Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1) \rangle).
\]
We thus obtain
\[\frac{1}{\gamma^4} |\dot{\phi}_1|^2 \leq C \left\{ \frac{1}{\gamma^4} |\xi|^2 |\sigma|^2 + \frac{1}{\gamma^4} |\xi|^2 |\phi_1|^2 + \left(\frac{1}{v + \tilde{v}} + \frac{\omega^2}{v} \right) \tilde{D}_\xi [w_1] \right\}. \]

Multiplying by \(v + \tilde{v} \) to both sides, we have the desired estimate. This completes the proof. □

Let us estimate \(|\phi_1|^2\). We first introduce the Bogovskiĭ lemma.

Proposition 4.8. Let \(\dot{L}^2(D) \) be defined by
\[\dot{L}^2(D) = \{ f \in L^2(D) : \langle f \rangle = 0 \}. \]
There exists a bounded operator \(B : \dot{L}^2(D) \rightarrow H^1_0(D) \) such that
\[-\nabla' \cdot B f = f, \]
\[|\nabla' B f|_2 \leq C |f|_2 \]
for any \(f \in \dot{L}^2(D) \).

Proof. See, for example, [2, III.3, Theorem 3.2]. □

The proof of the following proposition is based on the argument in [4].

Proposition 4.9. There exist constants \(v_0 > 0 \) and \(\omega_0 > 0 \) such that if \(v \geq v_0, \gamma \geq 1 \) and \((v + \tilde{v})\omega/v \leq \omega_0\), then the following estimates hold:
\[\frac{d}{dt} J_0[u_1] + \frac{1}{2} \frac{1}{v + \tilde{v}} |\phi_1|^2 \leq C \left\{ \left(\frac{\gamma^2}{v(v + \tilde{v})} + 1 \right) \tilde{D}_\xi [w_1] + \frac{v}{v + \tilde{v}} |\xi|^2 \tilde{D}_\xi [w_1] \right\}, \]
\[|J_0[u_1]| \leq C \left\{ \frac{\gamma^2}{v(v + \tilde{v})} |w_1|^2 + \frac{v}{\gamma^2(v + \tilde{v})} |\phi_1|^2 \right\}, \]
where
\[J_0[u_1] = \frac{1}{v + \tilde{v}} \text{Re}(w'_1, \rho_s \psi') \]
with \(\psi' = B\phi_1 \).

Proof. Set \(\psi' = B\phi_1 \). Taking the inner product of (4.11) with \(\rho_s \psi' \), we get
\[\text{Re}(\partial_t w'_1, \rho_s \psi') + \text{Re} \left(\nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi_1 \right), \rho_s \psi' \right) = \text{Re} I, \]
where
\[I = -v(\nabla' w'_1, \nabla' \psi') - v\xi^2 (w'_1, \psi') + \nabla' \cdot w'_1, \phi_1) + \tilde{v} i \xi (w_3, \phi_1) \]
\[- i \xi (\rho_s v_s^2 w'_1, \psi') + \tilde{v} i \xi (\sigma w^{(0)}, \phi_1). \]

Let us estimate the first term of the left-hand side of (4.22). It holds that
\[\text{Re}(\partial_t w'_1, \rho_s \psi') = \frac{d}{dt} \text{Re}(w'_1, \rho_s \psi') - \text{Re}(w'_1, \rho_s \partial_t \psi'). \]
Since
\[-\nabla' \cdot \partial_t \psi = \partial_t \phi_1\]
and
\[\partial_t \phi_1 = -\{i \xi v_3 \phi_1 + \gamma^2 \nabla' \cdot (\rho_s w'_1) + i \xi \gamma^2 \rho_s w_3^1\]
\[+ i \xi v_3^3 \sigma \phi(0) + \gamma^2 i \xi \rho_s \sigma w(0)\}
we obtain
\[|\text{Re}(w'_1, \rho_s \partial_t \psi')| \leq C |w'_1|_2 |\partial_t \psi'|_2\]
\[\leq C |w'_1|_2 ||\phi_1|_2 + \gamma^2 |\nabla' \cdot w'_1|_2 + \gamma^2 |\xi|_2 |w_3^1|_2 + ||\sigma||\]
\[\leq \frac{1}{8} |\phi_1|_2^2 + C \left\{ \left(\gamma^2 + \frac{\gamma^2}{v + \bar{v}} \right) |w_1|_2^2 + (1 + \gamma^2) |\xi|_2 |w_1|_2 + \gamma^2 |\nabla' \cdot w'_1|_2^2 + \gamma^2 |\xi|_2 |\sigma||\right\} \]
\[\leq \frac{1}{8} |\phi_1|_2^2 + C \left\{ \left(\frac{1}{v} + \frac{\gamma^2}{v} + \frac{\gamma^2}{v(v + \bar{v})} \right) \widetilde{D}_{\xi}[\psi_1] + \frac{v + \bar{v}}{\gamma^2} |\xi|_2 |\sigma||\right\} \]
We next estimate the second term of the left-hand side of (4.22). There exists \(\omega_0 > 0\) such that if \(\omega \leq \omega_0\), then it holds that
\[\text{Re} \left(\nabla' \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi_1 \right), \rho_s \psi' \right) = \left| \text{Re} \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi_1 \right) \right|_2^2 - \text{Re} \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi_1, (\nabla' \rho_s) \cdot \psi' \right) \]
\[\geq C (1 - \omega) \left| \text{Re} \left(\frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi_1 \right) \right|_2^2 \]
\[\geq \frac{3}{4} |\phi_1|_2^2.\]
As for \(I\), we have
\[|I| \leq \frac{1}{8} |\phi_1|_2^2 + C \left\{ \left(v + \frac{\bar{v}^2}{v + \bar{v}} + \frac{1}{v} \right) \widetilde{D}_{\xi}[\psi_1] + v |\xi|^2 \widetilde{D}_{\xi}[\psi_1] + \frac{\bar{v}^2}{\gamma^4} |\xi|^2 |\sigma||\right\} \]
Therefore, it holds that
\[\frac{d}{dt} \text{Re}(w'_1, \rho_s \psi') + \frac{1}{2} |\phi_1|_2^2 \leq C \left\{ \left(\frac{1}{v} + \frac{\gamma^2}{v} + \frac{\gamma^2}{v(v + \bar{v})} + v + \frac{\bar{v}^2}{v + \bar{v}} \right) \widetilde{D}_{\xi}[\psi_1] \right\}
\[+ v |\xi|^2 \widetilde{D}_{\xi}[\psi_1] + \left(\frac{v + \bar{v}}{\gamma^2} + \frac{(v + \bar{v})^2}{\gamma^4} \right) |\xi|^2 |\sigma||\right\} \]
Multiplying both sides of this inequality by \(1/(v + \bar{v})\), we have the desired estimate. This completes the proof.

We next derive the estimate for \(\sigma\). We introduce a notation. Let us define \(J_1[u]\) by
\[J_1[u] = \text{Re} \left\{ i \xi \frac{1}{v + \bar{v}} (\rho_s (A + |\xi|^2)^{-1} \rho_s w^3_1) \sigma \right\} \]
for \(u = \sigma u^{(0)} + u_1 \) with \(u_1 = \gamma (\phi_1, w_{1}^{1}, w_{1}^{2}, w_{1}^{3}) \). Here \(A \) is an operator on \(L^2(D) \) defined by
\[
A \varphi = -\Delta' \varphi \quad \text{for} \quad \varphi \in D(A) = H^2(D) \cap H^1_0(D).
\]

Proposition 4.10. There exist constants \(v_0 > 0, \gamma_0 > 0, \omega_0 > 0 \) and \(\tilde{\alpha}_0 > 0 \) such that if \(v \geq v_0, \gamma^2/(v + \tilde{v}) \geq \gamma_0^2 \) and \((v + \tilde{v})\omega/v \leq \omega_0\), then the following estimates hold:
\[
\frac{1}{2} \frac{d}{dt} \left(\frac{v}{(v + \tilde{v})\gamma^2} |\sigma|^2 + J_1[u] \right) + \frac{1}{2} \frac{\tilde{\alpha}_0}{v + \tilde{v}} |\xi|^2 |\sigma|^2 \\
\leq C \left\{ \frac{v}{(v + \tilde{v})\gamma^2} |\phi_1|^2 + \frac{1}{v + \tilde{v}} |\xi|^2 |\phi_1|^2 + \frac{v^2}{(v + \tilde{v})\gamma^4} \max\{1, |\xi|^2\} |\xi|^2 |\phi_1|^2 \\
+ \frac{\gamma^2}{(v + \tilde{v})v} \tilde{D}_\xi [w_1] + \left(\frac{\tilde{v}^2}{(v + \tilde{v})^2} + \frac{1}{v} \right) |\xi|^2 \tilde{D}_\xi [w_1] \right\},
\]
\[
|J_1[u]| \leq \frac{1}{\gamma^2} |\sigma|^2 + C \frac{\gamma^2}{(v + \tilde{v})^2} |w_1|^2,
\]
where \(\tilde{\alpha}_0 \) is a positive constant.

Proof. Since
\[
(Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1)) = (Q_0 \tilde{B}_\xi u^{(0)}) \sigma + \gamma^2 i\xi \langle \rho_s w_{1}^{3} \rangle + i\xi \langle v_{3}^{3} \phi_1 \rangle,
\]
equation (4.8) is written as
\[
\partial_t \sigma + (Q_0 \tilde{B}_\xi u^{(0)}) \sigma + \gamma^2 i\xi \langle \rho_s w_{1}^{3} \rangle = -i\xi \langle v_{3}^{3} \phi_1 \rangle.
\]
Set
\[
\tilde{B}_\xi^3 = \begin{pmatrix} i\xi \frac{P' (\rho_s)}{\gamma^2 \rho_s} & 0 \\ i\xi v_{3}^{3} & 0 \end{pmatrix}.
\]
Since \((P' (\rho_s)/\gamma^2 \rho_s) \phi^{(0)} = \alpha_0\), we have
\[
\tilde{B}_\xi^3 u_{1}^{(0)} = i\xi \frac{P' (\rho_s)}{\gamma^2 \rho_s} \sigma \phi^{(0)} = i\xi \alpha_0.
\]
We thus obtain
\[
-(\Delta' - \xi^2) w_{1}^{3} = -\frac{\alpha_0}{v} i\xi \sigma \rho_s - \frac{\rho_s}{v} \partial_t w_{1}^{3} + I_{1}^{3}.
\]
Here
\[
I_{1}^{3} = -\frac{\rho_s}{v} \left\{ \tilde{C}_0^3 u_1 - \frac{\tilde{v}}{\rho_s} i\xi (\nabla' \cdot w_{1}^{3} + i\xi w_{1}^{3}) + \tilde{B}_\xi^3 u_1 + \sigma \tilde{M}_\xi^3 u_{1}^{(0)} - (Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1)) w^{(0),3} \right\},
\]
where \(\tilde{C}_0^3 \) and \(\tilde{M}_\xi^3 \) are \(1 \times 4 \) matrix operators defined by
\[
\tilde{M}_\xi^3 = \begin{pmatrix} 0 & 0 & \frac{v + \tilde{v}}{\rho_s} \xi^2 \\ \frac{v + \tilde{v}}{\rho_s} \xi^2 & 0 \end{pmatrix} + \tilde{B}_\xi^3, \quad \tilde{C}_0^3 = \begin{pmatrix} \frac{v}{\gamma^2 \rho_s} \Delta' v_{3}^{3} & \frac{v}{\rho_s} (\nabla' v_{3}^{3} - i\xi v_{3}^{3}) \\ 0 & 0 \end{pmatrix}.
\]
It then follows from (4.25) that
\[
w_{1}^{3} = -\frac{\alpha_0}{v} i\xi \sigma (A + |\xi|^2)^{-1} \rho_s - (A + |\xi|^2)^{-1} \left[\frac{\rho_s}{v} \partial_t w_{1}^{3} \right] + (A + |\xi|^2)^{-1} I_{1}^{3}.
\]
Substituting this into (4.24) we obtain
\[\partial_t \sigma + \langle Q_0 \tilde{B}_\xi u(0) \rangle \sigma + \frac{\alpha_0 \gamma^2}{v} \langle \rho_s (A + |\xi|^2)^{-1} \rho_s \rangle |\xi|^2 \sigma = I_1^0 - I_2^0, \]
(4.26)
where
\[I_1^0 = - \gamma^2 i \xi (\rho_s (A + |\xi|^2)^{-1} I_1^\gamma) - i \xi \langle v_3^3 \phi_1 \rangle, \]
\[I_2^0 = \gamma^2 i \xi \left(\rho_s (A + |\xi|^2)^{-1} \left[\frac{\rho_s}{v} \partial_t w_1^3 \right] \right). \]

Let us calculate \((4.26) \times \sigma\) and take its real part. Since \(\text{Re} \{ \langle Q_0 \tilde{B}_\xi u(0) \rangle \} = 0\), we have
\[\frac{1}{2} \frac{d}{dt} |\sigma|^2 + \frac{\alpha_0 \gamma^2}{v} \langle \rho_s (A + |\xi|^2)^{-1} \rho_s \rangle |\xi|^2 |\sigma|^2 = \text{Re} \{ I_1^0 \sigma \} + \text{Re} \{ I_2^0 \sigma \}. \]
(4.27)
Since \(\langle \rho_s (A + |\xi|^2)^{-1} \rho_s \rangle = \langle (A + |\xi|^2)^{-1/2} \rho_s \rangle^2\) is continuous in \(\xi\) and is positive for all \(\xi \in \mathbb{R}\), we see that there exists a positive constant \(\tilde{a}_0 = O(|\xi|^{-2})\) as \(|\xi| \to \infty\) such that
\[\frac{\alpha_0 \gamma^2}{v} \langle \rho_s (A + |\xi|^2)^{-1} \rho_s \rangle \geq \frac{\tilde{a}_0 \gamma^2}{v} \]
for all \(\xi \in \mathbb{R}\) with \(|\xi| \leq R\). We thus obtain
\[\frac{1}{2} \frac{d}{dt} |\sigma|^2 + \frac{\tilde{a}_0 \gamma^2}{v} |\xi|^2 |\sigma|^2 \leq \text{Re} \{ I_1^0 \sigma \} + \text{Re} \{ I_2^0 \sigma \}. \]
(4.27)
As for the right-hand side of (4.27), we see from
\[|(A + |\xi|^2)^{-1} p|^2 \leq \frac{C}{|\xi|^2 + 1} |p|^2 \]
that
\[|\text{Re} \{ I_1^0 \sigma \}| \leq \tilde{a}_0 \gamma^2 \left(\frac{1}{10} + \frac{C}{\gamma^2} \right) \min \{ 1, |\xi|^2 \} |\sigma|^2 \]
\[+ C \left\{ \phi_1 |\xi|^2 \frac{\gamma^2}{v} + \frac{\gamma^2}{v^2} \right\} |\xi|^2 |\phi_1|^2 \frac{|\xi|^2 |\phi_1|^2}{v^2} \max \{ 1, |\xi|^2 \} |\xi|^2 |\phi_1|^2 \]
\[+ \frac{\gamma^2}{v^2} \bar{D}_\xi [w_1] \frac{\gamma^2}{v^2} \left(\frac{v + \bar{v}}{v^2} + \frac{v^2}{(v + \bar{v})v} \right) |\xi|^2 \bar{D}_\xi [w_1]. \]
(4.28)
We next derive the estimate for \(I_2^0 \sigma\). It holds that
\[\text{Re} \{ I_2^0 \sigma \} = \frac{d}{dt} \text{Re} \left\{ i \xi \left(\rho_s (A + |\xi|^2)^{-1} \left(\frac{\rho_s}{v} \partial_t w_1^3 \right) \right) \sigma \right\} \]
\[= \frac{d}{dt} \text{Re} \left\{ i \xi \left(\frac{\gamma^2}{v} \frac{\rho_s}{v} \langle (A + |\xi|^2)^{-1} (\rho_s w_1^3) \rangle \rangle \sigma \right\} \]
\[- \text{Re} \left\{ i \xi \left(\frac{\gamma^2}{v} \frac{\rho_s}{v} \langle (A + |\xi|^2)^{-1} (\rho_s w_1^3) \rangle \rangle \partial_t \sigma \right\} \]
\[= \frac{d}{dt} \left(\frac{\gamma^2 (v + \bar{v})}{v} J_1[u] \right) - \text{Re} \left\{ i \xi \left(\frac{\gamma^2}{v} \frac{\rho_s}{v} \langle (A + |\xi|^2)^{-1} (\rho_s w_1^3) \rangle \rangle \partial_t \sigma \right\}. \]
(4.29)
Let us estimate the second term of the right-hand side of this equation. We see from (4.8) that

\[
\left| \text{Re}\left(i\frac{\gamma^2}{v} (\rho_s (A + |\xi|^2)^{-1} [\rho_s, w_1]) \partial_\xi \sigma \right) \right|
\]

\[
= \left| \text{Re}\left(i\frac{\gamma^2}{v} (\rho_s (A + |\xi|^2)^{-1} [\rho_s, w_1]) \{ -Q_0 \tilde{B}_2 u^{(0)} - \gamma^2 i\frac{\rho_s}{v} (\rho_s w_1) - i\frac{\gamma^2}{v^2} \phi_1 \} \right) \right|
\]

\[
\leq C \frac{\gamma^2}{v} \left| \frac{|\xi|}{1 + |\xi|^2} \right| \cdot \text{Re}\left(i\frac{\gamma^2}{v} (\rho_s (A + |\xi|^2)^{-1} [\rho_s, w_1]) \{ -Q_0 \tilde{B}_2 u^{(0)} - \gamma^2 i\frac{\rho_s}{v} (\rho_s w_1) - i\frac{\gamma^2}{v^2} \phi_1 \} \right)
\]

\[
\leq \frac{1}{10 v} \min (1, |\xi|^2) \gamma^2 + C \left\{ \frac{1}{v} \pi \left| \frac{\gamma^2}{v} (\rho_s w_1) \right|^2 + \frac{\gamma^2}{v^2} \tilde{D}_\xi \right\}.
\] (4.30)

If $1/v$, $1/\gamma^2$ and $(v + \tilde{v})/\gamma^2$ are sufficiently small, it then follows from (4.27)–(4.30) that

\[
\frac{1}{2} \frac{d}{dt} \left(|\sigma|^2 + \frac{\gamma^2 (v + \tilde{v})}{v} J_1 [u] \right) + \frac{1}{2} \frac{\alpha_0}{v^2} \gamma^2 |\xi|^2 \sigma^2
\]

\[
\leq C \left\{ |\phi_1|^2 + \frac{\gamma^2}{v^2} |\xi|^2 |\phi_1|^2 + \frac{v}{\gamma^2} \pi \left. \max (1, |\xi|^2) \right| \gamma^2 |\phi_1|^2 \right\}
\]

\[
+ \frac{\gamma^4}{v^2} \tilde{D}_\xi [w_1] + \left(\frac{\gamma^2 (v + \tilde{v})}{v^2} + \frac{\gamma^2 v^2}{v (v + \tilde{v})} \right) \left| \xi^2 \right| \tilde{D}_\xi [w_1].
\] (4.31)

Furthermore, we have the estimate

\[
|J_1 [u]| = \left| \text{Re}\left(i\frac{1}{v + \tilde{v}} (\rho_s (A + |\xi|^2)^{-1} [\rho_s, w_1]) \sigma \right) \right|
\]

\[
\leq \frac{1}{\gamma^2} |\sigma|^2 + C \frac{\gamma^2}{(v + \tilde{v})^2} |w_1|^2.
\] (4.32)

Multiplying both sides of (4.31) by $v/(\gamma^2 (v + \tilde{v}))$, we obtain the desired estimates. This completes the proof. \(\square\)

From Propositions 4.7, 4.9 and 4.10, we get the estimate of $|\sigma|$, $|\phi_1|^2$ and $|w_1|^2$.

PROPOSITION 4.11. Let $R > 0$. There exist positive constants v_0, γ_0, ω_0 independent of R and an energy functional $E_1 [u]$ such that if $v \geq v_0 R^2$, $\gamma^2 / (v + \tilde{v}) \geq \gamma_0^2 R^2$, $(v + \tilde{v}) \omega / v \leq \omega_0$ and $|\xi| \leq R$, then the following estimates hold:

\[
\frac{d}{dt} E_1 [u] + \frac{1}{v + \tilde{v}} (|\xi|^2 |\sigma|^2 + |\phi_1|^2) + \tilde{D}_\xi [w_1] \leq 0,
\] (4.33)

\[
\frac{1}{2} \left(\frac{1}{\gamma^2} |\sigma|^2 + E_0 [u_1] \right) \leq CE_1 [u] \leq \frac{3}{2} \left(\frac{1}{\gamma^2} |\sigma|^2 + E_0 [u_1] \right),
\]

where C is a positive constant independent of u.

Proof. For a given $R > 0$ we assume that $|\xi| \leq R$. Let $b_1 > 1$ and $b_2 > 1$ be constants. Define $E_1 [u]$ by

\[
E_1 [u] = b_1 \left(1 + \frac{\gamma^2}{v (v + \tilde{v})} \right) \left(\frac{\alpha_0}{\gamma^2} |\sigma|^2 + E_0 [u_1] \right) + b_2 J_0 [u_1] + \frac{v}{\gamma^2 (v + \tilde{v})} |\sigma|^2 + J_1 [u].
\]

\[316\] R. Aoyama
Since we have
\[\frac{1}{2}(|\phi_1|^2 + |w_1|^2) \leq C_0 E_0[u_1] \leq \frac{3}{2}(|\phi_1|^2 + |w_1|^2), \]
\[|J_0[u_1]| \leq C_1 \left\{ \frac{v}{\gamma^2(v + \tilde{\nu})}|\phi_1|^2 + \frac{\gamma^2}{v(v + \tilde{\nu})}|w_1|^2 \right\}, \]
\[|J_1[u]| \leq \frac{1}{2\gamma^2}|\sigma|^2 + C_2 \frac{\gamma^2}{(v + \tilde{\nu})^2}|w_1|^2, \]
if \(1/(v + \tilde{\nu}) < 1, (v + \tilde{\nu})/\gamma^2 < 1 \) and \(b_1 > 8 \max\{C_0 C_1 b_2, C_0 C_2, \alpha_0^{-1}\} \), then there exists a constant \(C > 0 \) such that
\[\frac{1}{2} \left(\frac{1}{\gamma^2}|\sigma|^2 + E_0[u_1] \right) \leq C E_1[u] \leq \frac{3}{2} \left(\frac{1}{\gamma^2}|\sigma|^2 + E_0[u_1] \right). \] (4.34)

Let us compute \(b_1 \times (1 + \gamma^2/v(v + \tilde{\nu})) \times (4.12) + b_2 \times (4.21) + (4.23) \) then
\[\frac{1}{2} \frac{d}{dt} E_1[u] + b_1 \left(1 + \frac{\gamma^2}{v(v + \tilde{\nu})} \right) \tilde{D}_\xi[w_1] + b_2 \frac{\gamma}{v + \tilde{\nu}}|\phi_1|^2 + \frac{\tilde{\alpha}_0}{2} \frac{1}{v + \tilde{\nu}}|\xi|^2|\sigma|^2 \]
\[\leq C_3 \left\{ b_1 \left(1 + \frac{\gamma^2}{v(v + \tilde{\nu})} \right) \left(\frac{1}{\gamma^2} + \frac{v + \tilde{\nu}}{\gamma^4} \right) |\xi|^2|\sigma|^2 \right. \]
\[+ b_2 \left(1 + \frac{\gamma^2}{v(v + \tilde{\nu})} \right) \tilde{D}_\xi[w_1] + b_2 \frac{\gamma}{v + \tilde{\nu}} |\xi|^2 \tilde{D}_\xi[w_1] \]
\[+ \frac{v}{v + \tilde{\nu}} |\phi_1|^2 + \frac{1}{v + \tilde{\nu}} |\xi|^2 |\phi_1|^2 \]
\[+ \frac{\gamma^2}{v(v + \tilde{\nu})} \tilde{D}_\xi[w_1] + \left(\frac{\tilde{\nu}^2}{(v + \tilde{\nu})^2} + \frac{1}{v} \right) |\xi|^2 \tilde{D}_\xi[w_1] \}. \]

Fix \(b_1 > 1 \) and \(b_2 > 1 \) so large that \(b_2 \geq 16 C_3 R^2 \) and \(b_1 \geq 16 \max\{C_0 C_1 b_2, C_0 C_2, \alpha_0^{-1}, C_3 b_2, C_3 R^2\} \). We assume that \(v \geq v_0 \) and \(\gamma \geq \gamma_0 \) are so large that
\[v \geq 16 C_3 b_1 \max\{\tilde{\alpha}_0^{-1}, b_2^{-1}, 1\} \]
and
\[\gamma^2 > 16 C_3 (1 + \tilde{\alpha}^{-1} + \tilde{\alpha}^{-1/2})(v + \tilde{\nu}) \max\{b_1, b_2, b_2^{-1}(1 + R^2)\}. \]

It then follows that there exists a constant \(C > 0 \) such that
\[\frac{d}{dt} E_1[u] + C \left\{ \frac{1}{v + \tilde{\nu}} |\xi|^2 |\sigma|^2 + \frac{1}{v + \tilde{\nu}} |\phi_1|^2 + \tilde{D}_\xi[w_1] \right\} \leq 0. \] (4.35)

We thus obtain the desired estimates. This completes the proof. \(\Box \)

We are now in a position to prove the estimate of the \(L^2 \) norm of \(U_1(t) u_0 \). Before proceeding further we introduce some notation. For \(R > 0 \) we define \(\chi_{(R)} \) by \(\chi_{(R)}(\xi) = 1 \) for \(|\xi| \leq R \) and \(\chi_{(R)}(\xi) = 0 \) for \(|\xi| > R \).
PROPOSITION 4.12. Let \(R > 0 \). There exist positive constants \(v_0, \gamma_0 \) and \(\omega_0 \) such that if \(v \geq v_0 R^2, \gamma^2 / (v + \bar{v}) \geq \gamma_0^2 R^2, \) and \((v + \bar{v}) \omega / v \leq \omega_0 \), then for any \(l = 0, 1, \ldots \), there exists a constant \(C = C(l) > 0 \) such that the estimate

\[
\| \mathcal{J}_{x3}^{l} \mathcal{F}^{-1} \{ \exp(-t\tilde{L}_\xi \tilde{u}_0) \} \|_{L^2} \leq C(1 + t)^{-1/4 - l/2} \| u_0 \|_{L^1(\mathbb{R}^3;L^2(D))}
\]

(4.36)

holds for \(t \geq 0 \).

Proof. For a given \(R > 0 \), we assume that \(|\xi| \leq R \). Since

\[
|\xi|^2|\sigma|^2 + |\phi_1|^2 + \tilde{D}_\xi [w_1] \geq \tilde{d}_0 |\xi|^2 (|\sigma|^2 + |\phi_1|^2 + |w_1|^2)
\]

for some constant \(\tilde{d}_0 = \tilde{d}_0(R) > 0 \), we see from (4.33) that there exists a constant \(d_0 > 0 \) such that

\[
\frac{d}{dt} E_1[u](t) + d_0 |\xi|^2 |u|^2 \leq 0.
\]

This implies that

\[
|e^{-t\tilde{L}_\xi \tilde{u}_0(\xi)}|_{L^2} \leq C e^{-d_0 |\xi|^2 t} |\tilde{u}_0(\xi)|_{L^2}.
\]

(4.37)

We thus obtain the desired estimate. This completes the proof. \(\square \)

We next estimate derivatives of \(u \). We introduce some notation. We define \(J^{(0)}_2[u] \) by

\[
J^{(0)}_2[u] = -2 \Re (\sigma u^{(0)} + u_1, \tilde{B}_\xi \tilde{Q} u_1) \quad \text{for } u = \sigma u^{(0)} + u_1.
\]

In addition, we set

\[
E^{(0)}_2[u] = \left(1 + \frac{b_3 \gamma^2}{v}\right) \left(\frac{\alpha_0}{\gamma^2} |\sigma|^2 + E_0[u_1]\right) + \tilde{D}_\xi [w_1],
\]

\[
\tilde{E}^{(0)}_2[u] = E^{(0)}_2[u] + J^{(0)}_2[u],
\]

where \(b_3 \) is a positive constant to be determined later. We note that there exists a constant \(b^*_3 > 0 \) such that if \(b_3 \geq b^*_3 \) and \(\gamma^2 \geq 1 \) then

\[
\frac{1}{2} E^{(0)}_2[u] \leq \tilde{E}^{(0)}_2[u] \leq \frac{3}{2} E^{(0)}_2[u].
\]

Taking \(b_3 \) suitably large, we have the following estimate for \(\tilde{E}^{(0)}_2[u] \).

PROPOSITION 4.13. There exist constants \(b_3 \geq b^*_3, v_0 > 0 \) and \(\omega_0 > 0 \) such that if \(v \geq v_0, \gamma^2 \geq 1 \) and \(\omega \leq \omega_0 \), then the following estimate holds:

\[
\frac{1}{2} \frac{d}{dt} \tilde{E}^{(0)}_2[u] + \frac{1}{4} b_3 \frac{\gamma^2}{v} \tilde{D}_\xi [w_1] + \frac{1}{2} |\sqrt{\rho_s} \phi_1 w_1|^2
\]

\[
\leq C \left\{ \left(\frac{1}{v} + \frac{v + \bar{v}}{v \gamma^2} + \frac{\bar{v}^2}{\gamma^2} \right) |\xi|^2 |\sigma|^2 + \frac{(v + \bar{v})^2}{\gamma^4} |\xi|^4 |\sigma|^2
\]

\[
+ \left(\frac{1}{v} + \frac{1}{\gamma^2} + \frac{\bar{v}^2}{\gamma^2} \right) |\phi_1|^2 + \frac{1}{\gamma^2} |\xi|^2 |\phi_1|^2 \right\}.
\]

(4.38)
Proof. Since u is a solution of
\[\partial_t u + \mathcal{L}_\xi u = 0, \]
it holds that
\[\langle \partial_t u, \partial_t \tilde{Q} u_1 \rangle + \langle \mathcal{L}_\xi u, \partial_t \tilde{Q} u_1 \rangle = 0. \]
(4.39)

We first consider the first term on the left-hand side of (4.39). Since
\[\partial_t \sigma = -\langle \mathcal{Q}_0 \mathcal{B}_\xi (\sigma u^{(0)} + u_1) \rangle, \]
\[\langle u^{(0)}, \partial_t \tilde{Q} u_1 \rangle = \langle u_1^{(0)}, \partial_t \tilde{Q} u_1 \rangle, \]
applying Remark 4.5 and Lemma 4.6, we obtain
\[\text{Re} \langle \partial_t u, \partial_t \tilde{Q} u_1 \rangle = \text{Re} \{ \langle \partial_t \sigma u^{(0)}, \partial_t \tilde{Q} u_1 \rangle + \langle \partial_t u_1, \partial_t \tilde{Q} u_1 \rangle \} \]
\[= \text{Re} \{ -\langle \mathcal{Q}_0 \mathcal{B}_\xi (\sigma u^{(0)} + u_1) \rangle \langle u_1^{(0)}, \partial_t \tilde{Q} u_1 \rangle + | \sqrt{\rho_v} \partial_t w_1 |^2 \} \]
\[\geq \frac{7}{8} | \sqrt{\rho_v} \partial_t w_1 |^2 - C \left\{ \frac{1}{\gamma^2} | \xi |^2 | \sigma |^2 + | \phi_i |^2 \left(\frac{1}{\nu} + \frac{2}{\nu^2} \right) \right\}. \]
(4.40)

As for the second term on the left-hand side of (4.39), we see from $\mathcal{L}_0 u^{(0)} = 0$ and $\tilde{B}_0 u^{(0)} = 0$ that
\[\langle \mathcal{L}_\xi u, \partial_t \tilde{Q} u_1 \rangle = \langle \tilde{M}_\xi (\sigma u^{(0)}), \partial_t \tilde{Q} u_1 \rangle + \langle \mathcal{L}_\xi u_1, \partial_t \tilde{Q} u_1 \rangle \]
\[= \langle \tilde{A}_\xi (\sigma u^{(0)}), \partial_t \tilde{Q} u_1 \rangle + \langle \mathcal{B}_\xi (\sigma u^{(0)} + u_1), \partial_t \tilde{Q} u_1 \rangle \]
\[+ \langle \tilde{A}_\xi u_1, \partial_t \tilde{Q} u_1 \rangle + \langle \tilde{C}_0 u_1, \partial_t \tilde{Q} u_1 \rangle. \]
(4.41)

It follows from (4.39)–(4.41) that
\[\frac{7}{8} | \sqrt{\rho_v} \partial_t w_1 |^2 + \text{Re} \langle \tilde{A}_\xi (\sigma u^{(0)}), \partial_t \tilde{Q} u_1 \rangle + \text{Re} \langle \mathcal{B}_\xi (\sigma u^{(0)} + u_1), \partial_t \tilde{Q} u_1 \rangle \]
\[+ \text{Re} \langle \tilde{A}_\xi u_1, \partial_t \tilde{Q} u_1 \rangle + \text{Re} \langle \tilde{C}_0 u_1, \partial_t \tilde{Q} u_1 \rangle \]
\[\leq C \left\{ \frac{1}{\gamma^2} | \xi |^2 | \sigma |^2 + \frac{1}{\gamma^2} | \xi |^2 | \phi_i |^2 \left(\frac{1}{\nu} + \frac{2}{\nu^2} \right) \right\}. \]
(4.42)

Next we show the estimate
\[\text{Re} \{ \langle \mathcal{B}_\xi (\sigma u^{(0)} + u_1), \partial_t \tilde{Q} u_1 \rangle + \langle \tilde{A}_\xi u_1, \partial_t \tilde{Q} u_1 \rangle \} \]
\[\geq \frac{1}{2} \frac{d}{dt} \langle \tilde{D}_\xi [w_1] \rangle + J_2^{(0)} [u_1] \]
\[- \frac{1}{\gamma^2} (1 + \frac{1}{\nu y^2}) | \xi |^2 | \sigma |^2 + \frac{1}{\gamma^2} | \xi |^2 | \phi_i |^2 \left(\frac{1}{\nu} + \frac{2}{\nu^2} \right) \tilde{D}_\xi [w_1] \]
(4.43)

for any $\epsilon > 0$ with C independent of ϵ. In fact, it holds by integrating by parts that
\[\text{Re} \langle \tilde{A}_\xi u_1, \partial_t \tilde{Q} u_1 \rangle = \frac{1}{2} \frac{d}{dt} \tilde{D}_\xi [w_1]. \]
(4.44)

Since $\tilde{B}_\xi = -\tilde{B}_\xi$, we see that
\[\text{Re} \{ \langle \mathcal{B}_\xi (\sigma u^{(0)} + u_1), \partial_t \tilde{Q} u_1 \rangle \} = - \frac{d}{dt} \{ \text{Re} \langle \sigma u^{(0)}, \tilde{B}_\xi \tilde{Q} u_1 \rangle \} + \text{Re} \langle \partial_t (\sigma u^{(0)}), \tilde{B}_\xi \tilde{Q} u_1 \rangle. \]
(4.45)
By (4.8) we have
\[\partial_t \sigma = -\langle Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1) \rangle. \]

It then follows from Lemma 4.6 that
\[|\text{Re} \langle \partial_t (\sigma u^{(0)}), \tilde{B}_\xi \tilde{Q} u_1 \rangle| = |\text{Re} \langle Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1), \tilde{B}_\xi \tilde{Q} u_1 \rangle| \]
\[\leq C \left\{ \frac{1}{\gamma^2} |\xi|^2 (|\sigma|^2 + |\phi_1|^2_2) + \left(\frac{1}{\nu \gamma^2} + \frac{\gamma^2}{v} \right) \tilde{D}_\xi [w_1] \right\}. \quad (4.46) \]

Similarly to above, the following equation holds:
\[\text{Re} \langle \tilde{B}_\xi u_1, \partial_t \tilde{Q} u_1 \rangle \]
\[= -\frac{d}{dt} \text{Re} \langle u_1, \tilde{B}_\xi \tilde{Q} u_1 \rangle \]
\[= -\frac{d}{dt} \text{Re} \langle u_1, \tilde{B}_\xi \tilde{Q} u_1 \rangle + \text{Re} \langle \partial_t Q_0 u_1, \tilde{B}_\xi \tilde{Q} u_1 \rangle + \text{Re} \langle \partial_t \tilde{Q} u_1, \tilde{B}_\xi \tilde{Q} u_1 \rangle. \quad (4.47) \]

We estimate the second term on the right-hand side of (4.47). By (4.11) we have
\[\partial_t Q_0 u_1 = -Q_0 (\tilde{L}_\xi u_1 + \tilde{M}_\xi (\sigma u^{(0)}) + Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1))u^{(0)} \]
\[= -Q_0 \tilde{B}_\xi u_1 - Q_0 \tilde{B}_\xi (\sigma u^{(0)}) + Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1)u^{(0)}. \]

Since \(\langle \partial_t Q_0 u_1, \tilde{B}_\xi \tilde{Q} u_1 \rangle = \langle \partial_t Q_0 u_1, Q_0 \tilde{B}_\xi \tilde{Q} u_1 \rangle \), we see from Lemma 4.6 that
\[|\text{Re} \langle \partial_t Q_0 u_1, \tilde{B}_\xi \tilde{Q} u_1 \rangle| \]
\[\leq C \left\{ |Q_0 \tilde{B}_\xi u_1|_2 + |Q_0 \tilde{B}_\xi (\sigma u^{(0)})|_2 + |Q_0 \tilde{B}_\xi (\sigma u^{(0)} + u_1)u^{(0)}|_2 \right\} \times \frac{1}{\gamma^2} |Q_0 \tilde{B}_\xi \tilde{Q} u_1|_2 \]
\[\leq C \left\{ \frac{1}{\gamma^2} |\xi|^2 (|\sigma|^2 + |\phi_1|^2_2) + \left(\frac{1}{\nu \gamma^2} + \frac{\gamma^2}{v} \right) \tilde{D}_\xi [w_1] \right\}. \quad (4.48) \]

The third term on the right-hand side of (4.47) is estimated as
\[|\text{Re} \langle \partial_t \tilde{Q} u_1, \tilde{B}_\xi \tilde{Q} u_1 \rangle| \leq C |\sqrt{\rho_3} \partial_t w_1|_2 (|\nabla' \cdot (\rho_3 w_1') + i \xi \rho_3 w_1^3 |_2 + |\xi||w_1|_2) \]
\[\leq C \left\{ \frac{1}{\epsilon v} \tilde{D}_\xi [w_1] + \frac{1}{\epsilon v} \tilde{D}_\xi [w_1] \right\} \]
for any \(\epsilon > 0 \) with \(C \) independent of \(\epsilon \). This, together with (4.47) and (4.48), leads to the inequality
\[\text{Re} \langle \tilde{B}_\xi u_1, \partial_t \tilde{Q} u_1 \rangle \]
\[\geq -\frac{d}{dt} \text{Re} \langle u_1, \tilde{B}_\xi \tilde{Q} u_1 \rangle - \epsilon |\sqrt{\rho_3} \partial_t w_1|_2^2 \]
\[- C \left\{ \frac{1}{\gamma^2} |\xi|^2 (|\sigma|^2 + |\phi_1|^2_2) + \left(\frac{1}{\nu \gamma^2} + \frac{\gamma^2}{v} + \frac{1}{\epsilon v} \right) \tilde{D}_\xi [w_1] \right\}. \quad (4.49) \]
for any \(\epsilon > 0 \) with \(C \) independent of \(\epsilon \). Furthermore, we have
\[|\text{Re} \langle \tilde{B}_\xi (\sigma u_1^{(0)}), \partial_t \tilde{Q} u_1 \rangle| \leq C |\sqrt{\rho_3} \partial_t w_1|_2 |i \xi \rho_3 \sigma w^{(0), 3} + i \xi \nu_3 \sigma w^{(0), 3}|_2 \]
\[\leq \epsilon |\sqrt{\rho_3} \partial_t w_1|_2^2 + C \frac{1}{\epsilon \gamma^4} |\xi|^2 |\sigma|^2 \quad (4.50) \]
for any $\epsilon > 0$ with C independent of ϵ. By (4.45), (4.46), (4.49) and (4.50), we obtain
\[
\text{Re}(\bar{B}_\xi(\sigma u^{(0)} + u_1), \partial_t \tilde{Q} u_1) \\
\geq -\frac{1}{2} \frac{d}{dt} J_2^{(0)}[u] - \epsilon |\sqrt{\rho_s} \partial_t w_1|^2 \\
- C \left\{ \left(\frac{1}{\gamma^2} + \frac{1}{\epsilon \gamma^4} \right) |\xi|^2 |\sigma|^2 + \frac{1}{\gamma^2} |\xi|^2 |\phi_1|^2 + \left(\frac{1}{\gamma^2} + \frac{2}{\epsilon v} \right) \bar{D}_\xi[w_1] \right\}.
\]
This, together with (4.44), gives (4.43).

The remaining terms on the left-hand side of (4.42) are estimated as
\[
|\text{Re}(\bar{A}_\xi(\sigma u^{(0)}), \partial_t \tilde{Q} u_1)| \leq C \{ \tilde{\nu} ||\nabla' w^{(0)}||_2 + (\nu + \tilde{\nu}) |\xi|^2 |w^{(0)}||_2 |\sigma||/\sqrt{\rho_s} \partial_t w_1|_2 \\
\leq \epsilon |\sqrt{\rho_s} \partial_t w_1|^2 + C \left\{ \frac{\tilde{\nu}^2}{\gamma^4} |\xi|^2 |\sigma|^2 + \frac{(\nu + \tilde{\nu})^2}{\gamma^4} |\xi|^4 |\sigma|^2 \right\}, \quad (4.51)
\]
\[
|\text{Re}(\bar{C}_0 u_1, \partial_t \tilde{Q} u_1)| \leq C \left\{ \frac{\nu}{\gamma^2} |\phi_1|^2 + |w'_1|^2 \right\} |\sqrt{\rho_s} \partial_t w_1|_2 \\
\leq \epsilon |\sqrt{\rho_s} \partial_t w_1|^2 + C \left\{ \frac{\nu^2}{\gamma^4} |\phi_1|^2 + \frac{1}{\nu} \bar{D}_\xi[w_1] \right\}. \quad (4.52)
\]
Here ϵ is an arbitrary positive number and C is a constant independent of ϵ. Taking $\epsilon > 0$ suitably small, we see from (4.42) with (4.43), (4.51) and (4.52) that if $\nu \geq 1$ and $\gamma^2 \geq 1$, then
\[
\frac{1}{2} \frac{d}{dt} (\bar{D}_\xi[w_1] + J_2^{(0)}[u]) + \frac{3}{4} |\sqrt{\rho_s} \partial_t w_1|^2 \\
\leq C_0 \left\{ \left(\frac{1}{\gamma^2} + \frac{\tilde{\nu}}{\gamma^4} \right) |\xi|^2 |\sigma|^2 + \frac{(\nu + \tilde{\nu})^2}{\gamma^4} |\xi|^4 |\sigma|^2 + \frac{\nu^2}{\gamma^4} |\phi_1|^2 \\
+ \frac{1}{\gamma^2} |\xi|^2 |\phi_1|^2 + \frac{\gamma^2}{\nu} \bar{D}_\xi[w_1] \right\}. \quad (4.53)
\]
We take b_3 as $b_3 \geq \max\{b_3^*, 4C_0\}$ and then add (4.53) to $b_3(\gamma^2/\nu) \times (4.12)$, to obtain (4.38). This completes the proof. \hfill \Box

We next establish the estimate for higher-order derivatives near the boundary ∂D. We introduce the local curvilinear coordinate system.

For any $\gamma_0 \in \partial D$, there exist a neighborhood \tilde{O}_{γ_0} of γ_0 and a smooth diffeomorphism map $\Psi = (\Psi_1, \Psi_2) : \tilde{O}_{\gamma_0} \to B_1(0) = \{z' = (z_1, z_2) : |z'| < 1\}$ such that
\[
\begin{cases}
\Psi(\tilde{O}_{\gamma_0} \cap D) = \{z' \in B_1(0) : z_1 > 0\}, \\
\Psi(\tilde{O}_{\gamma_0} \cap \partial D) = \{z' \in B_1(0) : z_1 = 0\}, \\
\det \nabla \Psi \neq 0 \quad \text{on} \quad \tilde{O}_{\gamma_0} \cap D.
\end{cases}
\]
By the tubular neighborhood theorem, there exist a neighborhood O_{γ_0} of γ_0 and a local curvilinear coordinate system $y' = (y_1, y_2)$ on O_{γ_0} defined by
\[
x' = y_1 a_1(y_2) + \Psi^{-1}(0, y_2) : \mathcal{R} \to O_{\gamma_0},
\]
\[
(4.54)
\]
where \(R = \{ y' = (y_1, y_2) : |y_1| \leq \delta_1, \ |y_2| \leq \delta_2 \} \) for some \(\delta_1, \delta_2 > 0 \); \(a_1(y_2) \) is the unit inward normal to \(\partial D \) that is given by

\[
a_1(y_2) = \frac{\nabla_x \Psi_1}{|\nabla_x \Psi_1|}.
\]

We set \(y_3 = x_3 \). It then follows that

\[
\nabla_x = e_1(y_2) \partial_{y_1} + J(y') e_2(y_2) \partial_{y_2} + e_3 \partial_{y_3},
\]

\[
\nabla_y = \begin{pmatrix} T e_1(y_2) \\ \frac{1}{J(y')} T e_2(y_2) \\ T e_3 \end{pmatrix} \nabla_x,
\]

where

\[
e_1(y_2) = \begin{pmatrix} a_1(y_2) \\ 0 \end{pmatrix}, \quad e_2(y_2) = \begin{pmatrix} a_2(y_2) \\ 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}; \quad (4.55)
\]

\[
J(y') = |\det \nabla_x \Psi|, \quad a_2(y_2) = \frac{-\nabla_x \Psi_1}{|\nabla_x \Psi_1|}
\]

with \(\nabla_x \Psi_1 = T(-\partial_{x_3} \Psi_1, \ \partial_{x_1} \Psi_1) \). Note that \(\partial_{y_1} \) and \(\partial_{y_2} \) are the inward normal derivative and tangential derivative at \(x' = \Psi^{-1}(0, y_2) \in \partial D \cap O_x(0) \), respectively. We denote the normal and tangential derivatives by \(\partial_n \) and \(\partial_t \), i.e.

\[
\partial_n = \partial_{y_1}, \quad \partial_t = \partial_{y_2}.
\]

Since \(\partial D \) is compact, there are bounded open sets \(O_m \ (m = 1, \ldots, N) \) such that \(\partial D \subset \bigcup_{m=1}^{N} O_m \) and for each \(m = 1, \ldots, N \), there exists a local curvilinear coordinate system \(y' = (y_1, y_2) \) as defined in (4.54) with \(O_{\alpha}, \Psi \) and \(R \) replaced by \(O_m, \Psi^m \) and \(R_m = \{ y' = (y_1, y_2) : |y_1| < \tilde{\delta}_1^m, \ |y_2| < \tilde{\delta}_2^m \} \) for some \(\tilde{\delta}_1^m, \tilde{\delta}_2^m > 0 \). At last, we take an open set \(O_0 \subset D \) such that

\[
\bigcup_{m=0}^{N} O_m \supset D, \quad \bigcap_{m=0}^{N} \partial D = \emptyset.
\]

We set a local coordinate \(y' = (y_1, y_2) \) such that \(y_1 = x_1, \ y_2 = x_2 \) on \(O_0 \).

Note that if \(h \in H^2(D) \), then \(h|_{\partial D} = 0 \) implies that \(\partial^k h|_{\partial D \cap O_m} = 0 \ (k = 0, 1) \).

Let us introduce a partition of unity \(\{ \chi_m \}_{m=0}^{N} \) subordinate to \(\{ O_m \}_{m=0}^{N} \), satisfying

\[
\sum_{m=0}^{N} \chi_m = 1 \quad \text{on} \ D, \quad \chi_m \in C_0^\infty(O_m) \quad (m = 0, 1, \ldots, N).
\]

In the following we will denote by \([A, B]\) the commutator of \(A \) and \(B \), i.e.

\[
[A, B] = AB - BA.
\]

Lemma 4.14. For \(1 \leq m \leq N \) the following estimates hold:

(i) \(|[\partial, \partial_{x_j}]h| \leq C|\partial h| \) for \(h \in H^2(D) \) and \(j = 1, 2; \)
Proof. (i) For \(x' \in D \cap O_m \), we set \(y' = \Psi^m(x') \), \(h(x') = \tilde{h}(y') \). Then there exists a smooth matrix valued function \(A_1(y') \) such that \(\nabla x' = A_1(y') \nabla y' \). We thus find that
\[
|\partial_{x_i} h| = \partial_{x_i} |h| - \partial_{x_j} |h| = \sum_{0 \leq i_1, 0 \leq i_2, i_1 + i_2 = 1} h_{i_1 i_2} \partial^2_{x_i_1} \partial^2_{x_i_2} \tilde{h},
\]
where \(h_{i_1 i_2} = h_{i_1 i_2}(y') \) are smooth functions depending only on \(D \cap O_m \). Since
\[
\frac{1}{C} |\partial_{y_i} \tilde{h}| \leq |\partial_{x_i} h| \leq C |\partial_{y_i} \tilde{h}|
\]
for some constant \(C > 0 \), we have the desired inequality. This completes the proof of (i).

(ii) The estimate in (ii) immediately follows from (i).

(iii) We have \(\nabla y' = A_1(y')^{-1} \nabla x' \). We set \(A_1(y')^{-1} = (c^{ij}(x'))_{ij} \). Then it holds that
\[
|\partial_{x_i} c^{ij} | = |\partial_{x_i} h| \partial_{x_j} \tilde{h}.
\]

It follows from integration by parts that
\[
|(x_m \partial_{x_i} c^{ij} \partial_{x_j} h, x_m \partial h)|
= |(x_m \partial_{x_i} c^{ij} \partial_{x_j} h, x_m \partial_{x_i} \partial h) + (x_m \partial_{x_i} \partial_{x_j} c^{ij} \partial_{x_j} h, x_m \partial h) + (\partial_{x_i} x_m \partial_{x_i} c^{ij} \partial_{x_j} h, \partial h)|
\leq C |(x_m \partial_{x_i} h)|_2 |x_m \partial_{x_i} \partial h|_2 + |x_m \partial_{x_i} h|_2 |x_m \partial h|_2 + |\partial_{x_i} h|_{L^2(D \cap O_m)} |x_m \partial h|_2
\leq \eta |x_m \partial_{x_i} \partial h|_2 + C \left(\frac{1}{\eta} + \frac{1}{\eta^2} \right) |x_m \partial h|_{L^2(D \cap O_m)}^2.
\]
This completes the proof of (iii).

We are in a position to estimate higher-order derivatives. We first derive the estimate for \(\partial \phi_1 \).

PROPOSITION 4.15. For \(1 \leq m \leq N, \) there exist constants \(v_0 > 0, \omega_0 > 0 \) and \(b > 0 \) such that if \(v \geq v_0, y^2 \geq 1 \) and \((v + \tilde{v}) \omega/v \leq \omega_0 \), then the following estimate holds:
\[
\frac{1}{2} \frac{d}{dt} \left(\frac{1}{y^2} |x_m \sqrt{\rho_s} \partial \phi_1|^2 \right) + b \frac{v + \tilde{v}}{y^4} |x_m \partial \phi_1|^2 + \frac{1}{2} v |x_m \nabla \partial w_1|^2 + \frac{1}{2} \tilde{v} |x_m (\nabla \partial w_1 + i \xi \partial w_3)|^2
\leq C \left\{ \left(\frac{1}{y^2} + \frac{v + \tilde{v}}{y^4} \right) |\xi|^2 |\sigma|^2 + \left(\eta + \frac{1}{\eta^2} \right) |\phi_1|^2 + \left(\eta + \frac{1}{\eta^2} + \frac{v + \tilde{v}}{y^4} \right) |\xi|^2 |\phi_1|^2 \right\}
\]
\[
+ \left(\eta + \frac{1}{\eta^2} \right) |\partial_{\xi} \phi_1|^2 + \left(\frac{1}{\eta} + \frac{v}{\gamma^2} + \frac{\tilde{v}}{\nu} + 1 \right) D \xi \partial w_1 + \left(\frac{\tilde{v}}{v} + 1 \right) |\xi|^2 \partial_{\xi} \partial w_1 \right\}
\]
(4.56)
for any \(\eta > 0 \) with \(C \) independent of \(\eta \).
Proof. Applying \(\partial \) to (4.11), we have

\[
\begin{align*}
\partial_t \partial \phi + i \xi \nabla' \cdot (\rho_s \partial \phi) + \gamma^2 \nabla' \cdot (\partial \partial \phi) + \gamma^2 i \xi \rho_s \partial \phi &= \tilde{F}^0, \\
\partial_t \partial w - \frac{v}{\rho_s} (\Delta' - |\xi|^2) \partial w - \frac{\tilde{v}}{\rho_s} \nabla' (\nabla' \cdot \partial w + i \xi \partial w) &= \tilde{G}' , \\
\partial_t \partial w - \frac{v}{\rho_s} (\Delta' - |\xi|^2) \partial w - \frac{\tilde{v} i \xi}{\rho_s} (\nabla' \cdot \partial w + i \xi \partial w) &= \tilde{G}^3 , \\
\end{align*}
\]

(4.57)
on \(D \cap \mathcal{O}_m \) and

\[\partial w_1 |_{\partial D \cap \mathcal{O}_m} = 0. \]

Here \(\tilde{F}^0 = F_1^0 + F_2^0, \tilde{G}' = G_1' + G_2' \) and \(\tilde{G}^3 = G_1^3 + G_2^3 \), with

\[
F_1^0 = -[\partial, i \xi v_3^2] \phi - \gamma^2 [\partial, \nabla' \cdot \rho_s] w - \gamma^2 [\partial, i \xi \rho_s] w_1 , \\
G_1' = v \left[\partial, \frac{1}{\rho_s} \Delta' \right] w_1' - v \left[\partial, \frac{1}{\rho_s} |\xi|^2 \right] w_1 + \tilde{v} \left[\partial, \frac{1}{\rho_s} \nabla' \nabla' \right] w_1 + \tilde{v} \left[\partial, \frac{1}{\rho_s} \nabla' (i \xi) \right] w_1 , \\
G_1^3 = v \left[\partial, \frac{1}{\rho_s} \Delta' \right] w_3 - v \left[\partial, \frac{1}{\rho_s} |\xi|^2 \right] w_3 + \tilde{v} \left[\partial, \frac{1}{\rho_s} \nabla' \nabla' \right] w_3 - \tilde{v} \left[\partial, \frac{1}{\rho_s} |\xi|^2 \right] w_3 , \\
F_2^0 = -[i \xi \sigma \partial (v_3^2 \phi(0)) + \gamma^2 i \xi \sigma \partial (\rho_s w^{(0)}) - \langle \rho_0 \tilde{B}_3 (\sigma u^{(0)} + u_1) \rangle \partial \phi(0) , \\
G_2' = \left\{ -\tilde{v} i \xi \sigma \partial \left(\frac{1}{\rho_s} \nabla' w^{(0),3} \right) \right\}, \]

\(\tilde{G}_2^3 = \left\{ (v + \tilde{v}) \xi^2 \sigma \partial \left(\frac{1}{\rho_s} w^{(0),3} \right) + i \xi \sigma \partial (v_3^2 w^{(0),3}) - \langle \rho_0 \tilde{B}_3 (\sigma u^{(0)} + u_1) \rangle \partial w^{(0),3} \right\}. \]

We set \(\tilde{F} = \tilde{F}^0 + \tilde{G}', \tilde{G}^3 \), \(F_1 = \tilde{F}_1^0 + G_1', G_1^3 \) and \(F_2 = \tilde{F}_2^0 + G_2', G_2^3 \). Taking the weighted inner product of (4.57) with \(\chi_m^2 \partial u_1 \), we have

\[
\frac{1}{2} \frac{d}{dt} \left(\chi_m \sqrt{\frac{P'(\rho_s)}{\gamma^2 \rho_s}} |\partial \phi_1|^2 + \chi_m \sqrt{\rho_s} |\partial w_1|^2 \right) \\
+ v (|\chi_m \nabla' \partial w_1|^2 + |\xi| \chi_m |\partial w_1|^2) + \tilde{v} |\chi_m (\nabla' \cdot \partial w_1 + i \xi \partial w_1)|^2 \\
= \text{Re} \langle F, \chi_m^2 \partial u_1 \rangle - I \text{,} \\
\]
where
\[I = v(\nabla' \partial w_1, \nabla' (\chi_m^2) \partial w_1) + \bar{v}(\nabla' \cdot \partial w_1' + i\xi \partial w_1^3, \nabla' (\chi_m^2) \cdot \partial w_1') \]
\[- \left(\frac{P'(\rho_s)}{\gamma - \rho_s} \partial \phi_1, \nabla' (\chi_m^2) \cdot \partial w_1' \right) + \left(i\xi v_3^2 \partial w_1, \chi_m^2 \partial w_1 \right) \]
\[+ \left(i\xi \nabla' v_3, \chi_m^2 \partial w_1^3 \right) + (\partial w_1' \cdot \nabla' v_3, \chi_m^2 \partial w_1^3). \]

Let us estimate the right-hand side of (4.58). By Lemma 4.14 and the Poincaré inequality we have
\[
|\text{Re}(F_1, \chi_m^2 \partial u_1)| \leq \left(\eta + \frac{C}{\gamma^2} \right) |\phi_1|_2^2 + \left(\eta + \frac{C}{\gamma^2} \right) |\xi|^2 |\phi_1|_2^2 + \left(\eta + \frac{C}{\gamma^2} \right) |\partial_x \phi_1|_2^2 \]
\[+ C \left(\frac{1}{v \eta} + \frac{v}{\gamma^2} + \frac{\bar{v}}{v} + 1 \right) \bar{D}_{\xi} [w_1] + \frac{1}{8} v (|\chi_m\nabla' \partial w_1|_2^2 + |\xi|^2 |\chi_m \partial w_1|_2^2) \]
\[+ \frac{1}{8} \bar{v} |\chi_m(\nabla' \cdot \partial w_1' + i\xi \partial w_3)|_2^2, \]

and
\[
|\text{Re} I| \leq \left(\eta + \frac{C}{\gamma^2} \right) |\partial_x \phi_1|_2^2 + C \left(\frac{v}{\gamma^2} + \frac{1}{v \eta} + 1 \right) \bar{D}_{\xi} [w_1] \]
\[+ \frac{1}{8} v (|\chi_m \nabla' \partial w_1|_2^2 + |\xi|^2 |\chi_m \partial w_1|_2^2) + \frac{1}{8} \bar{v} |\chi_m(\nabla' \cdot \partial w_1' + i\xi \partial w_3)|_2^2 \]

for any \(\eta > 0 \) with \(C \) independent of \(\eta > 0 \). By Lemma 4.6 and the Hölder inequality we deduce that
\[
|\text{Re}(F_2, \chi_m^2 \partial u_1)| \leq C \left(\frac{1}{\gamma^2} + \frac{v + \bar{v}}{\gamma^2} \right) |\xi|^2 |\sigma|^2 + \left(\frac{1}{\gamma^2} + \frac{1}{\gamma^4} \right) |\xi|^2 |\phi_1|_2^2 + \left(\eta + \frac{1}{\gamma^2} \right) |\partial_x \phi_1|_2^2 \]
\[+ \left(\frac{1}{v} + \frac{1}{v \eta} \right) \bar{D}_{\xi} [w_1] + \left(\frac{\bar{v}}{v} + 1 \right) |\xi|^2 |\bar{D}_{\xi} [w_1]| \]

for any \(\eta > 0 \) with \(C \) independent of \(\eta > 0 \). Therefore, we see from (4.58) that if \(v \geq 1, \gamma^2 \geq 1 \) and \(\omega \leq 1 \), then
\[
\frac{1}{2} d \left(\frac{1}{\gamma^2} \sqrt{\chi_m \frac{P'(\rho_s)}{\gamma^2 \rho_s}} \partial \phi_1 \right)^2 + |\chi_m \sqrt{\rho_s} \partial w_1|_2^2 \]
\[+ \frac{3}{4} v (|\chi_m \nabla' \partial w_1|_2^2 + |\xi|^2 |\chi_m \partial w_1|_2^2) + \frac{3}{4} \bar{v} |\chi_m(\nabla' \cdot \partial w_1' + i\xi \partial w_3)|_2^2 \]
\[\leq C \left(\frac{1}{\gamma^2} + \frac{v + \bar{v}}{\gamma^2} \right) |\xi|^2 |\sigma|^2 + \left(\eta + \frac{1}{\gamma^2} \right) |\phi_1|_2^2 + \left(\eta + \frac{1}{\gamma^2} \right) |\xi|^2 |\phi_1|_2^2 \]
\[+ \left(\eta + \frac{1}{\gamma^2} \right) |\partial_x \phi_1|_2^2 + \left(\frac{1}{v \eta} + \frac{v}{\gamma^2} + \frac{\bar{v}}{v} + 1 \right) \bar{D}_{\xi} [w_1] + \left(\frac{\bar{v}}{v} + 1 \right) |\xi|^2 |\bar{D}_{\xi} [w_1]|. \]

(4.59)
We next estimate \(\partial_1 \phi_1 \). The first equation of (4.57) leads to
\[
\frac{1}{\gamma^2} \partial_1 \phi_1 = \frac{1}{\gamma^2} (\partial_1 \phi_1 + i \xi \partial (v_3 \phi_1))
\]
\[
= \frac{1}{\gamma^2} \tilde{F}^0 - \left\{ \frac{1}{\gamma^2} i \xi \partial v_3 \phi_1 + \nabla' \cdot (\rho_1 \partial w_1') + i \xi \rho_1 \partial w_1' \right\}.
\]
We thus have
\[
\frac{1}{\gamma^2} |x_m \partial_1 \phi_1|^2 \leq C \left\{ \frac{1}{\gamma_3} |\xi|^2 |\sigma|^2 + \frac{1}{\gamma_3} |\xi|^2 |\phi_1|^2 + \frac{1}{\nu} \tilde{D}_{E_2} [w_1] + |x_m (\nabla' \cdot \partial w_1' + i \xi \partial w_1')|^2 \right\}.
\]
Take \(b > 0 \) suitably small and add \(b((v + \tilde{v})/\gamma^4)|x_m \partial_1 \phi_1|^2 \) to (4.59). We thus obtain the desired estimate. This completes the proof.

We next derive the estimate for \(\partial_n \phi_1 \).

Proposition 4.16. For \(1 \leq m \leq N \), there exist constants \(v_0 > 0, \omega_0 > 0 \) and \(b > 0 \) such that if \(v \geq v_0, \gamma^2 \geq 1 \) and \((v + \tilde{v})\omega/v \leq \omega_0 \), then the following estimate holds:
\[
\frac{1}{2} \frac{d}{dt} \left(\frac{1}{\gamma^2} \left| x_m \left(\frac{P' (\rho_1)}{\gamma^2 \rho_1} \partial_n \phi_1 \right) \right|^2 \right) + \frac{1}{2} \frac{1}{v + \tilde{v}} \left| x_m \left(\frac{P (\rho_1)}{\gamma^2} \partial_n \phi_1 \right) \right|^2 + \frac{b - (v + \tilde{v})}{\gamma^4} |x_m \partial_n \phi_1|^2 \leq C \left\{ \frac{v + \tilde{v}}{\gamma^4} |\xi|^2 |\sigma|^2 + \frac{\omega^2}{v + \tilde{v}} + \frac{v^2}{\gamma^4(v + \tilde{v})} |\phi_1|^2 + \frac{v + \tilde{v}}{\gamma^4} |\xi|^2 |\phi_1|^2 \right\} + \left(\frac{\tilde{v}}{v + 1} \right) \tilde{D}_{E_2} [w_1] + \frac{v}{v + \tilde{v}} |\xi|^2 \tilde{D}_{E_2} [w_1] + \frac{v^2}{v + \tilde{v}} (|x_m \partial_n \partial w_1|^2 + |x_m \partial^2 w_1|^2) + \frac{1}{v + \tilde{v}} |\rho_1 \partial w_1|^2 \right\}.
\]

Proof. For a scalar field \(p(x') \) on \(D \cap \mathcal{O}_m \), we set
\[
\tilde{p}(y') = p(x') \quad (y' = \Psi^m (x'), \quad x' \in D \cap \mathcal{O}_m).
\]
Similarly we transform a vector field \(h(x') = (h_1(x'), h_2(x'), h_3(x')) \) into \(\tilde{h}(y') = (\tilde{h}_1(y'), \tilde{h}_2(y'), \tilde{h}_3(y')) \) as
\[
h(x') = E(y') \tilde{h}(y'),
\]
where \(E(x') = (e_1(y'_1), e_2(y'_2), e_3) \) with \(e_1(y_2), e_2(y_2) \) and \(e_3 \) given in (4.55). Note that, since \(e_3 = 0, 0, 1 \), the Fourier transform in \(x_3 = y_3 \) commutes with these transformations. It then follows that \(\tilde{\phi}_1(y') \) and \(\tilde{w}_1(y') = \tilde{\psi}_1(y'), \tilde{w}_1^2(y'), \tilde{w}_1^3(y') \) are governed by the following
system of equations

\[
\begin{aligned}
&\partial_t \tilde{w}_1 + i \xi \tilde{v}_s^3 \tilde{\phi}_1 + \gamma^2 \text{div}_y (\tilde{\rho}_s (\tilde{w}_1)) + i \xi \tilde{v}_s^3 \sigma \hat{\Phi}^{(0)} + \gamma^2 i \xi \hat{\rho}_s \sigma \hat{w}_1^{(0), 3} \\
&\quad - (Q_0 \hat{B}_\xi (\sigma \hat{u}_1^{(0)} + \hat{u}_1)) \hat{\Phi}^{(0)} = 0, \\
&\partial_t \tilde{w}_1 + \frac{\nu}{\tilde{\rho}_s} (\text{rot}_y \text{rot}_y \tilde{w}_1)^1 = \frac{\nu + \tilde{v}}{\tilde{\rho}_s} (\nabla \text{div}_y \tilde{w}_1)^1 + \frac{1}{\gamma^2} \partial_y (\frac{\tilde{P}^{(2)} (\tilde{\rho}_s)}{\gamma^2} \tilde{\phi}_1) \\
&\quad + \frac{\nu}{\gamma^2} (\Delta \tilde{v}_s)^2 \tilde{\phi}_1 + i \xi \tilde{v}_s^3 \tilde{w}_1^1 - \frac{\tilde{v}}{\tilde{\rho}_s} i \xi \sigma \partial_y \tilde{w}_1^{(0), 3} = 0, \\
&\partial_t \tilde{w}_1 + \frac{\nu}{\tilde{\rho}_s} (\text{rot}_y \text{rot}_y \tilde{w}_1)^1 - \frac{\nu + \tilde{v}}{\tilde{\rho}_s} (\nabla \text{div}_y \tilde{w}_1)^1 + \frac{1}{\gamma^2} \partial_y (\frac{\tilde{P}^{(2)} (\tilde{\rho}_s)}{\gamma^2} \tilde{\phi}_1) \\
&\quad + \frac{\nu}{\gamma^2} (\Delta \tilde{v}_s)^2 \tilde{\phi}_1 + i \xi \tilde{v}_s^3 \tilde{w}_1^1 - \frac{\tilde{v}}{\tilde{\rho}_s} i \xi \sigma \partial_y \tilde{w}_1^{(0), 3} = 0, \\
&\partial_t \tilde{w}_1 + \frac{\nu}{\tilde{\rho}_s} (\text{rot}_y \text{rot}_y \tilde{w}_1)^1 - \frac{\nu + \tilde{v}}{\tilde{\rho}_s} (\nabla \text{div}_y \tilde{w}_1)^1 + i \xi \tilde{v}_s^3 \tilde{w}_1^1 + \tilde{w}_1^1 \partial_y \tilde{v}_s^3 + \frac{1}{\gamma^2} \tilde{w}_1^1 \partial_y \tilde{v}_s^3 + \frac{\nu + \tilde{v}}{\tilde{\rho}_s} i \xi \gamma^2 \tilde{\phi}_1^{(0), 3} \\
&\quad + i \xi \tilde{P}^{(2)} (\tilde{\rho}_s) \gamma^2 \tilde{\phi}_1^{(0), 3} + i \xi \tilde{v}_s^3 \sigma \tilde{w}_1^{(0), 3} + (Q_0 \hat{B}_\xi (\sigma \hat{u}_1^{(0)} + \hat{u}_1)) \hat{w}_1^{(0), 3} = 0
\end{aligned}
\]

(4.61)

with \(\tilde{\rho}_s (y') = \rho_s (x'), \tilde{v}_s^3 (y') = v_3^3 (x') \) and \(\tilde{P}^{(2)} (\tilde{\rho}_s (y')) = P' (\rho_s (x')) \). Here \(\nabla_y, \text{div}_y \) and \(\text{rot}_y \) denote the gradient, divergence and rotation in the curvilinear coordinate \(y \) which are written for \(\tilde{p} = \tilde{p} (y') \) and \(\tilde{h} = \tilde{h}^2 (y'), \tilde{h}^2 (y') \) as

\[
\nabla_y \tilde{p} = e_1 \partial_{y_1} \tilde{p} + \frac{1}{f} e_2 \partial_{y_2} \tilde{p} + e_3 \partial_{y_3} \tilde{p},
\]

\[
\text{div}_y \tilde{h} = \frac{1}{f} \{ \partial_{y_1} (J \tilde{h}^1) + \partial_{y_2} \tilde{h}^2 + \partial_{y_3} (J \tilde{h}^3) \},
\]

\[
\text{rot}_y \tilde{h} = (\text{rot}_y \tilde{h})^1 e_1 + (\text{rot}_y \tilde{h})^2 e_2 + (\text{rot}_y \tilde{h})^3 e_3
\]

with

\[
(\text{rot}_y \tilde{h})^1 = \frac{1}{f} \{ \partial_{y_2} \tilde{h}^3 - \partial_{y_3} (J \tilde{h}^2) \},
\]

\[
(\text{rot}_y \tilde{h})^2 = \partial_{y_3} \tilde{h}^1 - \partial_{y_1} \tilde{h}^3,
\]

\[
(\text{rot}_y \tilde{h})^3 = \frac{1}{f} \{ \partial_{y_1} \tilde{h}^2 - \partial_{y_2} (J \tilde{h}^1) \}
\]

and, therefore,

\[
(\text{rot}_y \text{rot}_y \tilde{h})^1 = \frac{1}{f} \{ \partial_{y_2} (\text{rot}_y \tilde{h})^3 - \partial_{y_3} (\text{rot}_y \tilde{h})^2 \},
\]

\[
(\text{rot}_y \text{rot}_y \tilde{h})^2 = \partial_{y_3} (\text{rot}_y \tilde{h})^1 - \partial_{y_1} (\text{rot}_y \tilde{h})^3,
\]

\[
(\text{rot}_y \text{rot}_y \tilde{h})^3 = \frac{1}{f} \{ \partial_{y_1} (\text{rot}_y \tilde{h})^2 - \partial_{y_2} (\text{rot}_y \tilde{h})^1 \};
\]

the Fourier transformed gradient \(\hat{\nabla}_y \) is given by

\[
\hat{\nabla}_y \tilde{p} = e_1 \partial_{y_1} \tilde{p} + \frac{1}{f} e_2 \partial_{y_2} \tilde{p} + e_3 i \xi \tilde{p};
\]
and similarly div_y and rot_y are obtained from div_y and rot_y by replacing ∂_{y_1} with $i\xi$ respectively. Applying ∂_{y_1} to the first equation of (4.61), we have

$$
\partial_t \partial_{y_1} \phi_1 + i\xi \tilde{v}_3^3 \partial_{y_1} \phi_1 + \gamma^2 \tilde{\rho}_s \partial_{y_1} \text{div}_y \tilde{w}_1
$$

$$
= -(i\xi \partial_{y_1} \tilde{v}_3^3 \phi_1 + \gamma^2 \partial_{y_1} (\text{div}_y (\tilde{\rho}_s \tilde{w}_1))) - \gamma^2 \tilde{\rho}_s \partial_{y_1} \text{div}_y \tilde{w}_1
$$

$$
+ i\xi \partial_{y_1} (\tilde{v}_3^3 \sigma \tilde{\phi}^{(0)}) + \gamma^2 i\xi \partial_{y_1} (\tilde{\rho}_s \sigma \tilde{w}^{(0),3}) - \{Q_0 \tilde{B}_\xi (\sigma \tilde{u}^{(0)} + \tilde{u}_1)) \partial_{y_1} \tilde{\phi}^{(0)}\}. \quad (4.62)
$$

To eliminate the term $\partial_{y_1} \partial_{y_1} \tilde{w}_1$ in this equation, we consider $\gamma^2 \tilde{\rho}_s/(v + \tilde{v}) \times (4.61)_2 + 1/\tilde{\rho}_s \times (4.62)$. It then follows that

$$
\frac{1}{\tilde{\rho}_s} \partial_t \partial_{y_1} \phi_1 + \tilde{P}'(\tilde{\rho}_s) \cdot (v + \tilde{v}) \partial_{y_1} \phi_1 + \frac{1}{\tilde{\rho}_s} i\xi \tilde{v}_3^3 \partial_{y_1} \phi_1 = I, \quad (4.63)
$$

where $I = I_1 + I_2$ with

$$
I_1 = -\frac{\gamma^2}{v + \tilde{v}} \left\{ \tilde{\rho}_s \partial_t \tilde{w}_1 + \frac{v}{\gamma^2} \tilde{\rho}_s (\Delta' \tilde{v}_3^2)^\dagger \phi_1 + i\xi \tilde{\rho}_s \tilde{v}_3^3 \tilde{w}_1 \right\}
$$

$$
+ \tilde{\rho}_s \partial_{y_1} \left(\frac{\tilde{P}'(\tilde{\rho}_s)}{\gamma^2 \tilde{\rho}_s} \right) \phi_1 + \frac{v}{\gamma^2} \tilde{\rho}_s (\Delta' \tilde{v}_3^2)^\dagger \phi_1 + i\xi \tilde{\rho}_s \tilde{v}_3^3 \tilde{w}_1,
$$

$$
I_2 = -\frac{\gamma^2}{v + \tilde{v}} \left\{ -i\xi \tilde{v}_3 \sigma \partial_{y_1} \tilde{w}_1^{(0),3} \right\} - \left\{ i\xi \tilde{\rho}_s \partial_{y_1} (\tilde{v}_3^3 \sigma \tilde{\phi}^{(0)}) \right\}
$$

$$
+ \frac{\gamma^2}{v + \tilde{v}} \tilde{\rho}_s \partial_{y_1} (\tilde{\rho}_s \sigma \tilde{w}_1^{(0),3}) - \frac{1}{\tilde{\rho}_s} \{Q_0 \tilde{B}_\xi (\sigma \tilde{u}_1^{(0)} + \tilde{u}_1)) \partial_{y_1} \tilde{\phi}^{(0)}\}.
$$

Considering $\int_{\gamma_m(D \cap \Omega_m)} (4.63) \times \tilde{\chi}_m \frac{\tilde{P}'(\tilde{\rho}_s)}{\gamma^4} \partial_{y_1} \phi_1 J \, dy'$ with $\tilde{\chi}_m(y') = \chi_m(x')$, we see that

$$
\frac{1}{2} \frac{d}{dt} \left(\frac{1}{\gamma^2} \tilde{\chi}_m \left(\tilde{P}'(\tilde{\rho}_s) \gamma^2 \tilde{\rho}_s \partial_{y_1} \phi_1 \right)^2 \right) + \frac{1}{v + \tilde{v}} \tilde{\chi}_m \frac{\tilde{P}'(\tilde{\rho}_s)}{\gamma^2} \partial_{y_1} \phi_1^2
$$

$$
= \int_{\gamma_m(D \cap \Omega_m)} J \times \chi_m \frac{\tilde{P}'(\tilde{\rho}_s)}{\gamma^4} \partial_{y_1} \phi_1 J \, dy'.
$$

Since

$$
(\text{rot}_y \text{rot}_y \tilde{w}_1) = \frac{1}{J} \partial_{y_2} \left(\frac{1}{J} \partial_{y_1} (J \tilde{w}_1^2) - \frac{1}{J} \partial_{y_2} \tilde{w}_1 \right) - i\xi (i\xi \tilde{w}_1^3 - \partial_{y_1} \tilde{w}_1^3),
$$
We next consider
\[\frac{\nu + \tilde{\nu}}{\gamma^4} |\tilde{\chi}_m I_1|_2^2 \leq C \left\{ \left(\frac{\omega^2}{v + \tilde{v}} + \frac{\nu^2}{\gamma^4(v + \tilde{v})} \right) |\tilde{\chi}_m \tilde{\phi}_1|_2^2 + \frac{\nu + \tilde{\nu}}{\gamma^4} |\xi| |\tilde{\chi}_m \tilde{\phi}_1|_2^2 + \frac{1}{v + \tilde{v}} |\tilde{\chi}_m \sqrt{\tilde{\rho}_s} \partial_t \tilde{w}_1|_2^2 \\
+ (v + \tilde{v}) \omega^2 |\tilde{\chi}_m \tilde{w}_1|_2^2 + \frac{1}{v + \tilde{v}} |\xi| |\tilde{\chi}_m \tilde{w}_1|_2^2 + \frac{\nu^2}{\gamma^4} |\xi| |\tilde{\chi}_m \tilde{w}_1|_2^2 \\
+ (v + \tilde{v}) \omega^2 |\tilde{\chi}_m \partial_y \tilde{w}_1|_2^2 + \frac{\nu^2}{\gamma^4} |\xi| |\tilde{\chi}_m \partial_y \tilde{w}_1|_2^2 + \frac{\nu^2}{\gamma^4} |\tilde{\chi}_m \partial_y \partial_{y_2} \tilde{w}_1|_2^2 \right\}. \]

It then follows that
\[\frac{1}{2} \frac{d}{dt} \left(\frac{1}{\gamma^2} |\tilde{\chi}_m \sqrt{\tilde{\rho}_s} \partial_y \tilde{\phi}_1|_2^2 \right) + \frac{3}{4} \frac{1}{\gamma^2 \nu + \tilde{v}} |\tilde{\chi}_m \tilde{\phi}_1|_2^2 \leq C \left\{ \frac{\nu + \tilde{\nu}}{\gamma^4} |\xi| |\tilde{\phi}_1|_2^2 + \left(\frac{\omega^2}{v + \tilde{v}} + \frac{\nu^2}{\gamma^4(v + \tilde{v})} \right) |\tilde{\chi}_m \tilde{\phi}_1|_2^2 + \frac{\nu + \tilde{\nu}}{\gamma^4} |\xi| |\tilde{\phi}_1|_2^2_L^2(\nu\|\nu\|_2) \\
+ (v + \tilde{v}) |\tilde{w}_1|_2^2_L^2(\nu\|\nu\|_2) + \frac{1}{v + \tilde{v}} |\xi| |\tilde{\chi}_m \tilde{w}_1|_2^2 + \frac{\nu^2}{\gamma^4} |\xi| |\tilde{\chi}_m \tilde{w}_1|_2^2 \\
+ (v + \tilde{v}) \omega^2 |\tilde{\chi}_m \partial_y \tilde{w}_1|_2^2 + \frac{\nu^2}{\gamma^4} |\xi| |\tilde{\chi}_m \partial_y \tilde{w}_1|_2^2 + \frac{\nu^2}{\gamma^4} |\tilde{\chi}_m \partial_y \partial_{y_2} \tilde{w}_1|_2^2 \\
+ \frac{1}{v + \tilde{v}} |\tilde{\chi}_m \sqrt{\tilde{\rho}_s} \partial_t \tilde{w}_1|_2^2 \right\}. \tag{4.64} \]

We next consider \(\partial_{y_1} \tilde{\phi}_1 \) where \(\tilde{\phi}_1 = \partial_t \tilde{\phi}_1 + i \xi \tilde{v}^3 \tilde{\phi}_1 \). Equation (4.63) gives that
\[\frac{1}{\gamma^2} |\partial_y \tilde{\phi}_1|_2 = \frac{1}{\gamma^2 \tilde{\rho}_s} \left(I + i \xi \partial_{y_1} \tilde{v}^3 \tilde{\phi}_1 - \frac{\gamma^2}{v + \tilde{v}} \tilde{\rho}_s \partial_{y_1} \tilde{\phi}_1 \right). \]

This equation leads to the estimate
\[\frac{\nu + \tilde{\nu}}{\gamma^4} |\tilde{\chi}_m \partial_{y_1} \tilde{\phi}_1|_2^2 \leq C \left\{ \frac{\nu + \tilde{\nu}}{\gamma^4} |\tilde{\chi}_m \tilde{\phi}_1|_2^2 + \frac{1}{v + \tilde{v}} |\tilde{\chi}_m \sqrt{\tilde{\rho}_s} \partial_t \tilde{\phi}_1|_2^2 \right\}. \]
Therefore, if we take \(b > 0 \) suitably small and add \(b((v + \tilde{v})/\gamma^4)|\tilde{\chi}_m\partial_{\gamma_1}\phi_1|^2 \) to (4.64), we obtain
\[
\frac{1}{2} \frac{d}{dt} \left(\frac{1}{\gamma'} \left| \chi_0 \sqrt{\frac{P'(\rho_s)}{\gamma' \rho_s}} \partial_{\chi'} \phi_1 \right|^2 \right) + \frac{1}{2} \frac{1}{\gamma^2} \left| \chi_m \sqrt{\frac{P'(\rho_s)}{\gamma^2 \rho_s}} \partial_{\gamma_1} \phi_1 \right|^2 + b \frac{v + \tilde{v}}{\gamma^4} |\tilde{\chi}_m\partial_{\gamma_1}\phi_1|^2 \\
\leq C \left\{ \frac{\nu + \tilde{\nu}}{\gamma'} |\xi|^2 |\omega|^2 + \left(\frac{\omega^2}{\nu + \tilde{\nu}} + \frac{v^2}{\gamma^4 (v + \tilde{\nu})} \right) |\tilde{\chi}_m\phi_1|^2 \right. \\
+ (v + \tilde{\nu})|\tilde{w}_1|^2_{L^2(\psi_m(D \cap \mathcal{O}_m))} + \frac{2}{\nu + \tilde{\nu}} |\xi|^2 |\tilde{\chi}_m\tilde{w}_1|^2 + \frac{v^2}{\nu + \tilde{\nu}} |\tilde{\chi}_m\partial_{\gamma_1}\tilde{w}_1|^2 \\
+ (v + \tilde{\nu})\omega^2 |\tilde{\chi}_m\partial_{\gamma_1}\tilde{w}_1|^2 + \frac{v^2}{\nu + \tilde{\nu}} |\tilde{\chi}_m\partial_{\gamma_1}\tilde{w}_1|^2 \\
+ \frac{1}{\nu + \tilde{\nu}} |\tilde{\chi}_m\sqrt{\rho_s} \partial_{\gamma_1}\tilde{w}_1|^2 \right\}.
\] (4.65)

The desired estimate follows from (4.65) by inverting to the original coordinates \(x' \) and noting that \(\partial_{\gamma_1} = \partial_n, \partial_{\gamma_2} = \partial. \) This completes the proof.

We next derive the interior estimate for the derivative of \(\phi_1. \)

Proposition 4.17. There exist constants \(\nu_0 > 0, \omega_0 > 0 \) and \(b > 0 \) such that if \(v \leq \nu_0, \gamma^2 \geq 1 \) and \((v + \tilde{\nu})\omega/v \leq \omega_0, \) then the following estimate holds:
\[
\frac{1}{2} \frac{d}{dt} \left(\frac{1}{\gamma'} \left| \chi_0 \sqrt{\frac{P'(\rho_s)}{\gamma' \rho_s}} \partial_{\chi'} \phi_1 \right|^2 \right) + b \frac{v + \tilde{\nu}}{\gamma^4} |\chi_0 \partial_{\chi'} \phi_1|^2 \\
+ \frac{1}{2} v |\chi_0 \nabla' \partial_{\chi'} w_1|^2 + |\xi|^2 |\chi_0 \partial_{\chi'} w_1|^2 + \frac{1}{2} \tilde{\nu} |\chi_0 \nabla' \cdot \partial_{\chi'} w_1' + i \xi \partial_{\chi'} w_1|^2 \\
\leq C \left\{ \left(\frac{\nu}{\gamma'} + \frac{v + \tilde{\nu}}{\gamma'} \right) |\xi|^2 |\omega|^2 + \frac{1}{\gamma^2} |\phi_1|^2 + \left(\frac{\nu}{\gamma^2} + \frac{v + \tilde{\nu}}{\gamma^4} + \frac{\omega^2}{\nu + \tilde{\nu}} \right) |\xi|^2 |\phi_1|^2 \\
+ \left(\eta + \frac{1}{\gamma^2} \right) |\partial_{\chi'} \phi_1|^2 + \left\{ \frac{1}{\eta v} + \frac{v + \tilde{\nu}}{\gamma^2} + \frac{v}{v + 1} \right\} \tilde{D}_1 \chi_1 + \left(\frac{\tilde{\nu}}{v + 1} + 1 \right) |\xi|^2 \tilde{D}_1 \chi_1 \right\}
\] (4.66)

for any \(\eta > 0 \) with \(C \) independent of \(\eta. \)

Since \(\text{supp}(\chi_0 w_1) \subset D \) we have \(\partial_{\chi'} w_1|_{\partial D \cap \mathcal{O}_0} = 0. \) Therefore we can prove this proposition similarly to the proof of Proposition 4.15. We omit the details.

Before proceeding further we introduce an energy functional. We define \(E_{3}^{(0)}[u_1] \) by
\[
E_{3}^{(0)}[u_1] = \frac{1}{\gamma^2} \left| \chi_0 \sqrt{\frac{P'(\rho_s)}{\gamma^2 \rho_s}} \partial_{\chi'} \phi_1 \right|^2 + |\chi_0 \sqrt{\rho_s} \partial_{\chi'} w_1|^2 \\
+ b_4 \sum_{m=1}^N \left(\frac{1}{\gamma^2} \chi_m \sqrt{\frac{P'(\rho_s)}{\gamma^2 \rho_s}} \partial \phi_1 \right)^2 + |\chi_m \sqrt{\rho_s} \partial w_1|^2 \right) + \sum_{m=1}^N \frac{1}{\gamma^2} \chi_m \sqrt{\frac{P'(\rho_s)}{\gamma^2 \rho_s}} \partial_n \phi_1 \right|^2,
\]
where \(b_4 \) is a positive constant. Taking \(b_4 \) suitably large, we have the following estimate for \(E_{3}^{(0)}[u_1]. \)
PROPOSITION 4.18. There exist constants \(v_0 > 0, \omega_0 > 0, b > 0 \) and \(b_4 > 0 \) such that if \(\nu \geq v_0, \gamma^2 \geq 1 \) and \((\nu + \tilde{v})\omega/\nu \leq \omega_0 \), then the following estimate holds:

\[
\frac{1}{2} \frac{d}{dt} E_3^{(0)}[u_1] + b \frac{\nu + \tilde{v}}{\gamma^4} |\partial_{\nu} \phi_1|^2 + \frac{1}{2} \left(\nu (|\chi_0 \nabla \cdot w_1|^2 + |\xi|^2 |\chi_0 \partial_\nu w_1|^2) + \tilde{v} |\chi_0 (\nabla' \cdot \partial_{\nu} w'_1 + i\xi \partial_{\nu} w_3)|^2 \right) + \frac{1}{2} \sum_{m=1}^N (v(|\chi_m \nabla \cdot w_1|^2 + |\xi|^2 |\chi_m \partial_\nu w_1|^2) + \tilde{v} |\chi_m (\nabla' \cdot \partial_{\nu} w'_1 + i\xi \partial_{\nu} w_3)|^2) \leq C \left\{ \left(\frac{1}{\nu^2} + \frac{\nu + \tilde{v}}{\gamma^4} \right) |\xi|^2 |\sigma|^2 + \left(\eta + \frac{\omega^2}{\nu + \tilde{v}} + \frac{1}{\gamma^2} + \frac{\nu^2}{\gamma^4 (\nu + \tilde{v})} \right) |\phi_1|^2 \right. \\
+ \left(\eta + \frac{\omega^2}{\nu + \tilde{v}} + \frac{1}{\gamma^2} + \frac{\nu + \tilde{v}}{\gamma^4} \right) |\xi|^2 |\phi_1|^2 \\
+ \left(\frac{1}{\nu^2} + \frac{\nu + \tilde{v}}{\gamma^4} + 1 \right) \tilde{D}_\xi [w_1] + \left(\frac{\tilde{v}}{\nu} + 1 \right) |\xi|^2 \tilde{D}_\xi [w_1] + \frac{1}{\nu + \tilde{v}} |\sqrt{\rho} \partial_\nu w_1|^2 \right\} \tag{4.67}
\]

for any \(\eta > 0 \) with \(C \) independent of \(\eta \).

Using Propositions 4.15, 4.16 and 4.17, we obtain the estimate of Proposition 4.18.

We next derive a dissipative estimate for \(|\partial_{\nu}^2 w_1|^2 \) and \(|\partial_{\nu} \phi_1|^2 \).

PROPOSITION 4.19. There exist constants \(v_0 > 0 \) and \(\omega_0 > 0 \) such that if \(\nu \geq v_0, (\nu + \tilde{v})\omega/\nu \leq \omega_0 \) and \(\gamma^2 \geq 1 \), then the following estimate holds:

\[
\frac{\nu^2}{\nu + \tilde{v}} |\partial_{\nu}^2 w_1'|^2 + \frac{1}{\nu + \tilde{v}} |\partial_{\nu} \phi_1|^2 \leq C \left\{ \left(\frac{1}{\nu + \tilde{v}} + \frac{\nu + \tilde{v}}{\gamma^4} \right) |\xi|^2 |\sigma|^2 + \frac{\nu^2}{\gamma^4 (\nu + \tilde{v})} |\phi_1|^2 + \left(\frac{1}{\nu + \tilde{v}} + \frac{\nu^2 + \tilde{v}^2}{\gamma^4 (\nu + \tilde{v})} \right) |\xi|^2 |\phi_1|^2 \right. \\
+ \left(\frac{\tilde{v}}{\nu} + 1 \right) (1 + |\xi|^2) \tilde{D}_\xi [w_1] + \frac{1}{\nu + \tilde{v}} |\sqrt{\rho} \partial_\nu w_1'|^2 + \frac{\nu^2 + \tilde{v}^2}{\gamma^4 (\nu + \tilde{v})} |\phi_1|^2 \right\}. \tag{4.68}
\]

Proof. We first derive the estimate for \(\partial_{\nu}^2 w_1 \) and \(\partial_{\nu} \phi_1 \). We will employ the following estimate for solutions of Stokes equation. If \((p, h')\) is the solution of

\[
\begin{cases}
\nabla' \cdot h' = F^0, \\
-\Delta h' + \frac{1}{\nu} \nabla' p = \frac{1}{\nu} G', \\
h'|_{\partial D} = 0,
\end{cases}
\]

then it holds that

\[
|\partial_{\nu}^2 h'|^2 + \frac{1}{\nu^2} |\partial_{\nu}^2 p|^2 \leq C \left(|F^0|^2_{H^1} + \frac{1}{\nu^2} |G'|^2_{H^1} \right). \tag{4.69}
\]
By the first and second equations of (4.11), with
the boundary condition of \(w_1' \), we see that \((\phi_1, w_1')\) satisfies the following Stokes equation:

\[
\begin{aligned}
\nabla' \cdot w_1' &= F_1^0, \\
-\Delta' w_1' + \frac{1}{\nu} \nabla' \left(\frac{P'(\rho_s)}{\gamma^2} \phi_1 \right) &= \frac{1}{\nu} G_1', \\
w_1'|_{\partial D} &= 0,
\end{aligned}
\]

where

\[
F_1^0 = -\frac{1}{\gamma^2 \rho_s} \left(\partial_t \phi_1 + i\xi v_3^2 \phi_1 + \gamma^2 (\nabla' \rho_s) \cdot w_1' + \gamma^2 i\xi w_1^3 \right)
+ i\xi v_3^2 \phi(0) + \gamma^2 i\xi \rho_s \sigma w(0), - (Q_0 \widetilde{B}_\xi (\sigma u(0) + u_1)) \phi(0)),
\]

\[
G_1' = -\rho_s \left\{ \partial_t w_1' + \frac{\nu}{\rho_s} \xi^2 w_1' - \frac{\nu}{\rho_s} (\nabla' \cdot w_1' + i\xi w_1^3) + i\xi v_3 w_1' \\
+ \nabla' \left(\frac{1}{\rho_s} \frac{P'(\rho_s)}{\gamma^2} \phi_1 - \frac{\nu}{\rho_s} i\xi \nabla' (\sigma w(0), 3) \right) \right\}.
\]

By Lemma 4.6 and the Poincaré inequality, we have

\[
|F_1^0|^2 \leq C \left\{ \frac{1}{\gamma^4} |\xi|^2 |\phi_1|^2 + \frac{1}{\gamma^4} \left| \partial_t \phi_1 \right|^2 + \frac{1}{\gamma^4} |\phi_1|^2 \right\},
\]

\[
|\partial_t F_1^0|^2 \leq C \left\{ \frac{1}{\gamma^4} |\xi|^2 |\phi_1|^2 + \frac{1}{\gamma^4} (1 + |\xi|^2) \tilde{\partial}_\xi [w_1] + \frac{1}{\gamma^4} |\phi_1|^2 \right\},
\]

\[
|G_1'|^2 \leq C \left\{ \frac{\tilde{\gamma}^2}{\gamma^4} |\xi|^2 |\phi_1|^2 + \left(\omega^2 + \frac{\tilde{\gamma}^2}{\gamma^4} \right) |\xi|^2 |\phi_1|^2 + \left(\frac{1}{\nu} + \frac{\tilde{\gamma}^2}{\gamma^4} \right) \tilde{\partial}_\xi [w_1] \\
+ \left(\nu + \frac{\tilde{\gamma}^2}{\gamma^4} \right) |\xi|^2 \tilde{\partial}_\xi [w_1] + \frac{\tilde{\gamma}^2}{\gamma^4} |\phi_1|^2 \right\}.
\]

Since

\[
\frac{\partial' (P'(\rho_s) \phi_1)}{\gamma^2} = P'(\rho_s) \frac{\partial' \phi_1}{\gamma^2} + \frac{P'\nu(\rho_s) \partial' \rho_s}{\gamma^2} \phi_1,
\]

and

\[
|\phi_1|^2 \leq C |\partial' \phi_1|^2
\]

by the Poincaré inequality, we see that

\[
\left| \partial' \left(\frac{P'(\rho_s)}{\gamma^2} \phi_1 \right) \right|^2 \leq C \left(|\partial' \phi_1|^2 - \omega^2 |\phi_1|^2 \right)
+ C (1 - \omega^2) |\partial' \phi_1|^2
\geq C |\partial' \phi_1|^2
\]
for $\omega^2 < \frac{1}{2}$. We thus find the estimate
\[
|\partial_{x}^2 w'_1|^2 + \frac{1}{v^2} |\partial_{x} \phi_1|^2 \leq C \left[\frac{\mu^2 + \tilde{\nu}^2}{\gamma^2} |\xi|^2 |\sigma|^2 + \frac{\mu^2}{\gamma^4} |\phi_1|^2 + \left(\omega^2 + \frac{\mu^2}{\gamma^4} + \frac{\tilde{\nu}^2}{\gamma^4} \right) |\xi|^2 |\phi_1|^2 \right] \\
+ \left(v + \tilde{\nu} \right) \tilde{D}_{x} [w_1] + \left(v + \sqrt{\mu} \right) |\xi|^2 \tilde{D}_{x} [\phi_1] + |\sqrt{\mu} \partial_t w_1|^2 + \frac{\mu^2 + \tilde{\nu}^2}{\gamma^4} |\phi_1|^2_H^2 \right].
\]
(4.70)

We next derive the estimate for $\partial_{x}^2 w_3$. The third equation of (4.11), with the boundary condition of w_3, is written as
\[
\left\{ \begin{aligned}
-D' w_3 &= G_1^3, \\
|w_3|^2_{\partial D} &= 0,
\end{aligned} \right.
\]
where
\[
G_1^3 = -\frac{\rho_s}{v} \left(\partial_t w_3 + \frac{v}{\rho_s} \xi^2 w_3 - \tilde{\nu} \frac{i\xi}{v} (\nabla' \cdot w_3 + i\xi w_3) \\
+ i\xi \left(\frac{P' (\rho_s)}{\gamma^2 \rho_s} \phi_1 \right) + i\xi v_3 w_3 + \frac{v}{\gamma^2 \rho_s} \Delta' \phi_1 + w_1 \cdot \nabla' v_3 \\
+ \frac{v + \tilde{\nu}}{\rho_s} \xi^2 \sigma w_3 - i\xi \alpha_0 + i\xi v_3 \sigma w_3 - (Q_0 \tilde{B}_{x} (\sigma u^{(0)} + u_1)) w_3 \right\}. \]

We thus obtain
\[
|w_3|^2_{H^2} \leq C |G_1^3|^2.
\]

It then follows that
\[
|\partial_{x}^2 w_3|^2 \leq C \frac{1}{v^2} \left[\left(1 + \frac{1}{\gamma^2} + \frac{(v + \tilde{\nu})}{\gamma^4} \right) |\xi|^2 |\sigma|^2 + \frac{v^2}{\gamma^4} |\phi_1|^2 + \left(1 + \frac{1}{\gamma^4} \right) |\xi|^2 |\phi_1|^2 \right] \\
+ \left(v + \tilde{\nu} \right) \tilde{D}_{x} [w_1] + \frac{\tilde{\nu}^2}{v + \tilde{\nu}} |\xi|^2 \tilde{D}_{x} [\phi_1] + |\sqrt{\mu} \partial_t w_1|^2 \right].
\]
(4.71)

Multiplying $v^2/(v + \tilde{\nu})$ to (4.70) + (4.71), we have the desired estimate. This completes the proof. \(\square\)

We are now in a position to prove Theorem 3.2.

Proposition 4.20. Let $R > 0$. There exist positive constants v_0, γ_0, ω_0 and d such that if $v \geq v_0 R^2$, $\gamma^2/(v + \tilde{\nu}) \geq \gamma_0^2 R^2$ and $(v + \tilde{\nu}) \omega \leq \omega_0$, then for any $l = 0, 1, \ldots$, there exists a constant $C = C(l) > 0$ such that the estimate
\[
\| \partial_{x}^l \phi_{l} \hat{R}^{-1} \chi_0 (R) e^{-i R \tilde{u}_0} \|_{L^2} \leq C \left\{ \left(1 + t \right)^{-1/4 - l/2} \| u_0 \|_{L^1 (R; L^2 (D))} + e^{-dt} (\| u_0 \|_{L^2} + \| \partial_{x} u_0 \|_{L^2}) \right\}
\]
holds for $t \geq 0$.

Proof. Let b_5 and b_6 be constants satisfying $b_5, b_6 > 1$. Define $E_4^{(0)}[u]$ by

$$E_4^{(0)}[u] = b_5 \frac{v}{\nu + \tilde{v}} E_2^{(0)}[u] + b_6 E_3^{(0)}[u_1].$$

If $\gamma^2 \geq 1$, then there exists a constant $C > 0$ such that

$$\frac{1}{2} \left\{ \frac{1}{\gamma^2} |\sigma|^2 + E_0[u_1] + \frac{1}{\gamma^2} |\partial_x \phi_1|^2 + \bar{D}_\xi[w_1] \right\} \leq C E_4^{(0)} \leq \frac{3}{2} \left\{ \frac{1}{\gamma^2} |\sigma|^2 + E_0[u_1] + \frac{1}{\gamma^2} |\partial_x \phi_1|^2 + \bar{D}_\xi[w_1] \right\}.$$

We compute $b_5(\nu/(\nu + \tilde{v})) \times (4.38) + b_6 \times (4.67) + bb_6 \times (4.13) + (4.68)$. It holds that

$$\frac{1}{2} \frac{d}{dt} E_4^{(0)}[u] + \frac{v^2}{\nu + \tilde{v}} |\partial_x w_1|^2 + \frac{1}{\nu + \tilde{v}} |\partial_x \phi_1|^2$$

$$+ \frac{b_5 b_5}{4} \frac{\gamma^2}{\nu + \tilde{v}} \partial_x w_1[1] + \frac{b_5}{2} \frac{1}{\nu + \tilde{v}} \sqrt{\rho_5} \partial_x w_1[2] + bb_6 \frac{v + \tilde{v}}{\gamma^4} |\phi_1|^2 H_1$$

$$+ \frac{b_6}{2} \left(\nu(\nu^0 \nu' \partial_x w_1[2] + |\xi|^2 \chi_0 \partial_x w_1[2]) + \nu \chi_0(\nu' \cdot \partial_x w_1[2] + i \xi \partial_x w_1[2]) \right)$$

$$+ \frac{b_6}{2} \sum_{m=1}^N \left(\nu(\nu^0 \nu' \partial_x w_1[2] + |\xi|^2 \chi_0 \partial_x w_1[2]) + \nu \chi_0(\nu' \cdot \partial_x w_1[2] + i \xi \partial_x w_1[2]) \right)$$

$$\leq C_4 \left\{ b_5 \frac{\nu}{\nu + \tilde{v}} \left(\frac{1}{\nu} + \frac{\nu + \tilde{v}}{\nu^2} \right) |\xi|^2 |\sigma|^2 + b_5 \frac{v}{\nu + \tilde{v}} \left(\frac{\nu + \tilde{v}}{\nu^2} \right) |\xi|^2 |\phi_1|^2 \right\}$$

$$+ b_5 \left(\frac{1}{\nu} + \frac{\nu + \tilde{v}}{\nu^2} \right) |\phi_1|^2 + b_5 \frac{v}{\nu + \tilde{v}} \left(\frac{1}{\nu} + \frac{\nu + \tilde{v}}{\nu^2} \right) |\phi_1|^2$$

$$+ b_6 \left(\frac{\nu^2 v}{\nu + \tilde{v}} \right) |\xi|^2 |\phi_1|^2 + b_6 \left(\nu + \frac{\nu^2}{\nu + \tilde{v}} \right) |\xi|^2 |\phi_1|^2$$

$$+ b_6 \left(\frac{\nu}{\nu} + \frac{\nu + \tilde{v}}{\nu^2} \right) F_0 \phi_1 + b_6 \left(\frac{\nu + \tilde{v}}{\nu^2} \right) |\xi|^2 \bar{D}_\xi[w_1]$$

$$+ b_6 \left(\nu^2 v \right) |\phi_1|^2 + \frac{1}{\nu + \tilde{v}} |\sqrt{\rho_5} \partial_x w_1[2] + bb_6 \frac{v + \tilde{v}}{\gamma^4} |\xi|^2 |\phi_1|^2$$

$$+ bb_6 \left(\frac{\nu^2 v}{\nu + \tilde{v}} \right) F_0 \phi_1 + \left(\frac{\nu + \tilde{v}}{\nu^2} \right) |\xi|^2 |\phi_1|^2$$

$$+ \frac{\nu^2}{\nu^2(v + \tilde{v})} |\phi_1|^2 + \left(\frac{\nu + \tilde{v}}{\nu^2(v + \tilde{v})} \right) |\xi|^2 |\phi_1|^2$$

$$+ \left(\frac{\nu + \tilde{v}}{\nu + \tilde{v}} \right) (1 + |\xi|^2) \bar{D}_\xi[w_1] + \frac{1}{\nu + \tilde{v}} |\sqrt{\rho_5} \partial_x w_1[2] + b_6 \frac{v + \tilde{v}}{\gamma^4} |\phi_1|^2 H_1 \right\}.$$

Fix $b_5 > 1$ and $b_6 > 1$ sufficiently large such that $b_6 \geq 2C_4/b$ and $b_5 \geq 8b_6 C_4$, respectively. Let us take $\eta > 0$ so small satisfying $\eta \leq \min\{1, 1/8b_6 C_4\}$. We assume that $\nu \geq \nu_0$ and
\(\gamma \geq \gamma_0 \) are so large that \(v \geq v_0 > 1 \) and \(\gamma^2 \geq 8b_6 C_4 (v + \tilde{v}) \). Since we have that
\[
\dot{D}_\xi [w_1] \leq C (1 + R) |w_1|_2 \alpha^2 \frac{w_1}{2} \\
\leq \epsilon |\alpha^2 \frac{w_1}{2} + C \frac{1}{\epsilon} (1 + R)^2 |w_1|^2_2
\]
for any \(\epsilon > 0 \), if we take \(\epsilon \) sufficiently small such that \(\epsilon < \frac{1}{2} (v^2/(v + \tilde{v})) \), then we obtain
\[
\frac{d}{dt} E_{4}^{(0)}[u] + d(|\nabla \phi|^2_2 + |\nabla w_1|^2_{H^1}) \leq C |u|^2.
\]
Now we decompose \(E_{4}^{(0)}[u] \) as
\[
E_{4}^{(0)}[u] = E_{4,0}^{(0)}[u] + E_{4,1}[u],
\]
where
\[
\frac{1}{2} |u|^2_2 \leq C E_{4,0}^{(0)}[u] \leq \frac{3}{2} |u|^2_2,
\]
\[
\frac{1}{2} (|\nabla \phi|^2_2 + |\nabla w_1|^2_{H^1}) \leq C E_{4,0}^{(0)}[u] \leq \frac{3}{2} (|\nabla \phi|^2_2 + |\nabla w_1|^2_{H^1}).
\]
It then follows that
\[
\frac{d}{dt} E_{4,1}^{(0)}[u](t) + d_1 E_{4,1}^{(0)}[u] + \frac{d}{2} (|\nabla \phi|^2_2 + |\nabla w_1|^2_{H^1}) \leq C |u|^2_2 - \frac{d}{dt} E_{4,0}^{(0)}[u](t).
\]
We thus obtain
\[
E_{4,1}^{(0)}[u](t) + \frac{d}{2} \int_0^t e^{-d_1 \tau} (|\nabla \phi|^2_2 + |\nabla w_1|^2_{H^1}) \, d\tau \\
\leq e^{-d_1 t} E_{4,1}^{(0)}[u_0] + C \int_0^t e^{-d_1 \tau} |u|^2_2 \, d\tau - \int_0^t e^{-d_1 \tau} \frac{d}{d\tau} E_{4,0}^{(0)}[u](\tau) \, d\tau.
\]
Since
\[
e^{-d_1 (t-\tau)} \frac{d}{d\tau} E_{4,0}^{(0)}[u](\tau) = \frac{d}{d\tau} [e^{-d_1 (t-\tau)} E_{4,0}^{(0)}[u](\tau)] + d_1 e^{-d_1 (t-\tau)} E_{4,0}^{(0)}[u](\tau)
\]
and
\[
E_{4,0}^{(0)}[u] \leq C |u|^2_2,
\]
we see that
\[
E_{4,1}^{(0)}[u](t) \leq e^{-d_1 t} E_{4,0}^{(0)}[u_0] + C \int_0^t e^{-d_1 \tau} |u(\tau)|^2_2 \, d\tau.
\]
From (4.37), we obtain
\[
E_{4,1}^{(0)}[u](t) \leq e^{-d_1 t} E_{4,0}^{(0)}[u_0] + C |u_0|^2_2 \int_0^t e^{-d_1 (t-\tau)} e^{-d_0 \xi^2 \tau} \, d\tau.
\]
Let us estimate the second term on the right-hand side of this inequality. We have
\[\int_0^{t/2} \exp\{-d_1(t-\tau) - d_0|\xi|^2 \tau\} d\tau \leq \int_0^{t/2} \exp\{-d_1(t-\tau)\} d\tau \]
\[\leq \frac{1}{d_1} \exp\{-d_1 t/2\} \]
\[\leq \frac{1}{d_1} \exp\{-d_1 |\xi|^2 t/2\} \].
\[\int_{t/2}^t \exp\{-d_1(t-\tau) - d_0|\xi|^2 \tau\} d\tau \leq \exp\{-d_0 |\xi|^2 t/2\} \int_{t/2}^t \exp\{-d_1(t-\tau)\} d\tau \]
\[\leq \frac{1}{d_1} \exp\{-d_0 |\xi|^2 t/2\} \]
\[\leq \frac{1}{d_1} \exp\{-d_0 |\xi|^2 t/2\} \].

We set \(d_2 = \min\{d_0, d_1/R^2\} \). It then follows that there exist positive constants \(\nu_0, \omega_0, d_1 \) and \(d_2 \) such that if \(\nu \geq \nu_0 R^2 \), then the following estimates hold:
\[E_{4,1}^{(0)}[u](t) \leq C\left[e^{-d_2/2\xi^2}u_0^2 + e^{-d_1 t}E_{4}^{(0)}[u_0]\right]. \] (4.72)

Combining Propositions 4.12 and 4.20 with \(R = 1 \) we obtain the desired estimates in Theorem 3.2.

5. Decay estimate of the high-frequency part

In this section we will give a proof of Theorem 3.3. To prove Theorem 3.3, we will employ an energy method to obtain the estimate on solutions of
\[\partial_t u + \hat{L}_\xi u = 0, \quad w|\partial \Omega = 0, \quad u|_{t=0} = u_0 \]
similarly to Section 4. The following Propositions 5.1–5.6 can be proved in a similar manner in Section 4. So we give the statements only and omit the proofs.

Proposition 5.1. There exists a constant \(\nu_0 > 0 \) such that if \(\nu \geq \nu_0 \), then the following estimates hold:
\[\frac{1}{2} \frac{d}{dt} E_0[u] + \frac{1}{2} \tilde{D}_\xi [w] \leq C \frac{\nu}{\nu^2} |\phi|^2_2, \] (5.1)
\[\frac{\nu + \tilde{\nu}}{\nu^2} |\phi|^2_2 \leq C \left(1 + \frac{\nu + \tilde{\nu}}{\nu} \omega^2\right) \tilde{D}_\xi [w]. \] (5.2)

We proceed to estimate derivatives of \(u \). We introduce some notation. We define \(J_2^{(\infty)}[u] \) by
\[J_2^{(\infty)}[u] = -2 \Re\langle u, \tilde{B}_\xi \hat{Q} u \rangle. \]
In addition, we set
\[E_2^{(\infty)}[u] = \left(1 + \frac{\tilde{b}_3\nu^2}{\nu}\right) E_0[u] + \tilde{D}_\xi [w], \]
\[\tilde{E}_2^{(\infty)}[u] = E_2^{(\infty)}[u] + J_2^{(\infty)}[u], \]
where \(\tilde{b}_3 \) is a positive constant to be determined later. We note that there exists a constant \(\tilde{b}_3^* > 0 \) such that if \(\tilde{b}_3 \geq \tilde{b}_3^* \) and \(\nu^2 \geq 1 \), then
\[
\frac{1}{2} \tilde{E}_2^{(\infty)}[u] \leq \tilde{E}_2^{(\infty)}[u] \leq \frac{3}{2} \tilde{E}_2^{(\infty)}[u].
\]

Taking \(\tilde{b}_3 \) suitably large, we have the following estimate for \(\tilde{E}_2^{(\infty)}[u] \).

PROPOSITION 5.2. There exist constants \(\tilde{b}_3 \geq \tilde{b}_3^* \) and \(\nu > 0 \) such that if \(\nu \geq \nu_0 \) and \(\nu^2 \geq 1 \), then the following estimate holds:
\[
\frac{1}{2} \frac{d}{dt} \tilde{E}_2^{(\infty)}[u] + \frac{1}{4} \tilde{b}_3 \frac{\nu^2}{\nu} \tilde{D}_\xi [w] + \frac{1}{2} |\sqrt{\rho_s} \partial_t w|^2 \leq C \left\{ \left(\frac{1}{\nu^2} + \frac{\nu^2}{\nu^4} \right) |\phi|^2 + \frac{1}{\nu^2} |\xi|^2 |\phi|^2 \right\}.
\] (5.3)

PROPOSITION 5.3. For \(1 \leq m \leq N \), there exist constants \(\nu_0 > 0 \) and \(b > 0 \) such that if \(\nu \geq \nu_0, \nu^2 \geq 1 \) and \(\omega \leq 1 \), then the following estimate holds:
\[
\frac{1}{2} \frac{d}{dt} \left\{ \frac{1}{\nu^2} \sqrt{\left| \frac{P'(\rho_s)}{\nu^2 \rho_s} \partial_n \phi \right|^2} + \frac{1}{2} |\chi_m \sqrt{\rho_s} \partial w|^2 \right\} + b \frac{\nu + \tilde{v}}{\nu^4} |\chi_m \partial_t \phi|^2 \\
+ \frac{1}{2} \tilde{v} |\chi_m \nabla \cdot \partial w|^2 + \frac{1}{2} |\phi|^2 |\xi|^2 |\chi_m \partial w|^2 \leq C \left\{ \left(\frac{\nu^2}{\nu^2} + \frac{\nu + \tilde{v}}{\nu^4} \right) |\phi|^2 + \left(\frac{\nu^2}{\nu^2} + \frac{\nu + \tilde{v}}{\nu^4} \right) |\chi_m \partial_t \phi|^2 \\
+ \left(\frac{\nu^2}{\nu^2} + \frac{\nu + \tilde{v}}{\nu^4} \right) \tilde{D}_\xi [w] \right\}.
\] (5.4)

for any \(\eta > 0 \) with \(C \) independent of \(\eta \).

PROPOSITION 5.4. For \(1 \leq m \leq N \), there exist constants \(\nu_0 > 0 \) and \(b > 0 \) such that if \(\nu \geq \nu_0, \nu^2 \geq 1 \) and \(\omega \leq 1 \), then the following estimate holds:
\[
\frac{1}{2} \frac{d}{dt} \left\{ \frac{1}{\nu^2} \sqrt{\left| \frac{P'(\rho_s)}{\nu^2 \rho_s} \partial_n \phi \right|^2} + \frac{1}{2} |\chi_m \sqrt{\rho_s} \partial w|^2 \right\} + b \frac{\nu + \tilde{v}}{\nu^4} |\chi_m \partial_t \phi|^2 \\
\leq C \left\{ \left(\frac{\omega^2}{\nu^2 + \tilde{v}} + \frac{\nu^2}{\nu^4 (\nu + \tilde{v})} \right) |\phi|^2 + \frac{\nu + \tilde{v}}{\nu^4} |\xi|^2 |\phi|^2 + \left(\frac{\tilde{v}}{\nu} + 1 \right) \tilde{D}_\xi [w] \\
+ \frac{\nu}{\nu + \tilde{v}} |\xi|^2 \tilde{D}_\xi [w] + \frac{\nu^2}{\nu + \tilde{v}} |\chi_m \partial_n \partial w|^2 + |\chi_m \partial_t^2 w|^2 \right\}.
\] (5.5)
PROPPOSITION 5.5. There exist constants \(v_0 > 0 \) and \(b > 0 \) such that if \(v \geq v_0, \gamma^2 \geq 1 \) and \(\omega \leq 1 \), then the following estimate holds:

\[
\frac{1}{2} \frac{d}{dt} \left(\frac{1}{\gamma^2} \left| \chi_0 \sqrt{\frac{P'(\rho_0)}{\gamma^2 \rho_s}} \partial_x \phi \right|^2 \right) + \frac{b}{\gamma^4} \left| \chi_0 \sqrt{\rho_s} \partial_x w \right|^2 \\
+ \frac{1}{2} \left(v(|\chi_0 \nabla' \partial_x w|^2_2 + |\xi|^2 |\chi_0 \partial_x \phi|^2_2) + \frac{1}{2} \tilde{v}|\chi_0 (\nabla' \cdot \partial_x \phi' + i \xi \partial_x w^3)|^2_2 \right) \\
\leq C \left\{ \frac{1}{\gamma^2} \left| \phi \right|^2_2 + \left(\frac{1}{\gamma^2} + \frac{v + \tilde{v}}{\gamma^4} + \frac{\omega^2}{v + \tilde{v}} \right) |\xi|^2 |\phi|^2_2 + \left(\eta + \frac{1}{\gamma^2} \right) |\partial_x \phi|^2_2 \\
+ \left(\frac{1}{\eta^2} + \frac{v + \tilde{v}}{\gamma^2} + \frac{\tilde{v}}{v} + 1 \right) \tilde{D}_\xi [w] \right\}
\] (5.6)

for any \(\eta > 0 \) with \(C \) independent of \(\eta \).

Before proceeding further we introduce an energy functional. We define \(E_3^{(\infty)}[u] \) by

\[
E_3^{(\infty)}[u] = \frac{1}{\gamma^2} \left| \chi_0 \sqrt{\frac{P'(\rho_0)}{\gamma^2 \rho_s}} \partial_x \phi \right|^2 + \frac{1}{\gamma^2} \left| \chi_0 \sqrt{\rho_s} \partial_x w \right|^2 \\
+ \tilde{b}_4 \sum_{m=1}^N \left(\frac{1}{\gamma^2} \left| \chi_m \sqrt{\frac{P'(\rho_0)}{\gamma^2 \rho_s}} \partial \phi \right|^2 + \left| \chi_m \sqrt{\rho_s} \partial \phi \right|^2 \right) + \sum_{m=1}^N \left(\frac{1}{\gamma^2} \chi_m \sqrt{\frac{P'(\rho_0)}{\gamma^2 \rho_s}} \partial_n \phi \right)^2.
\]

where \(\tilde{b}_4 \) is a positive constant. Taking \(\tilde{b}_4 \) suitably large, we have the following estimate for \(E_3^{(\infty)}[u] \).

PROPPOSITION 5.6. There exist constants \(v_0 > 0, \ b > 0 \) and \(\tilde{b}_4 > 0 \) such that if \(v \geq v_0, \gamma^2 \geq 1 \) and \(\omega \leq 1 \), then the following estimate holds:

\[
\frac{1}{2} \frac{d}{dt} E_3^{(\infty)}[u] + b \frac{v + \tilde{v}}{\gamma^4} |\partial_x \phi|^2_2 \\
+ \frac{1}{2} \left(v(|\chi_0 \nabla' \partial_x w|^2_2 + |\xi|^2 |\chi_0 \partial_x \phi|^2_2) + \tilde{v}|\chi_0 (\nabla' \cdot \partial_x \phi' + i \xi \partial_x w^3)|^2_2 \right) \\
+ \frac{1}{2} \sum_{m=1}^N \left(v(|\chi_m \nabla \partial w|^2_2 + |\xi|^2 |\chi_m \partial w|^2_2) + \tilde{v}|\chi_m (\nabla' \cdot \partial w' + i \xi \partial w^3)|^2_2 \right) \\
\leq C \left\{ \left(\eta + \frac{\omega^2}{v + \tilde{v}} + \frac{1}{\gamma^2} + \frac{1}{\gamma^4} \right) |\phi|^2_2 + \left(\eta + \frac{\omega^2}{v + \tilde{v}} + \frac{1}{\gamma^2} + \frac{v + \tilde{v}}{\gamma^4} \right) |\xi|^2 |\phi|^2_2 \\
+ \left(\eta + \frac{1}{\gamma^2} \right) |\partial_x \phi|^2_2 + \left(\frac{1}{\eta^2} + \frac{v}{\gamma^2} + \frac{\tilde{v}}{v} + 1 \right) \tilde{D}_\xi [w] \right\} \\
+ \frac{v}{v + \tilde{v}} |\xi|^2 \tilde{D}_\xi [w] + \frac{1}{v + \tilde{v}} \left| \sqrt{\rho_s} \partial w \right|^2_2
\] (5.7)

for any \(\eta > 0 \) with \(C \) independent of \(\eta \).

We do not have the estimate for \(\phi \) such as \(|\phi|_2 \leq C |\partial_x \phi|_2 \) similar to that for \(\phi_1 \) in Section 4. We thus use the estimate for a solution of the Fourier transformed Stokes equation of the case \(|\xi|^2 \gg 1 \).
PROPOSITION 5.7. Assume that \((p, h) \in H^1(D) \times H^2(D)\) is a solution of the following Stokes equation:

\[
\begin{cases}
\nabla' \cdot h' + i\xi h^3 = F^0, \\
(|\xi|^2 - \Delta') h' + \frac{1}{v} \partial_x p = \frac{1}{v} G', \\
(|\xi|^2 - \Delta') h^3 + \frac{1}{v} i\xi p = \frac{1}{v} G^3, \\
h|_{\partial D} = 0.
\end{cases}
\]

There exists a constant \(R_0 = R_0(D) > 0\) such that if \(|\xi| \geq R_0\), then the following estimate holds:

\[
\frac{1}{v^2}|p|_2^2 + \frac{1}{v^2} |\xi|^2 |p|_2^2 + \frac{1}{v^2} |\partial_x p|_2^2 + |h|_2^2 + |\xi|^2 |h|_2^2 + |\partial_x h|_2^2 + \sum_{j=0}^2 |\xi|^{2j} |\partial_x^{2-j} h|_2^2
\]

\[
\leq CR_0^2 \left\{|F^0|_2^2 + |\xi|^2 |F^0|_2^2 + |\partial_x F^0|_2^2 + \frac{1}{v^2} |G|^2 + |\partial_x h|_2^2\right\},
\]

where \(C\) is a positive constant independent of \(|\xi|\).

Proposition 5.7 can be proved similarly to the proof of [6, Lemma 6.6] and we omit the proof. Applying Proposition 5.7, we have the following estimate.

PROPOSITION 5.8. There exist constant \(v_0 > 0\) such that if \(v \geq v_0\), \(\gamma^2 \geq 1\) and \(\omega \leq 1\), then the following estimate holds:

\[
\frac{1}{v + \nu} (|\phi|_2^2 + |\xi|^2 |\phi|_2^2 + |\partial_x \phi|_2^2)
\]

\[
+ \frac{\nu^2}{v + \nu} \left(|w|^2 + |\xi|^2 |w|_2^2 + |\partial_x w|^2 + \sum_{j=0}^2 |\xi|^{2j} |\partial_x^{2-j} w|_2^2\right)
\]

\[
\leq CR_0^2 \left\{(\frac{\omega^2}{v + \nu} + \frac{\nu^2}{\gamma^4 (v + \nu)}) |\phi|^2_2 + \frac{v}{v + \nu} \bar{D}_x[w]
\]

\[
+ \frac{\nu^2 + \bar{\nu}^2}{\gamma^4 (v + \nu)} (|\phi|^2_2 + |\xi|^2 |\phi|^2_2 + |\partial_x \phi|^2_2) + \frac{\nu}{v + \nu} |\sqrt{\rho_s} \partial_t w|_2\right\}
\]

(5.8)

for \(|\xi| \geq R_0\), where \(R_0\) is the constant given in Proposition 5.7 and \(C\) is a positive constant independent of \(|\xi|\).

Proof. We observe that \((\phi, w)\) satisfies the following Stokes equation:

\[
\begin{cases}
\nabla' \cdot w' + i\xi w^3 = F^0, \\
(|\xi|^2 - \Delta') w' + \frac{1}{v} \nabla' \left(\frac{P'((\rho_s)^{u})}{\gamma^2} \phi\right) = \frac{1}{v} G', \\
(|\xi|^2 - \Delta') w^3 + \frac{1}{v} i\xi \frac{P'((\rho_s)^{u})}{\gamma^2} \phi = \frac{1}{v} G^3, \\
w|_{\partial D} = 0.
\end{cases}
\]
where
\[F^0 = -\frac{1}{\rho_s} \{ \partial_t \phi + i \xi v_3^3 \phi + (\nabla' \rho_s) \cdot w' \}, \]
\[G' = -\rho_s \left\{ \partial_t w' - \frac{\tilde{v}}{\rho_s} \nabla'(\nabla' \cdot w' + i \xi w^3) - \frac{P'(\rho_s)}{\gamma^2 \rho_s} \phi \nabla' \rho_s + i \xi v_3^3 w' \right\}, \]
\[G^3 = -\rho_s \left\{ \partial_t w^3 - \frac{\tilde{v}}{\rho_s} i \xi (\nabla' \cdot w' + i \xi w^3) + i \xi v_3^3 w^3 + \frac{v}{\gamma^2 \rho_s} \Delta' v_3 \phi + w' \cdot \nabla' v_3^3 \right\}. \]

Therefore, we get the desired estimate from Proposition 5.7. This completes the proof. \(\square \)

We finally prove Theorem 3.3.

Proof of Theorem 3.3. Let \(\tilde{b}_5, \tilde{b}_6 \) and \(\tilde{b}_7 \) be constants satisfying \(\tilde{b}_5, \tilde{b}_6, \tilde{b}_7 > 1 \). Define \(\tilde{E}_4^{(\infty)}[u] \) by
\[\tilde{E}_4^{(\infty)}[u] = \tilde{b}_5 E_3^{(\infty)}[u] + \frac{\tilde{b}_6}{v + \tilde{v}} \tilde{E}_2^{(\infty)}[u] + \tilde{b}_7 \left(1 + \frac{\tilde{v}}{v} \right) (1 + |\xi|^2) E_0[u]. \]

We compute
\[(5.8) + \tilde{b}_5 \times \left\{ (5.7) + b \frac{v + \tilde{v}}{\gamma^4} (1 + |\xi|^2) \phi |\phi|_2^2 \right\} + \frac{\tilde{b}_6}{v + \tilde{v}} \times (5.3) \]
\[+ \tilde{b}_7 \left(1 + \frac{\tilde{v}}{v} \right) (1 + |\xi|^2) \times (5.1) \]
then
\[\frac{1}{2} \frac{d}{dt} \tilde{E}_4^{(\infty)}[u] + \frac{v^2}{v + \tilde{v}} \left(|w|^2 + |\xi|^2 |w|^2 + |\partial_x w|^2 + \sum_{j=0}^2 |\xi|^2 |\partial_x^j w|^2 \right) \]
\[+ \frac{1}{v + \tilde{v}} (|\phi|^2 + |\xi|^2 |\phi|^2 + |\partial_x \phi|^2) + \tilde{b}_5 \frac{v + \tilde{v}}{\gamma^4} (|\phi|^2 + |\xi|^2 |\phi|^2 + |\partial_x \phi|^2) \]
\[+ \frac{\tilde{b}_5}{2} \left(v(|\chi_0 \nabla' \partial_x w|^2 + |\xi|^2 |\chi_0 \partial_x w|^2) + \tilde{v} |\chi_0 (\nabla' \cdot \partial_x w' + i \xi \partial_x w^3)|^2 \right) \]
\[+ \frac{\tilde{b}_5}{2} \sum_{m=1}^N \left(v(|\chi_m \nabla' \partial_x w|^2 + |\xi|^2 |\chi_m \partial_x w|^2) + \tilde{v} |\chi_m (\nabla' \cdot \partial w' + i \xi \partial w^3)|^2 \right) \]
\[+ \frac{\tilde{b}_5 \tilde{b}_6}{4} \frac{\gamma^2}{v(v + \tilde{v})} \tilde{D}_\xi [w] + \frac{\tilde{b}_6}{2} \frac{1}{v + \tilde{v}} |\sqrt{\rho_s} \partial_t w|^2 + \tilde{b}_7 \left(1 + \frac{\tilde{v}}{v} \right) (1 + |\xi|^2) \tilde{D}_\xi [w] \]
\[\leq \tilde{C}_4 \left\{ R_0^2 \frac{\omega^2}{v + \tilde{v}} + \frac{v^2}{\gamma^4 (v + \tilde{v})} \right\} |\phi|^2 + R_0^2 \frac{v}{v + \tilde{v}} \tilde{D}_\xi [w] \]
\[+ R_0^2 \frac{v^2 + \tilde{v}^2}{\gamma^4 (v + \tilde{v})} (|\phi|^2 + |\xi|^2 |\phi|^2 + |\partial_x \phi|^2) \]
\[+ R_0^2 \frac{1}{v + \tilde{v}} |\sqrt{\rho_s} \partial_t w|^2 + \tilde{b}_8 \left(\eta + \frac{\omega^2}{v + \tilde{v}} + \frac{1}{\gamma^2} + \frac{v^2}{\gamma^4 (v + \tilde{v})} \right) |\phi|^2 \]
Fix $\tilde{b}_5 > 1$, $\tilde{b}_6 > 1$ and $\tilde{b}_7 > 1$ so large that $\tilde{b}_5 \geq (2\tilde{C}_4/b)R_0^2$, $\tilde{b}_6 \geq 8\tilde{C}_4 \max\{R_0^2, \tilde{b}_5\}$ and $\tilde{b}_7 \geq 20\tilde{C}_4 \max\{R_0^2, \tilde{b}_5(1/\eta(v + \tilde{v})), \tilde{b}_5, \tilde{b}_6\}$, respectively. We take $\eta > 0$ and $\omega > 0$ sufficiently small such that $\eta < (1/20\tilde{C}_5)(1/(v + \tilde{v}))$ and $\omega^2 < (1/20\tilde{C}_4) \min\{1/R_0^2, 1/\tilde{b}_5\}$, respectively. We assume that $\nu \geq \nu_0$ and $\gamma \geq \gamma_0$ are large enough such that $\nu \geq \nu_0 > 1$ and $\gamma^2 > 20\tilde{C}_4 \max\{\tilde{b}_6(\nu + \tilde{v}), (\tilde{b}_5/\tilde{b}_7)(v^2/(v + \tilde{v})), \sqrt{\tilde{b}_7(v + \tilde{v})}\}$. We then arrive at the estimate

$$
\frac{d}{dt} \tilde{E}_4^{(\infty)}[u] + \frac{\nu^2}{\nu + \tilde{v}} \left(|w|^2 + |\xi|^2 |w|^2 + |\partial_x \cdot w|^2 + 2 \sum_{j=1}^{\infty} |\xi|^2 |\partial_{x^j} \partial_x \cdot w|^2 \right)
+ \frac{1}{\nu + \tilde{v}} (|\phi|^2 + |\xi|^2 |\phi|^2 + |\partial_x \cdot \phi|^2) + \frac{\nu + \tilde{v}}{\gamma^2} (|\phi|^2 + |\xi|^2 |\phi|^2 + |\phi|^2_{H^1})
+ \nu (|\chi_0 \nabla' \partial_x \cdot w|^2 + |\xi|^2 |\chi_0 \partial_x \cdot w|^2) + \tilde{v} |\chi_0 \nabla' \partial_x \cdot w + i \xi \partial_x \cdot w' + 3i \xi \partial_x \cdot w|^2)\bigg)\bigg|
+ \frac{1}{\nu + \tilde{v}} \sqrt{\rho_s \partial_x \cdot w}^2 + \frac{\nu + \tilde{v}}{\nu} (1 + |\xi|^2) \tilde{D}_{\xi}[w]
\leq 0
$$

for all $\xi \in \mathbb{R}$ with $|\xi| \geq R_0$. We define $E_4^{(\infty)}[u]$ by

$$
E_4^{(\infty)}[u] = |\phi|^2 + |\xi|^2 |\phi|^2 + |\partial_x \cdot \phi|^2 + |w|^2 + |\xi|^2 |w|^2 + |\partial_x \cdot w|^2.
$$

Since

$$
\frac{1}{2} \left(\left(1 + \frac{\tilde{b}_3 \nu^2}{\nu} \right) E_0[u] + \tilde{D}_{\xi}[w] \right) \leq \tilde{E}_2^{(\infty)}[u] \leq \frac{3}{2} \left(\left(1 + \frac{\tilde{b}_3 \nu^2}{\nu} \right) E_0[u] + \tilde{D}_{\xi}[w] \right),
$$

$$
\frac{1}{2} \frac{1}{\gamma^2} \left| \partial_x \cdot \phi \right|^2 \leq \tilde{C}_5 E_4^{(\infty)}[u] \leq \frac{3}{2} \left(\frac{1}{\gamma^2} \left| \partial_x \cdot \phi \right|^2 + \left| \partial_x \cdot w \right|^2 \right)
$$

for a positive constant \tilde{C}_5, we see that

$$
\frac{1}{2} E_4^{(\infty)}[u] \leq \tilde{C}_6 \tilde{E}_4^{(\infty)}[u] \leq \frac{3}{2} E_4^{(\infty)}[u]
$$
for a positive constant \tilde{C}_6. We thus see that there exist positive constants ν_0, γ_0, ω_0 and d such that if $\nu \geq \nu_0$, $\gamma^2/(\nu + \tilde{\nu}) \geq \gamma_0^2 R_0^2$ and $\omega \leq \omega_0 R_0^{-2}$, then

$$E_4^{(\infty)}[u](t) \leq Ce^{-dt} E_4^{(\infty)}[u_0]$$

for $|\xi| \geq R_0$. On the other hand, for $1 \leq |\xi| \leq R_0$, we obtain the desired estimate from (4.72) with $R = R_0$. This completes the proof.

Acknowledgement. The author would like to thank Professor Yoshiyuki Kagei for his useful comments and constant encouragement.

REFERENCES

Reika Aoyama
Graduate School of Mathematics
Kyushu University
Fukuoka, 819-0395
Japan
(E-mail: r-aoyama@kyudai.jp)